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We study properties of magnetohydrodynamic (MHD) eigenmodes by decomposing the data of MHD
simulations into linear MHD modes—namely, the Alfvén, slow magnetosonic, and fast magnetosonic
modes. We drive turbulence with a mixture of solenoidal and compressive driving while varying the Alfvén
Mach number (MA), plasma β, and the sonic Mach number from subsonic to transsonic. We find that the
proportion of fast and slow modes in the mode mixture increases with increasing compressive forcing. This
proportion of the magnetosonic modes can also become the dominant fraction in the mode mixture. The
anisotropy of the modes is analyzed by means of their structure functions. The Alfvén-mode anisotropy is
consistent with the Goldreich-Sridhar theory. We find a transition from weak to strong Alfvénic turbulence
as we go from low to high MA. The slow-mode properties are similar to the Alfvén mode. On the other
hand, the isotropic nature of fast modes is verified in the cases where the fast mode is a significant fraction
of the mode mixture. The fast-mode behavior does not show any transition in going from low to high MA.
We find indications that there is some interaction between the different modes, and the properties of the
dominant mode can affect the properties of the weaker modes. This work identifies the conditions under
which magnetosonic modes can be a major fraction of turbulent astrophysical plasmas, including the
regime of weak turbulence. Important astrophysical implications for cosmic-ray transport and magnetic
reconnection are discussed.
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I. INTRODUCTION

Plasma turbulence plays an important role in various
astrophysical processes. It is important in solar wind
heating and acceleration [1], it regulates star formation
processes [2–4], and it scatters cosmic rays [5], to name a
few. The properties of turbulence depend on the underlying
modes it is made up of. The magnetohydrodynamic (MHD)
system of equations of a 3D, homogeneous, uniform, iso-
thermal plasma with a uniform background magnetic field
allows for three separate propagating linear eigenmodes—
the Alfvén mode [6], the slow magnetosonic mode, and the
fast magnetosonic mode [7]. Alfvénic turbulence (turbu-
lence consisting of mostly Alfvén modes interacting with
each other) is thought to be quite important in solar
turbulence as Alfvén waves have been observed in solar
wind [8]. Alfvénic turbulence has been studied for several
decades, and several theories have been developed to

describe it. The Alfvén modes are incompressible solutions
to the linearized MHD equations. In the regime of strong
turbulence, a critical balance is conjectured to be reached
between the linear interaction time of wave packets and
their nonlinear cascade time. As a result, scale-dependent
anisotropy appears [9]. In the limit of weak turbulence, the
resonant three-wave couplings involve only the nonpropa-
gating Alfvén modes and produce a cascade in the wave
vectors perpendicular to the local mean magnetic field
direction only [10].
There has not been a comprehensive theory of turbulence

consisting of the compressible MHD modes, namely, the
slow and fast magnetosonic modes. Turbulence in the
interstellar medium is identified by the measurement of
density fluctuations in it, indicating the presence of
compressible turbulence [11]. These turbulent density
fluctuations in the interstellar medium molecular clouds
are closely linked to star formation [12–14]. Numerical
simulations of compressible turbulence to identify the
inertial range scalings are more difficult and complex,
with varying results depending on the plasma parameters,
like Mach number [15–17]. Since astrophysical turbulence
is expected to be magnetized and compressible, the
magnetosonic modes should be considered when studying
such turbulence. Whether the cascades of these different
MHD modes are independent of each other and what their
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nature is are still open questions. The slow modes are
cascaded by the shear-Alfvén modes and hence are
expected to behave like the Alfvén modes [18]. Earlier
studies indicated that the interactions between the Alfvén
and the magnetosonic modes are limited on scales smaller
than the injection scale. They also have shown that the
energy spectrum and anisotropy of slow modes are quite
similar to Alfvén modes [19]. On the other hand, fast
modes have been seen to be quite different in their spectrum
and anisotropy characteristics. Unlike Alfvén modes,
which preferentially cascade in the field-perpendicular
direction, fast modes seem to show an isotropic cascade.
This result has also led to several important implications for
astrophysical turbulence. Based on this result, it has been
shown that fast modes could be the most effective scatterers
of cosmic-ray particles [20,21].
Particle scattering and diffusion critically depend on the

properties of plasma turbulence. While fast modes can play
an important role in scattering of cosmic rays, simulations
have shown that the fast modes might only be a marginal
component of compressible turbulence [22]. However,
these simulations have been driven incompressively by
solenoidal forcing [15,19,22–24]. Thus, a natural question
to ask is whether and how the nature of the forcing affects
the mode composition of turbulence. We try to answer this
question by compressively driving turbulence in a variety
of different plasma parameter regimes. Some earlier studies
have driven turbulence by keeping a mixture of solenoidal
and compressive velocity fields at large scales [25] or by
decomposing the driving force into solenoidal and com-
pressive components [26]. We adopt a similar forcing but
focus on the MHD mode decomposition. We find that the
nature of the forcing significantly affects the composition
of the turbulence in terms of the MHD modes. Another
phenomenon less explored in numerical simulations is low-
MA (ratio of rms velocity to Alfvén speed) turbulence.
Theoretically, the Alfvénic turbulent cascade is expected to
be weak up to some scale and then transition to a state of
strong turbulence, mediated by the critical balance con-
dition, at smaller scales. This transition from weak to strong
turbulence has only recently been simulated in decaying
turbulence [27]. We explore the MA dependence of this
transition in our compressively driven simulations and find
that the nature of Alfvénic turbulence can significantly
change with MA.
The isotropic cascade properties of the fast mode have

been studied at limited resolution previously [19], and the
spectrum of this cascade was cautiously claimed to be
k−3=2. Higher-resolution studies are needed to verify this
behavior through a well-resolved inertial range. We per-
form higher-resolution studies and find the isotropic nature
of the fast modes throughout the inertial range, suggesting
no scale-dependent anisotropy. Another related question is
whether fast modes also show an MA-dependent behavior
like Alfvén modes in terms of weak or strong turbulence.

We do not find any such dependence for the fast modes. Our
results also suggest that these different modes that cascade
are not completely independent of each other, depending on
which mode is dominant. This study shows that the nature of
MHD turbulence can be different depending on a variety of
parameters, particularly, the nature of driving, and this has
important implications for understanding the effect of this
turbulence on related problems.

II. SIMULATION SETUP AND MODE
DECOMPOSITION

The simulations are performed by using the PLUTO code
[28]. The ideal MHD equations are solved with no explicit
resistivity or viscosity, only with numerical dissipation. The
isothermal equation of state is used. The built-in HLLD

Riemann solver [29] is utilized in conjunction with a
WENO3 reconstruction scheme [30]. The time stepping is
done by a third-order Runge-Kutta scheme. The simulation
box is a cube of length Lx ¼ Ly ¼ Lz ¼ 1. The normali-
zation is such that the Alfvén velocity vA and the mean
magnetic field B0 are numerically same. The mean field B0

is in the z direction, which is the global parallel direction.
The dimensionless quantities, like plasma β and Mach
numbers, are given in Table I. The sound speed (cs) is
changed to vary the plasma β defined as β≡ 2ðcs=vAÞ2.
Turbulence is driven by using a readily available forcing

module in PLUTO. This method drives turbulence by adding
a force Fturb in both the momentum and energy equations.
This force is modeled as an Ornstein-Uhlenbeck (OU)

TABLE I. Simulation parameters in a steady state with simu-
lation IDs. The energy injection rate Einj, the plasma β, Alfvén
Mach number MA, sonic Mach number MS, the forcing corre-
lation time T, resolution, and fraction of compressive driving ζ

are varied amongst the different simulation runs.

ID Einj β MA MS T Resolution ζ

S1a 10−8 2.17 0.24 0.23 20 5123 1.0
S2a 8 × 10−8 2.17 0.46 0.44 10 5123 1.0
S2.5a 2 × 10−7 2.17 0.59 0.56 8.5 5123 1.0
S3a 5 × 10−7 2.17 0.69 0.66 7.5 5123 1.0
S4a 8 × 10−6 2.17 0.99 0.95 5 5123 1.0
C1a 3 × 10−7 2.17 0.22 0.21 20 5123 0.1
C2a 5 × 10−6 2.17 0.48 0.46 10 5123 0.1
C3a 2 × 10−5 2.17 0.66 0.63 7.5 5123 0.1
C4a 9 × 10−5 2.17 1.03 0.99 5 5123 0.1
CB0a 8 × 10−6 0.5 0.51 1.02 10 5123 0.1
CB1a 3 × 10−6 8.0 0.60 0.3 10 5123 0.1
S1b 10−8 2.17 0.25 0.24 20 10243 1.0
S2b 8 × 10−8 2.17 0.48 0.46 10 10243 1.0
S3b 5 × 10−7 2.17 0.72 0.69 7.5 10243 1.0
S4b 8 × 10−6 2.17 0.87 0.84 5 10243 1.0
C1b 3 × 10−7 2.17 0.23 0.22 20 10243 0.1
C4b 9 × 10−5 2.17 1.05 1.01 5 10243 0.1
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process [31,32]. This process is a stochastic differential
equation governing the evolution of the force Fturb, given by

dFturbðk; tÞ ¼ Fturb
0

ðkÞPζðkÞdWðtÞ − Fturbðk; tÞ dt
T
: ð1Þ

Here, dF is a force added at every time step to the existing
force FturbðkÞ at wave vector k. The PζðkÞ operator is a
projection operator, which separates the solenoidal and
compressive parts of the force,

P
ζ
ijðkÞ ¼ ζP⊥

ijðkÞ þ ð1 − ζÞPk
ijðkÞ ¼ ζδij þ ð1 − 2ζÞ kikj

k2
:

ð2Þ

When ζ ¼ 1, the forcing is purely solenoidal; when ζ ¼ 0, it
is purely compressive, and intermediatevalues give amixture
of solenoidal and compressive forcing. The forcing is limited
to a range of wave numbers kmin ≤ k ≤ kmax. We ignore the
2π factor in the definition of the wave number, and since the
box length is also normalized to unity, the smallest wave
number possible in our simulation is 1. Thus, kmin ¼ 1 and
kmax ¼ 3 in our simulations. We vary the Mach numberMA

of the turbulence by varying the energy injected into the
turbulence Einj. We also vary the plasma β by changing
the isothermal sound speed cs. This process also changes the
sonic Mach number as shown in Table I for the different
simulations. We scan the sonic Mach number from the
subsonic to the transsonic range. We utilize solenoidal
driving (ζ ¼ 1) and mostly compressive driving (ζ ¼ 0.1).
Two different grid resolutions are utilized, 5123 and 10243.
Table I shows the different simulationswe have analyzed and
their parameters. The first letter “S” or “C” in the simulation
ID represents whether it is solenoidally or compressively
driven. The letter “a” or “b” denotes the resolution (5123 or
10243, respectively). Table I also lists the correlation time of
the forcingT. This time is close to the usual value of the eddy
turnover time at the injection scale (Linj), T ≈ ðLinjÞ=v ≈
ð1=2Þ=ðvAMAÞ [33]. The simulations are run for several tens
of eddy correlation timeT so that there aremany snapshots of
a statistical steady state.
The mode decomposition is a linear eigenmode decom-

position, where the MHD state vector comprised of the
density, velocity, and magnetic fluctuations is decomposed
into a linear combination of the two Alfvén-mode eigen-
vectors, the two fast magnetosonic-mode eigenvectors and
the two slow magnetosonic-mode eigenvectors. The MHD
description is generally regarded as valid on scales much
larger than the typical kinetic scales, like mean free path,
ion skin depth, and gyroradius. Although kinetic damping
can affect the compressible modes on collisionless scales
[34,35], in typical warm ISM plasmas there is a vast range
of scales from the injection (a few tens to 100 pcs) to
collisionless scales such that the MHD prescription is
justified for a large range of scales. The linear MHD mode

decomposition assumes a homogeneous plasma without
strong gradients. It is applicable if the turbulence driving
scale is less than or equal to the scale length of the
gradients. The mode decomposition is valid in those
regions where the background plasma is devoid of strong
gradients or discontinuities and where the driving can also
be considered homogeneous. In situ observations of the
solar wind have revealed the presence of the Alfvén and
slow modes [36]. If we consider the intragalactic media
with a scale height of a few hundred pc, then regions of size
less than or similar to 100 pc would be homogeneous in the
absence of strong discontinuities. Many observations also
indicate that turbulence is driven on galactic scales with an
injection scale of about 100 pc [37]. In such regions with
sizes smaller than the injection scales, the turbulence
driving can be considered homogeneous and the linear
MHD mode analysis should apply.
We follow the prescription of Ref. [19] to decompose the

MHD data into the MHD eigenmodes. The sonic and
Alfvén Mach numbers are kept less than or close to 1 so
that the nonlinear terms (δv2; δb2) are not stronger than the
linear terms (vAδv; B0δb). In this case, the linear mode
decomposition will be meaningful. After Fourier trans-
forming the MHD data, the MHD state at each wave vector
k is arranged in a column vector consisting of ðρk; vk; bkÞ,
where ρ is the density, v is the perturbed velocity field
vector (normalized to the Alfvén speed), and b is the
perturbed magnetic field vector (normalized to the mean
field B0). Here, the mean density ρ0 and mean magnetic
field B0 have been subtracted, and only the fluctuating
components are kept. The magnetic field components are
not truly independent due to the divergence-free condition
k · bk ¼ 0. Therefore, only two components of the b field
are kept to reduce the MHD state vector to six components.
These two components are selected to be closest to the
magnetic field vector of the Alfvén mode and the slow (or
fast) mode.
The six eigenmode vectors are placed in a 6 × 6 matrix

A, while the MHD state is a column vector b, solving for the
linear amplitudes x of the modes by solving the linear
matrix equation Ax ¼ b. Once the Fourier amplitudes of
the different modes are obtained in this manner, an inverse
Fourier transform gives us data cubes in the physical space
consisting entirely of single, specific MHD modes. The
perpendicular propagation, kz ¼ 0, is a special case where
the Alfvén and slow modes become degenerate and non-
propagating. The parallel propagation case (k⊥ ¼ 0) is also
special, as here the Alfvén mode is degenerate with either
the slow or fast mode, depending on whether vA < cs
or vA > cs.
Using this decomposition, the density, velocity, and

magnetic fields obtained from MHD simulations are
decomposed into three modes, i.e., vk ¼ vk;A þ vk;S þ
vk;F and bk ¼ bk;A þ bk;S þ bk;F, where the subscripts A,
S, and F refer to the Alfvén, slow, and fast modes,
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respectively. To measure the relative presence of the
different modes in the turbulence, the relative fraction of
“energy” in that mode is calculated by taking

PMEm ¼ 100% ×

P

kjbk;mj2
P

m;kðjbk;mj2 þ jvk;mj2Þ
; ð3Þ

PKEm ¼ 100% ×

P

kjvk;mj2
P

m;kðjbk;mj2 þ jvk;mj2Þ
: ð4Þ

The variable m represents the MHD modes, standing for A,
S, or F. Here, PMEm [Eq. (3)] stands for magnetic energy
fractions and PKEm [Eq. (4)] stands for kinetic energy
fractions. The sum over m in the denominator means
summing over all three modes. The sum over the
Fourier modes excludes the kz ¼ 0 and k⊥ ¼ 0 modes,
counting only nondegenerate modes. As an example, PMEA
stands for the percentage of magnetic energy in Alfvén
modes, while PKEF estimates the fraction of fast-mode
velocity fluctuations in the total mode mixture.
These mode energy fractions change as a function of

time as shown in Fig. 1. It shows the energy fractions as a
function of time in simulation C1a. This simulation is first
run at a lower resolution of 1283 in order to reach a steady
state in energy quickly. Then, the 5123 simulation is
launched using a data cube from the 1283 simulation as
the initial condition with trilinear interpolation. We see that
it takes some time initially for the different mode fractions
to attain a steady value. The Alfvén mode shows a very
similar level of kinetic and magnetic fluctuations, as
expected from its eigenmodes. The dominant contribution
comes from the kinetic component of the slow modes,
while its magnetic component is comparable to the Alfvén
modes. The fast mode also shows a strong kinetic compo-
nent and a weaker magnetic component.

These mode energy fractions are averaged over the
steady-state snapshots of each 5123 simulation and shown
in Fig. 2. In the solenoidally driven simulations, the Alfvén
and slow modes form the major fraction, with very little
contribution from fast modes. In simulation S4a, the fast
mode contributes only 5.1% to kinetic energy fluctuations
and 5.4% to magnetic energy fluctuations. Going from S1
to S4 as the Alfvén Mach number increases, there is a slight
increase in the fraction of Alfvén modes. The Alfvén modes
have roughly equal energies in the velocity and magnetic
fields, while the slow mode has a stronger component of
velocity fields. A striking feature of Fig. 2 is that the fast
mode has a significantly large proportion in the compres-
sively driven simulations, which has not been observed
before. In simulation C1a, the fast mode contributes 30.6%
to kinetic energy fluctuations and 24.3% to magnetic
energy fluctuations. In simulation C4a, the fast mode
contributes 25.5% to kinetic energy fluctuations and
24.3% to magnetic energy fluctuations. On the other hand,
comparing C1a, C2a, and C4a shows that changing theMA

does not affect the mode fractions significantly (except for a
gradual increase in Alfvén-mode proportion). Comparing
CB0a with CB1a shows that kinetic fluctuations of slow
modes decrease while their magnetic fraction increases as
the plasma β increases, taking the slow-mode magnetic and
kinetic fluctuations closer to equipartition. This case is
understood from the fact that as β → ∞, the slow-mode
dispersion tends to the Alfvén-mode dispersion, which
implies equipartition between kinetic and magnetic

FIG. 1. Fraction of mode energies in the velocity and magnetic
fields of the different MHD modes for the C1a simulation as a
function of time.

FIG. 2. The time-averaged fractions of mode energies in
different modes in different simulations. Each simulation has
two bars. The left one represents the velocity field showing the
three mode percentages (PKEA, PKES, and PKEF in blue, green,
and red, respectively). Similarly, the right bar is for the magnetic
field showing PMEA, PMES, and PMEF in their respective colors.
Both the bars add up to 100%. Compressive driving leads to a
significantly larger fraction of the fast magnetosonic mode.
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fluctuations. Also, as β increases, the fraction of the fast
mode increases in the kinetic fluctuations, while it
decreases in the magnetic fluctuations. This result is
expected from the fast-mode eigenvector [Eq. (A30) of
Ref. [19] ], as in the high β → ∞ limit, we have vk;F ∝ k

and ωk;F ∼ kcs. This case gives jbk;Fj ∼ jvk;FjB0=cs and
hence jbk;Fj=B0 ≪ jvk;Fj=vA.
If we consider only the velocity fluctuations, then in all

the compressively driven simulations, the total fraction of
slow and fast modes is larger than the fraction of the Alfvén
mode. Since the Alfvén mode is incompressible while the
fast and slow magnetosonic modes are compressible,
compressive driving expectedly makes the compressible
velocity components dominant. If we consider only the
magnetic fluctuations, then in simulations C1a, C2a, and
C4a, the slow-plus-fast fraction is larger than the Alfvén
fraction. Therefore, even magnetic fluctuations are domi-
nated by the compressible magnetosonic modes in com-
pressively driven turbulence of plasma β close to unity.
The mode fractions only give us a crude estimate of the

strengths of various modes. We look at the perpendicular
wave-number energy spectrum to get a sense of the wave-
number distribution of the mode energies. These spectra are
shown in Fig. 3. The perpendicular direction is taken with
respect to the z direction, which is the mean field direction.
The spectrum in the perpendicular x–y plane is averaged
over the angle θ between the k⊥ vector and the x axis,
Eðk⊥Þ ¼

R

dθk⊥Eðk⊥; θÞ. This spectrum is very similar to
the 1D wave-number spectrum averaged over all three

directions, EðkÞ. The kz ¼ 0wave number is removed from
the data cube when calculating this spectrum in order to be
consistent with Fig. 2. The energy spectra of the Alfvén and
slow modes show very similar behavior across all the cases.
The solenoidally driven low-MA case S1a is a case where
the Alfvén cascade is weak, as we will see later. The fast
mode in this case is very weak energetically, compared to
the slow and Alfvén modes, with a very steep spectrum. In
the solenoidally driven trans-Alfvénic case S4a, the Alfvén

and slow modes show a spectrum close to k
−3=2
⊥ , which is

indicative of strong turbulence. The magnetic field spec-

trum of fast modes is close to k−3=2⊥ , while the velocity field

spectrum is between k
−5=3
⊥ and k−2⊥ . This case is similar to

earlier results of fast-mode spectra [19].
In the compressively driven cases of C1a and C4a, we

see that the fast-mode energy level increases compared to
the solenoidally driven cases at large scales close to the
driving scales. In C4a, the Alfvén and slow modes still
show very similar spectra, close to k

−3=2
⊥ . The fast-mode

velocity field in both C1a and C4a shows a spectrum of k−2⊥ ,

while the magnetic field spectrum is between k−5=3⊥ and k−2⊥ .
This spectrum is steeper than the k−3=2 spectrum claimed in
Ref. [19]. Sharp jumps in data can lead to a steeper power
spectrum [38] but might also limit the applicability of the
mode decomposition. We try to identify regions of these
sharp gradients in a fast-mode data cube of simulation C4a
by finding cells that have velocity jumps in neighboring
cells above a threshold. Regions with more than a 30%

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Energy spectra of the different MHD modes showing a comparison between S1a, S4a, C1a, and C4a simulations. The top row
is the spectrum of magnetic fields, and the bottom row shows the velocity field spectrum. Three reference slopes are also plotted giving

k
−3=2
⊥ , k−5=3⊥ , and k−2⊥ slopes. The legend applies to all the subplots.
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jump in the velocity occupy 10% of the total volume (more
than 100% jump regions occupy only 0.8% volume). These
sharp gradients are weak and occupy a very small volume;
therefore, we expect that the mode decomposition would
still be valid for such data. To test this case further, we
perform a test simulation with a superposition of three fast
modes with mutually orthogonal wave vectors that do not
interact via radial three-wave interactions. These modes
steepen into shocks, but the mode decomposition of the
data still reveals the dominance of fast modes, as is
expected. Therefore, we can rely on mode decomposition
even in this scenario. As the slope of the fast-mode
spectrum is steeper, even though it is dominant close to
the driving scale, its energy component drops off compared
to the Alfvén and slow modes at smaller scales.
The spectrum of Alfvén and slow modes in simulations

S1a and C1a shown in Fig. 3 is shallower than k
−3=2
⊥ and

closer to k−1⊥ . These simulations were run for T ¼ 16,
which is close to an order unity nonlinear time. We also ran
the simulations for a longer time up to T ¼ 32 and verified
that the spectra converged with time. As the forcing injects
energy in the velocity field isotropically in a spherical shell
of wave vectors with 1 ≤ k ≤ 3, this could be a case of
weak turbulence driven hydrodynamically at both kz ≠ 0

and kz ¼ 0 as considered in Ref. [39]. The Alfvén modes
appear with a similar spectrum in the S1 simulation.
The spectrum of kz ≠ 0 modes is k−1⊥ as predicted [see
Fig. 4(a)]. The OU forcing plays an important role in
producing this behavior. We implemented and tried the
delta-correlated-in-time forcing often used in turbulence
simulations like in Refs. [19,40–42] and produced a
turbulent date cube with MA ¼ 0.24. We compare the
spectrum produced by this simulation with the OU forced
simulation S1a in Fig. 4. Theoretically, a large range of

weak turbulence is expected from kinj to kinj=M
2

A [43]. In
the OU forced simulation, the kz spectrum is very steep,
indicating weak turbulence, while the k⊥ spectrum is k−1⊥ .
On the other hand, the delta-correlated forcing produces a
k
−5=3
⊥ spectrum, which is more representative of strong
turbulence along with a significant energy cascade to
higher kz modes. The energy spectra of OU forced
simulations in Fig. 4 are also lower than the delta-correlated
spectra since, for the OU simulations, more energy is
concentrated in the kz ¼ 0 modes. We think that the delta-
correlated-in-time forcing produces faster dynamics,
whereas the OU forcing gives a slower evolution of the
force allowing a weak cascade to develop.
We can also see signatures of different modes in the

frequency spectra. For this case, one-dimensional slices
along the x (perpendicular to the mean field) and z (parallel
to the mean field) axes are taken. These slices are output
at a high frequency at a time interval of Δt ¼ 0.002τA.
Then, performing a 2D Fourier transform along the xðzÞ
and time axes gives us the power distribution in k⊥ðkzÞ-ω
space. Figure 5 shows this power spectrum in the kz-ω
space. The white dashed line follows the ω ¼ �kzvA line,
which is the dispersion relation of Alfvén waves. The green
dashed line traces the relation ω ¼ ð1þ

ffiffiffi

2
p

Þ
ffiffiffi

2
p

kzvA. This
is the relation for a fast mode where cs ¼ vA (approx-
imately true for these simulations) and k⊥ ¼ kz. Figure 5(a)
shows the frequency spectrum from the velocity fluctua-
tions in simulation S2a, in which the Alfvén- and slow-
mode contributions dominate significantly over fast modes
as seen in Fig. 2. We see that the power is concentrated
close to the Alfvénic dispersion. Figure 5(b) shows the
frequency spectrum for the velocity field in simulation C2a,
which also shows a branch of power concentrated at higher
frequencies ω that are close to the fast-mode dispersion.
The fast mode is also a significant proportion of the mode
mixture in the C2a simulation (Fig. 2), and this is reflected
in the frequency characteristics. In the next section, we

(a) (b)

FIG. 4. (a) The k⊥ spectrum excluding the kz ¼ 0 mode. A
delta-correlated-in-time forcing is used to produce a data cube
with MA ¼ 0.24 (labeled as “delta”), and it is compared with the
OU-process forced S1 simulation. The delta-correlated forcing

produces a spectrum close to k−5=3⊥ , while the S1 simulation has a
spectrum k−1⊥ . (b) Comparison of the kz spectrum. The OU
forcing produces a very weak energy cascade to higher kz modes,
while the delta-correlated forcing produces a stronger cascade.

(a) (b)

FIG. 5. Frequency spectra showing power density in ω versus
kz. The color represents the logarithm of power. The left plot is
from the velocity field of simulation S2a, while the right plot is
for simulation C2a, again using the velocity field. The white
dashed line is a reference Alfvén-mode dispersion, while the
dashed green line is an example of fast-mode dispersion.
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focus on the anisotropy characteristics of the Alfvén and
slow modes.

III. ALFVÉN AND SLOW MODES

We are interested in the nature of the cascade of the
different MHD modes, especially in its anisotropy. Thus,
we analyze the energy spectrum in the kz-k⊥ space. Here,
the parallel direction is along the mean field, i.e., along
the z direction. The 2D spectrum is defined as
Eðkz; k⊥Þ ¼

R

k⊥Eðk⊥; θ; kzÞdθ, where kz is parallel to

the mean magnetic field, k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q

, and θ is the

angle between k⊥ and the x axis. Figure 6 shows these
spectra for the velocity field of the Alfvén modes in
simulations S1a–S4a with increasing MA. We see that
for S1a, the energy is distributed along the k⊥ axis close to
kz ¼ 0. There is very little cascade along the parallel
direction in the sense that as energy spreads to higher
k⊥, there is no spread to higher kz. The situation is similar
for the S2a simulation. As the MA increases, the cascade
slowly spreads in the parallel direction, slightly in the S3a
simulation and more prominently in the S4a simulation.
This result is an indication of the turbulence transitioning
from weak to strong as MA increases.
We further analyze the anisotropy of the Alfvén modes

by using structure functions. The anisotropic structure
function is defined as

SF2ðlk; l⊥Þ ¼ hjbðr − ðlk=2Þb̂ − ðl⊥=2Þb̂⊥Þ
− bðrþ ðlk=2Þb̂þ ðl⊥=2Þb̂⊥Þj2ir: ð5Þ

This function involves an ensemble average over a number of
pairs of points, which are separated by distance lk in the
magnetic field parallel direction (b̂) and distance l⊥ in the
field-perpendicular direction (b̂⊥). The magnetic field direc-
tion b̂ is the local mean magnetic field. To obtain the local
mean magnetic field, for each parallel and perpendicular

distance pair (lk; l⊥), a distance l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2k þ l2⊥

q

is first calcu-

lated. Then, a random point is selected in the data cube, and a
sphere is taken around this point with a diameter l. The local
mean magnetic field direction is calculated by taking an
average of a few (≥5) random points located in this sphere.
We have verified that the results do not change when taking
more points, which gives us the local mean field direction b̂,
and a random unit vector perpendicular to b̂ is also con-
structed, b̂⊥. Nowwe select two points on this sphere that are
separated by lkb̂þ l⊥b̂⊥. An ensemble average over thou-
sands of such pairs gives us SF2ðlk; l⊥Þ.
The isocontours of the structure function are plotted in

Fig. 7. A second-order smoothing is applied a few times on
the structure function to make the contours smoother,
without changing their behavior. These are derived from
the magnetic and velocity fields of the decomposed Alfvén
mode in the four different simulations S1b, S4b, C2a, and
CB1a, averaged over several time snapshots. The driving
occurs up to a length scale of 0.33 units in terms of box
length, so we only focus on lk and l⊥ up to 0.2. The
anisotropy of the Alfvén modes is clearly visible across the
different simulations and is quite similar. The parallel length
scales are larger than the perpendicular length scales.
Moreover, the ratio lk=l⊥ changes with lk, with this
anisotropy increasing as we proceed to smaller scales,
making this a scale-dependent anisotropy. Comparing
S4b and C2a simulations shows that the anisotropy of
Alfvén modes is not affected by the type of driving.
Changing the plasma β in simulation CB1a does not seem
to change the anisotropy either. Simulation S1b shows a
structure function of the velocity field that is highly
elongated along the lk direction. Similar behavior is seen
for the larger l⊥ values in C2a and CB1a velocity field
structure functions, which are low MA simulations. We
observe that at lowMA, the velocity field is highly correlated
along the magnetic field direction, giving rise to an almost
lk-invariant structure function. This case is indicative of the
weak nature of the cascade at low MA. As MA increases,
smaller-scale structure develops in the parallel direction.
The trans-Alfvénic simulation S4b shows a structure func-
tion that has smaller lk scales. We need to look further at the
variation of lk with l⊥ to get a quantitative understanding of
the anisotropy of Alfvén modes.

FIG. 6. The kz-k⊥ wave-number spectrum for the velocity field
of Alfvén modes with increasing Mach number. The color
indicates the logarithm of the spectrum power. S1a is the lowest
Mach number of 0.24, going up to S4a, which has the highest
Mach number of 0.99. The power spreads more in the parallel
direction as the Alfvén Mach number increases.
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We also analyze the 2D structure functions of the slow
modes. They show a behavior similar to the Alfvén modes
with an anisotropy showing lk > l⊥ at all scales.
From the 2D structure functions, we can extract the

relation of lk versus l⊥ by taking the cuts of the isocontours
of a constant structure function at the lk and l⊥ axis. For this
process, the structure function along the two axes (lk ¼ 0

and l⊥ ¼ 0) is calculated with very high statistics such that
a smooth interpolation can be used to obtain a relation
between the lk and l⊥. This measure gives us a better
picture of the anisotropy scaling. Figure 8 shows this
measure derived from the magnetic fields of the Alfvén
modes. We see that the anisotropy depends on the MA for
the Alfvén modes. For simulation S1b, the lk is almost
constant (very weakly changing) at large l⊥, implying that
eddies form at smaller perpendicular length scales but
maintain the same parallel length scales, which is an
indication of weak turbulence. For simulation S3b, a
similar behavior is also observed at large l⊥, but the lk
starts decreasing as l⊥ gets smaller. As the Mach number
increases in simulation S4b, the lk scales close to the

Goldreich-Sridhar scaling of lk ∼ l
2=3
⊥ . The C4b simulation

shows a power law with the Goldreich-Sridhar scaling for a
significant range of 0.02≲ l⊥ ≲ 0.1. Comparing S1b and
C1b shows not much difference between solenoidal and
compressive driving. Comparing CB0a with CB1a shows
that the plasma β does not have a significant effect on the

anisotropy. This shows that at lowMA there is a large range
of scales in l⊥ where lk remains unchanging with l⊥,
indicating no cascade in parallel direction. As MA

increases, this range decreases and we start seeing a
transition to the Goldreich-Sridhar scaling.
Figure 9 shows the variation of lk, with l⊥ derived from

the magnetic fields of the slow modes. It shows a behavior
similar to the Alfvén modes. For simulations S1b, S3b,

(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 7. Isocontours of the structure function for Alfvén modes from their magnetic (top panels) and velocity fields (bottom panels) for
the four simulations S1b, S4b, C2a, and CB1a. The units of lk and l⊥ are in terms of the simulation box size. We see the scale-dependent
anisotropy for the Alfvén modes, which are longer in the parallel direction compared to the perpendicular direction.

FIG. 8. The variation of lk versus l⊥ for the Alfvén-mode
magnetic field for the different simulations. The Goldreich-
Sridhar scaling is lk ∼ l

2=3
⊥ , shown by the red dotted line (GS).

Isotropic behavior lk ¼ l⊥ is shown by the blue dotted line.
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C1b, and CB1a, the lk drops very slowly with decreasing
l⊥, which is similar to the weak nature of Alfvén modes in
Fig. 8. Simulations CB0a, C4b, and S4b show a behavior
close to Goldreich-Sridhar scaling. There is some isotropic
scaling also seen in simulation C4b. This scaling could be
due to coupling with the fast mode, which is strong in this
case and shows isotropic scaling as we will see later.
The Alfvén cascade is expected to transition from weak

to strong at a transition scale λCB. The weak turbulence
spectrum of Alfvén modes is Eðk⊥Þ ∼ ðϵ=τAÞ1=2k−2⊥
[39,44], where ϵ is the energy injection rate. Then, λCB
is the scale where the linear interaction time, τA ¼ L=vA,
balances the nonlinear interaction time, τnl ¼ λCB=δvλCB .
From the weak turbulence spectrum, the velocity strength
goes as δvl⊥ ∼ l

1=2
⊥ . If we assume a velocity field of strength

vAMA at injection scale L, then δvλCB ∼MAvAðλCB=LÞ1=2.
Balancing the linear and nonlinear interaction times gives
λCB ∼ LM2

A [43,45]. Thus, when MA ≲ 1, the weak regime
of Alfvénic turbulence should exist in the range of scales
½LM2

A; L�, while at smaller scales, it should be in the strong
regime.
We try to estimate this transition scale by making use of

the structure function anisotropy. As seen in Fig. 8, the lk is
expected to be invariant as a function of l⊥ in the weak
turbulence regime (at large l⊥) and tend towards the
Goldreich-Sridhar slope of lk ∼ l

2=3
⊥ in the strong regime.

Therefore, we fit a power law of the form lk ¼ Clα⊥ at each
l⊥ in a window of l⊥ − Δ to l⊥ þ Δ around it. We take
Δ ¼ 5 grid points, and the scaling exponent α is calculated
at each l⊥. As expected at large scales close to the driving
scale, the exponent is very close to 0, and it increases as l⊥
decreases. It crosses the Goldreich-Sridhar value of 2=3 for
the first time at some l⊥ value, which can be taken as the
transition scale λCB. Thus, starting from large l⊥, as we go
down to smaller l⊥, we define the transition scale λCB as the

l⊥ at which α goes over a threshold value of 2=3 for the first
time. Thus, λCB is identified for the Alfvén mode in all the
different simulations. The variation of this transition scale
as a function of MA for each of these simulations is shown
in Fig. 10. As the weak-to-strong transition is expected for
the Alfvén cascade, we take the MA of the decomposed
Alfvén mode instead of that of the total data. It is broadly
indicative of the M2

A dependence as expected from theory.
At low MA, the λCB is already on scales close to the
dissipative scales. Therefore, we see a plateau at low MA.
However, the trend is clearer from the simulations with
MA ≳ 0.4. Although there are only a few points with
significant scatter and there also appears to be some
systematic variation of the transition scale with plasma β

and type of forcing, power-law fits to these points are close
to M2

A scaling. This verification is important for the
existence of the weak regime of Alfvén turbulence. This
feature needs to be taken into account when developing
models of interstellar medium turbulence for cosmic-ray
scattering. Next, we focus on the properties of the fast
mode.

IV. FAST MODES

In Fig. 3, the fast modes showed a different spectrum
compared to the Alfvén and slow modes. Figure 11 shows
the fast-mode wave-number spectrum as a function of k⊥
and kz. Contrasting it with Fig. 6, we see a different nature
of the cascade here. For the Alfvén mode, the cascade is
clearly anisotropic, with the energy cascade taking place

FIG. 9. The variation of lk versus l⊥ for the slow-mode
magnetic field for the different simulations. The Goldreich-

Sridhar scaling is lk ∼ l
2=3
⊥ , shown by the red dotted line (GS).

Isotropic behavior lk ¼ l⊥ is shown by the blue dotted line.

FIG. 10. The variation of the estimated transition scale of weak
to strong turbulence λCB with the Alfvénic Mach numberMA. The
different markers are the results from the different simulations,
where S stands for solenoidal and C for compressive runs. The
Alfvénic Mach number is calculated from the decomposed
Alfvén data. The blue line shows the M2

A reference line.
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mostly in the direction of larger k⊥. However, the spread of
energy for the fast mode appears very close to isotropic as
there is almost uniform distribution of power in the parallel
and perpendicular wave numbers. In the low-MA case of
S1a where the fast mode has a tiny fraction, the energy
distribution seems to be isotropic at low k, with a small

anisotropic cascade along the k⊥ direction for higher k⊥.
However, for the other three simulations S4a, C1a, and
C4a, the cascade extends radially. Another aspect is that the
cascade for the Alfvén mode changes with MA in Fig. 6,
with almost no cascade in the parallel direction for the S1a
case due to the weak nature of turbulence. Here, in both
C1a and C4a simulations, the fast mode shows an isotropic
cascade. The isotropic nature of the fast-mode cascade is
similar, even with solenoidal and compressive driving. This
figure shows that the isotropic nature of the fast-mode
cascade is a robust feature.
The 2D structure function isocontours of the velocity and

magnetic fields of fast modes are shown in Fig. 12. These
contours also show the isotropic nature for the various
simulations. For the C2a and C4b simulations, we can see
the isotropic contours extending almost up to l⊥=L ∼ 0.2,
which is close to the driving scale of 0.3. Also, in the 10243

simulations, this isotropy extends well up to scales smaller
than l⊥=L ∼ 0.05. From these results, we can say that the
isotropy does indeed extend throughout the inertial range.
The magnetic field contours in C2a show a slight
anisotropy at large lk. However, the contours from the
velocity field are highly isotropic. From Fig. 2, we know
that in simulation C2a, the fast-mode fraction is larger in
the velocity field than in the magnetic field, so the velocity
field shows a clearer isotropy. Cases CB0a and S2b show a
little anisotropy, similar to Alfvén modes. These are cases
where the fast-mode fraction is smaller (Fig. 2) compared

FIG. 11. The kz-k⊥ spectrum of the velocity field of fast modes
for the four simulations S1a, S4a, C1a, and C4a.

(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 12. The 2D structure functions for the fast mode for magnetic fields (top panels) and velocity fields (bottom panels) for the
simulations S2b(a,e), C2a(b,f), C4b(c,g), and CB0a(d,h). They seem to be isotropic for the cases C2a, C4b, and CB0a, while for S2b,
there seems to be some anisotropy.
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to other cases, which indicates that the properties of a mode
might be influenced by how strong it is compared to the
other modes. If it is weak, then its properties might get
influenced by the dominant mode properties. This obser-
vation points to the cascades of these modes not being
entirely independent of each other, with some interaction
between them.
We calculate the variation of lk with l⊥ for the fast modes

now. Figure 13(a) shows this calculation for the fast-mode
magnetic field, while Fig. 13(b) is from the velocity field.
The magnetic field of the simulations S1b, S3b, C1b,
CB0a, C4b, and CB1a follows a scaling very close to the
isotropic scaling. In simulation S4b, the relation is closer to
GS95 scaling, but this is a case of weak fast modes. For the
velocity field, the relationship lk ¼ l⊥ is followed very
closely in almost all the simulations. This figure verifies
that the isotropic nature of fast modes is a robust feature,
and it extends throughout the inertial range. It is the same
for both low and high MA, as well as high β and low β, as
long as the driving generates a significant fraction of
fast modes.
Considering the fact that the cascade of energy for

Alfvén and slow modes is stronger in the perpendicular

direction while for the fast mode it is isotropic, it is
interesting to compare their spectrum in the parallel
direction. Figure 14 compares their parallel spectra for
cases S2a and C2a. In the case of S2a, the cascade of all
three modes is very weak in the parallel direction as their
spectra are very steep compared to the k−2z reference slope.
In the case of C2a, the Alfvén and slow modes are still
expected to have a weak cascade. However, the fast mode
will be more energetic since it is compressively driven and
will be isotropic. Thus, the fast-mode parallel spectrum
shows a k−2z slope, while the Alfvén and slow modes, on the
other hand, retain a weak cascade with a spectrum steeper
than k−2z . As a result, even at high kz (kz > 20 in Fig. 14),
the fast mode has a slightly greater energy than the Alfvén
and slow modes. Thus, in this regime of compressively
driven, low-MA, weak Alfvén turbulence, the fast mode can
be dominant to the Alfvén and slow modes even at large
parallel wave numbers, which has implications for the
cosmic-ray scattering and transport by the turbulence since
the gyroresonance condition is set by the parallel wave
number [20].

V. ASTROPHYSICAL IMPLICATIONS

This work studies the role of forcing in shaping MHD
turbulence, in particular, by analyzing the decomposed
linear MHD eigenmodes and their properties. The decom-
position was introduced earlier to study the behavior of
each eigenmode in incompressively driven turbulence [42].
We are interested in the regime of MA ≲ 1, where the
decomposition in the Fourier space provides an effective
instrument to reveal some intrinsic properties of MHD
turbulence. By default, turbulence enters the MHD regime

(a)

(b)

FIG. 13. The variation of lk versus l⊥ for the fast modes for the
(a) magnetic field and (b) velocity field. The blue dotted line
shows isotropic behavior, while the red dotted line shows the
Goldreich-Sridhar scaling.

FIG. 14. The parallel wave-number spectrum for the three
modes for S2a simulation (left panels) and C2a simulation (right
panels), with magnetic fields (top panels) and velocity fields
(bottom panels). The legends apply to all panels.
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only when MA ≲ 1. Super-Alfvénic turbulence is hydro-
dynamic down to the scale L=M3

A, where δv=vA reaches
unity. Validity of the mode decomposition is further
confirmed here by the distinctive 3D characteristics of
each eigenmode observed in different turbulence data
cubes, resulting from both solenoidally and compressively
driven MHD simulations. Several observational studies
also show that subsonic or transsonic turbulence is common
in astrophysical plasmas. Turbulence in the HII ionized gas
of Orion nebula has been observed to be subsonic [46].
Measurements of cold and dense gas in an infrared dark
cloud (IRDC) have also shown many regions of subsonic
Mach number turbulence [47]. Observations of the hot
gaseous atmosphere of a nearby elliptical galaxy have also
shown subsonic Mach number turbulence [48].
The simulations in this work use a form of forcing that

can be easily decomposed into solenoidal and compressive
parts. Any continuous, smooth forcing field confined in a
limited region of space can always be Helmholtz decom-
posed into solenoidal and irrotational fields. In this sense,
the forcing considered here is general. Supernova shocks
and jets would drive turbulence compressively. On the
other hand, magneto-rotational instability and shear-driven
turbulence are probably solenoidal. There could also be
mixed regions of turbulence in astrophysical jets, with the
shear flows that develop between their inner and outer parts
driving solenoidal modes, and the bow shock at the tip of
the jet driving compressive modes [4]. Thus, one can
imagine different neighboring regions of space with differ-
ent types of driving and turbulence.
We find that the OU forcing provides a more realistic

forcing on large scales, which can also reproduce weak
turbulence features. An important demonstration of this
work is the transition from weak to strong Alfvénic
turbulence. This transition implies that even if the turbu-
lence is weak at injection scales, at scales smaller than
LinjM

2

A, turbulence will transition to a strong regime of
Alfvénic turbulence, which shows the Goldreich-Sridhar
anisotropy. This case is important for the turbulent recon-
nection scenario proposed in Ref. [49]. Turbulence is
closely connected with magnetic reconnection. The plas-
moid instability can lead to a faster rate of reconnection
[50,51]. Mean field modeling shows that a balance between
turbulence-driven transport enhancement and suppression
can also lead to fast reconnection [52,53]. In the turbulence
reconnection scenario of Ref. [49], the transverse Alfvén-
mode perturbations cause field-line wandering, which
modifies the Sweet-Parker reconnection rate by a factor
of ðL=lkÞ1=2, where L is the total length of the reconnection
layer along the magnetic field while lk is the parallel length
of a turbulent eddy. Strong Alfvénic turbulence will
generate smaller lengths lk according to the GS95 scaling,
and this result will reduce the size of the local reconnection
zone, increasing the speed of reconnection. On the other
hand, weak Alfvénic turbulence will not generate smaller lk

or speed up the reconnection rate. If the Alfvén mode is
dominant, then below the transition scale, we will always
have strong turbulence and hence fast turbulent reconnec-
tion, as a result. The magnetic field fluctuations in
compressible modes are mostly in the parallel direction.
Theoretically, this situation will reduce the field-line
wandering and might not produce as much fast reconnec-
tion as in Alfvén turbulence if compressible modes domi-
nate in turbulence. In reality, the decrease is limited since
the energy fraction in Alfvén modes does not vary beyond a
factor of 2 (see Fig. 2).
Turbulence leads to transport and diffusion of cosmic

rays. The different turbulence modes have different scatter-
ing and transport properties of cosmic rays [20,21,54]. The
compressible modes are demonstrated to dominate the
transport and acceleration in turbulence. The scattering by
Alfvénic turbulence is substantially reduced due to the scale-
dependent anisotropy. A natural consequence of having
different types of turbulence in different regions of space
would be an inhomogeneous transport and diffusion of
cosmic rays. In this work, we have identified a regime of
low-MA compressively driven turbulence where the iso-
tropic fastmode can dominate over theAlfvénmode in the kz
spectrum, which is the relevant one for gyroresonance of
particles (ω − kzvk ¼ nΩ, with Ω the gyrofrequency).
Though appearing to be weak, this turbulence could still
scatter cosmic rays efficiently due to the large proportion of
fast modes. Studying this regime of turbulence and its
implications for cosmic-ray distribution is thus important.
In the regime of strong Alfvénic turbulence, diffusion of

particles in turbulent magnetic fields follows superdiffusion
at scales smaller than the injection scales, l2⊥ ∼ s3, where l⊥
is the average separation between particles in the
perpendicular direction, while s is the distance traversed
along the magnetic field lines [55,56]. This superdiffusion
is because particles travel along magnetic field lines, and
the field separation grows as the 3=2 power of the distance
traveled along field lines. This superdiffusion behavior will
last until the Alfvén turbulence remains strong and the
particles do not scatter. From this work, it can be confirmed
that in the case of MA ≲ 1 turbulence, particle trajectories
will separate superdiffusively at small scales until they
reach the transition scale LinjM

2

A. From then onwards, they
will be in a normal diffusion regime. A larger fraction of the
compressible modes in the turbulence can change the field-
line separation rate and also the mean free path of particles,
which will result in a slower superdiffusion.

VI. SUMMARY

We have analyzed the properties of the different MHD
modes in solenoidally and compressively driven turbu-
lence, which is highly relevant for astrophysical plasmas.
One of the important aims of studying different MHD
modes is for their different properties in particle acceler-
ation and scattering, so these modes have been studied
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separately in this context. But important open questions are
what the relative fractions of these modes are in astro-
physical plasma turbulence and what they depend on.
Here, we found that the type of driving is a major factor

affecting the composition of these modes. Understandably,
compressive driving leads to a larger proportion of the
slow-plus-fast magnetosonic modes—more specifically,
the fast magnetosonic modes. Moreover, the compressive
modes can also dominate in the magnetic field fluctuations.
This case is crucial for the cosmic-ray transport and
acceleration in turbulence since fast modes dominate the
particle scattering [20,21]. A signature from polarization
analysis (SPA) method to identify such modes from
synchrotron polarization maps has been invented, and this
study holds important implications for such measure-
ments [57].
The nature of the turbulent cascade is also a highly

relevant feature for a variety of astrophysical phenomena.
We identify many important properties of the Alfvén- and
slow-mode turbulent cascade from these simulations. We
see the anisotropic nature of the cascade as predicted by
Goldreich-Sridhar theory. We also see indications of a weak
regime of Alfvénic turbulence that extends from Linj up to
LinjM

2

A. This is an important numerical test of a theoreti-
cally predicted regime.
On the other hand, the isotropic nature of the fast-mode

cascade, which was seen earlier in low resolution studies, is
now verified to extend throughout the inertial range
through higher-resolution studies. This characteristic seems
to be a robust feature, which does not show a weak-strong
transition, unlike the Alfvén and slow modes, and does not
depend on plasma β orMA. The spectrum of the fast modes
can be steeper than k−3=2 and closer to k−2 when the fast
mode dominates. This result has implications for the cutoff
scale and damping of fast modes.
We argue that the mode decomposition analysis will be

relevant in regions of astrophysical plasmas smaller than
the driving scales of turbulence withMA ≲ 1 and devoid of
strong gradients. This analysis implies the wide applicabil-
ity of fast turbulent reconnection and superdiffusion of
particle trajectories below the transition scale to strong
Alfvénic turbulence. Differently driven turbulence regions
will lead to inhomogeneity in particle transport and accel-
eration. In the case of low-MA, compressively driven
turbulence, the energy in fast modes becomes dominant
even on small parallel scales. Thus, cosmic-ray scattering
and acceleration will remain effective counterintuitively in
this regime through both the gyroresonance and transit-time
damping interactions with fast modes.
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