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Abstract

Background: In past, numerous quantitative structure-activity relationship (QSAR) based models have been developed

for predicting anticancer activity for a specific class of molecules against different cancer drug targets. In contrast, limited

attempt have been made to predict the anticancer activity of a diverse class of chemicals against a wide variety

of cancer cell lines. In this study, we described a hybrid method developed on thousands of anticancer and

non-anticancer molecules tested against National Cancer Institute (NCI) 60 cancer cell lines.

Results: Our analysis of anticancer molecules revealed that majority of anticancer molecules contains 18–24

carbon atoms and are dominated by functional groups like R2NH, R3N, ROH, RCOR, and ROR. It was also observed

that certain substructures (e.g., 1-methoxy-4-methylbenzene, 1-methoxy benzene, Nitrobenzene, Indole, Propenyl

benzene) are more abundant in anticancer molecules. Next, we developed anticancer molecule prediction

models using various machine-learning techniques and achieved maximum matthews correlation coefficient

(MCC) of 0.81 with 90.40 % accuracy using support vector machine (SVM) based models. In another approach, a

novel similarity or potency score based method has been developed using selected fragments/fingerprints and

achieved maximum MCC of 0.82 with 90.65 % accuracy. Finally, we combined the strength of above methods

and developed a hybrid method with maximum MCC of 0.85 with 92.47 % accuracy.

Conclusions: We developed a hybrid method utilizing the best of machine learning and potency score based

method. The highly accurate hybrid method can be used for classification of anticancer and non-anticancer

molecules. In order to facilitate scientific community working in the field of anticancer drug discovery, we

integrate hybrid and potency method in a web server CancerIN. This server provides various facilities that

includes; virtual screening of anticancer molecules, analog based drug design, and similarity with known

anticancer molecules (http://crdd.osdd.net/oscadd/cancerin).

Keywords: Cancer inhibitors, Classification of cancer inhibitors and non-inhibitors, Active substructure, Active

functional groups, Fingerprints, QSAR, Potency score, SVM light

Background

One of the major challenges in the field of drug discov-

ery is to design effective drugs against cancer. Existing

drugs have their limitations that includes, side effects of

drugs, high toxicity, drug resistance towards current an-

ticancer drugs [1]. There is a pressing need to improve

the drug arsenal to fight against this deadly disease. Ex-

perimental techniques used for drug discovery are costly

and time-consuming. Thus, there is a need to develop in

silico techniques for designing anticancer drugs.

In the past, attempts have been made to develop com-

putational methods to design/predict anticancer mole-

cules. Recently, various studies modelled the drug

behaviour against multiple cancer cell lines using differ-

ent genomics features. Based on the genomic data i.e.,

DNA copy number, gene expression, mutations and

methylation the drug sensitivity is predicted. Either sin-

gle gene features predict the drug sensitivity or multi-

gene features [2–9]. In spite of advances in genomics,

modelling the behaviour of thousands of drug is still a
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challenging task. The other approach is quantitative

structure-activity relationship (QSAR) based models,

where chemical features are used to predict inhibitors

against specific cancer drug targets [10–18]. Most of the

QSAR-based models have been developed for predicting

inhibition activity of a specific class of molecules against

a given drug target [19–23]. Recently, QSAR-based

models have been developed for inhibition activity pre-

diction of any class of molecule (irrespective of mole-

cules class) against cancer drug target EGFR [24]. In

contrast, limited attempt have been made to develop

methods for predicting the anticancer activity of mole-

cules against cancer cell lines. Kumar et al. developed

one such method against 16 pancreatic cancer cell lines,

which consider cancer cell as a whole for the anticancer

activity irrespective of drug targets [25].

Development Therapeutics Program (DTP) stores

thousands of molecules tested against NCI-60 human

cancer cell lines [26]. Researchers have exploited this

massive dataset for various studies like a prediction of

anticancer molecules. Josefin and coworkers showed that

molecules with similar activity profiles or structure often

show similar mode of action (MOA) [27]. Recently, Li

et. al. have developed a method called CDRUG [28], for

predicting the potential anticancer molecules using the

NCI-60 data. They developed similarity-based approach

using relative frequency-weighted fingerprints, Tanimoto

coefficient, and MinMax Kernel and achieved area under

the curve (AUC) value of 0.88. CDRUG is based upon

thousands of fingerprints generated using jCompound-

Mapper [29] and offers little understanding of the algo-

rithm. Further, JCompoundMapper package generates

only chemical graph fingerprints with no substructure-

based fingerprint. In this study, a systematic attempt has

been made to develop a method for predicting antican-

cer molecules. Here, we have used a large dataset

containing 8565 anticancer and 9804 non-anticancer

molecules obtained from NCI-60 [28]. Using this large

dataset, we identify important fingerprints/substruc-

tures that play a significant role in the classification

of anticancer and non-anticancer molecules. We de-

veloped a hybrid method by combining the machine

learning and similarity-based method developed on

the above dataset for classification of anticancer and

non-anticancer molecules.

Methods

Dataset

Dataset used in this study was taken from Li and Huang

study [28], which consists of 8565 anticancer and 9804

non-anticancer molecules. This dataset is compiled from

the NCI-60 DTP project, and it is available at http://

bsb.kiz.ac.cn/site_media/download/CDRUG/Benchmark.

rar. In NCI-60 DTP project, two-stage screening of

molecules was carried out. In the first stage, all the

molecules were screened on 60 cell lines at 10−5 molar

(15 μg/ml). Molecules showing significant growth inhib-

ition were further tested on NCI-60 at five different

concentrations. The results of screening were analyzed

by NCI COMPARE algorithm [30].

Fingerprint calculation

PaDEL software [31] was used to calculate fingerprints,

which calculates ten types of fingerprints viz. CDK,

Estate fingerprints, MACCS fingerprints, PubChem fin-

gerprints, substructure fingerprint and Klekota-Foth fin-

gerprints and their respective counts. The details about

PaDEL package and different fingerprints are available at

PaDEL website.

Fingerprint or feature selection

In this study, we used an MCC-based approach for

feature selection, where mean of each fingerprint in

active and inactive dataset was calculated using the

eqs. 1 and 2 [32].

FAi ¼

XNA

j¼1
D

j
i

NA
⋅ ð1Þ

FIi ¼

XNI

j¼1
D

j
i

NI
⋅ ð2Þ

Where Fi
A and Fi

I represent mean of ith fingerprint in

active (A) and inactive (I) molecules respectively. NA

and NI is the number of molecules in active and inactive

datasets respectively. Di
j is the value of ith fingerprint for

the jth molecule (value is either 0 or 1). For active mole-

cules, j varies from 1 to NA and for inactive molecules j

varies from 1 to NI. Next, we classify the anticancer and

non-anticancer molecules based on the compound score

(Cscore) of a single fingerprint. If the value of fingerprint

is 1, Cscore is the difference between Fi
A and Fi

I, else the

Cscore is the difference between Fi
I and Fi

A. Following

equation was used to calculate Cscore

Cj
score ¼

FAi −F
I
i ; if Di ¼ 1

FIi−F
A
i ; if Di ¼ 0

ð3Þ

(

Where Cj
score is a compound score of the jth molecule

for ith fingerprint. Each molecule is having, Cscore more

than threshold was classified as active, otherwise classi-

fied as inactive molecule. This technique was repeated

for each fingerprint at the different threshold. Finally,

the performance of each fingerprint is computed in

terms of MCC value.
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Calculation of similarity

In order to compute similarity between two molecules,

we calculated Tanimoto similarity score between two

molecules using following equation

Ts X;Yð Þ ¼

X

i
Xi∧Yið Þ

X

i
Xi∨Yið Þ

ð4Þ

Where Ts is the Tanimoto similarity score between

compound X and Y; Xi and Yi is fingerprint i of com-

pound X and Y, respectively; N is total number of finger-

prints. In this study, we computed two types of

Tanimoto similarity scores called Ts1 and Ts0. The Ts1

was calculated for fingerprint present (value 1) in the

molecule and Ts0 based upon the fingerprint absent

(value 0) in the molecule.

Potency score

The potency score of a query molecule was computed

using following steps:

1) First, we computed Tanimoto similarity score Ts1

between query compounds with each of anticancer

molecules and selected highest Ts1 called HaTs1.

2) Similarly, we also computed highest similarity score

HaTs0 between the query and most similar

anticancer molecules based on Ts0.

3) Above steps were repeated to compute similarity

scores HnTs1 and HnTs0 between the query and most

similar non-anticancer molecule.

4) Finally, potency score was computed using following

equation

Ps ¼ max HaTs1;H
aTs0ð Þ � max HnTs1;H

nTs0ð Þ ð5Þ

Where Ps is the potency score of the query molecule

and max is the maximum or highest score. If HaTs1 has

q high score as compared to HaTs0, then it is the max-

imum score (max) of the anticancer molecule. Similarly,

max score of non-anticancer molecules was selected

based on the highest score of either HnTs1 or H
nTs0. The

advantage of using potency score instead of normal

Tanimoto score is that it provides the structural similar-

ity information of query molecule with anticancer, as

well as with non-anticancer molecules.

Frequency of functional groups

Functional groups were identified using the ChemmineR

package of R [33]. The percent of compounds having

specific functional groups was calculated using eq. 6. We

also calculated the mean count of functional groups in

compounds were compute using the eq. 7.

FG ¼

Xn

i¼0
P
j
i

n
� 100 ð6Þ

MG ¼

Xn

j¼1
C
j
i

n
ð7Þ

Where MG is the mean count of a functional group

(G) in total number (n) of anticancer or non-anticancer

compounds. Ci
j is total count of a functional group (G)

for the jth compound with i value ranges from zero to

maximum number of occurrence of functional group in

a compound. The FG is the mean frequency of a func-

tional group (G) in total number (n) of anticancer or

non-anticancer compounds with Pi
j stands for presence

or absence (value is either 0 or 1) of a functional group.

Classification

For a comparison of potency score method with ma-

chine learning methods, we also developed models using

various classifiers in WEKA package [34]. We also com-

pare the performance of our method with SVM package

[35]. For improving the overall performance, we devel-

oped the hybrid method by doing an average of the nor-

malized potency score and SVM score. Since, the scale

of potency score and SVM value are different, we nor-

malized these values between −1.0 and 1.0.

Performance evaluation

We have adopted the five-fold cross-validation technique

to evaluate the performance of our models. In this tech-

nique, the compounds were randomly divided into five

parts, where four parts were used for training and

remaining part for testing. This process is carried out

five times in such a way that each part was used once

for testing. For obtaining unbiased results, the whole

process of five-fold cross-validation was repeated 20

times. We report the final results as the average of 25-

fold cross-validations. The performance of the method

was assessed using various standard parameters like sen-

sitivity, specificity, accuracy, and Matthews correlation

coefficient (MCC) [36]. The receiver operating charac-

teristic (ROC) graph was plotted using the ROCR pack-

age in R [37].

Ethics

The study doesn• t involve any human, plant or animal

subject. All the experiments were carried out using com-

putational techniques.

Results

Frequency of functional groups

We tried to find out the predisposition of various func-

tional groups in anticancer and non-anticancer molecules.

Functional groups were identified using the ChemmineR
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package of R [33] and percentage of groups in compounds

were computed using eq. 6. It was observed that certain

functional groups (e.g., ROH, RCOR, RCOOR, ROR) have

higher frequency and are predominantly present in anti-

cancer molecules. These groups may be responsible for

the anticancer activity of these active molecules as shown

in Fig. 1. These functional groups can be further explored

in designing of promiscuous anticancer molecules. We

also calculated the total count of functional groups

present in anticancer and non-anticancer molecules. It

was observed that ROR group frequency range from 0 to

15 (maximum ROR was observed in a compound) as

shown in Additional file 1: Figure S1. Further, we tried to

find out the pharmacophore of most active molecules,

which could be responsible for the anticancer activity.

We aligned the top 20 molecules (in terms of activity)

by PharmaGist software [38] and selected the most

significant alignment (PharmaGist score of 77.61).

This alignment identified total 18 features, which in-

clude twelve hydrogen bond acceptors, four aromatic,

one hydrophobic and one hydrogen bond donor as

shown in Fig. 2.

Maximum common substructures (MCS)

We also determined the maximum common substruc-

tures in anticancer molecules using the LibMCS module

of Chemaxon (http://www.chemaxon.com/). The ana-

lysis shown in Fig. 3 depicts the frequently occurring

Maximum Common Substructures (MCS). The number

beneath each MCS represents the total number of mole-

cules in which that particular substructure was present

according to MCS module. The 1st substructure is 1-

methoxy-4-methylbenzene i.e., (methyl group is present

at para position). The 2nd substructure is a part of

known tyrosine kinase inhibitors like Imatinib and Nilo-

tinib. The 6th substructure is indole structure, which is

used for designing inhibitors against kinases especially

EGFR [39]. The 3rd, 4th, 5th, 6th, 7th, 8th and 9th sub-

structures are acetophenone, 1-methoxy benzene with

partial double bond at meta position, nitrobenzene, in-

dole, propenyl benzene, butyl benzene and dimethylani-

line. We also calculate frequency of occurrences of these

MCS in anticancer and non-anticancer compounds using

substructure search option of jcsearch module of Che-

maxon (Additional file 1: Table S1). The most popular

Fig. 1 Functional groups present in anticancer and non-anticancer molecules along with their mean frequency
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common substructure 1-methoxy-4-methylbenzene found

in 1115 (13.02 %) anticancer and 577 (5.89 %) non-

anticancer (5.89 %) compound. Most of MCS have higher

frequency in anticancer compounds as compare to non-

anticancer compound.

Analysis of fingerprints

In order to identify the best fingerprints, which are more

abundant in anticancer or non-anticancer molecules, we

used the MCC-based feature selection technique as de-

scribed in Methods section. In brief MCC based feature

selection involves two major steps; in first step the per-

formance of each fingerprint is computed in terms of

MCC; in 2nd step, fingerprints are ranked based on their

MCC score [32]. In this study, we selected fingerprints

having MCC score greater than 0.2 for the development

of the model. It was observed that PubChem fingerprint

number 12 is among the best fingerprints that can clas-

sify anticancer and non-anticancer molecules with an

accuracy of 71.69 %. This fingerprint represents the

presence of > = 16 carbon atoms in a compound. The

best ten fingerprints along with their classification per-

formance of anticancer and non-anticancer compounds

are shown in Table 1. The detailed results of 126 finger-

prints are given in Additional file 1: Table S2. It was ob-

served that few CDK fingerprints are also efficient in

distinguishing anticancer and non-anticancer molecules.

Potency score based classification

In the current study, we compute the performance of

models using five-fold cross validation technique with

20 runs as described by Li et. al. We selected the best

fingerprints out of 9365 fingerprints for accurate, un-

biased and quick development of classification method

using MCC feature selection. First, we develop potency

score based method using top 50 fingerprints having the

highest MCC score. The best 50 fingerprints based

method achieved 86.94 % accuracy with 0.74 MCC.

Next, we developed method using best 100, 150 and 200

fingerprints and achieved 89.48 %, 90.1 %, 90.16 % ac-

curacy respectively (Table 2). It was observed that using

more than 150 fingerprints; there is no increase in per-

formance of the method. Finally, we selected the finger-

prints having MCC greater than 0.2 and obtained 126

fingerprints. We used these 126 fingerprints for develop-

ing prediction models and achieved 90.94 % accuracy

with 0.82 MCC.

Models based on machine learning techniques

In order to discriminate anticancer and non-anticancer

molecules, we developed classification models using

various machine learning techniques. The performance

of models developed using different classifiers imple-

mented in WEKA (i.e., Random forest, IBK, Naïve

Bayes) and SVMlight [35, 40] has been shown in Table 3.

The SVM-based models achieved highest accuracy

90.40 % with MCC 0.81 among all classifiers. The Ran-

dom forest, IBK and Naïve Bayes based method achieved

the highest accuracy in the range of 74.92–87.47 %. The

models based on SVM and Random Forest achieved the

best performance at the center of threshold and had

broad range of MCC across various thresholds. The

Random forest method achieved best performance using

100 trees; best SVM model trained using RBF kernel

with parameter g = 0.1, c = 6 with j = 1; IBK method

achieved best performance using kNN score of 3 with

Manhattan distance algorithm.

Performance of hybrid models

As shown in both potency score based method and

SVM-based model achieved maximum accuracy. The

potency score method performs better, when query mol-

ecule is similar with anticancer molecules but perform

poorly in case level of similarity is low. In case of SVM,

the performance of the model is unaffected by similarity

with known molecules. As shown in ROC curve at lower

Fig. 3 Maximum common substructures found in anticancer molecules along with the number of molecules having that particular substructure

Fig. 2 Pharmocophore alignment of most active anticancer

molecules generated using PharmaGist
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false positive rate (FPR), potency score performs better

than SVM and at higher FPR, SVM perform better than

potency score based method (Fig. 4). In order to take

the advantage of potency score and SVM method, we

developed the hybrid method. In case of hybrid method,

first we compute SVM potency score of a query mol-

ecule and normalize these scores between −1.0 and 1.0.

The average of normalize values is computed to obtain

the hybrid score and used for predicting anticancer mol-

ecule. We developed a hybrid method using 126 best fin-

gerprints and achieved highest MCC 0.85 with 0.98

AUC. The detail result of hybrid method are shown in

Additional file 1: Table S3.

Comparison with existing method

We compared the performance of our methods with

existing method CDRUG. The CDRUG developed by Li

et. al. achieved 65 %, 74 %, 81 % sensitivity at false posi-

tive rate (FPR) 0.05, 0.1, 0.2 respectively (Table 4). At

65 % sensitivity, both potency score method and SVM

achieved 0.02 FPR and hybrid method achieved 0.01

FPR. As shown in Table 4, our models perform better

than existing method CDRUG.

Description of the web server

In order to serve the scientific community, we developed

a web server called • CancerIN ” for predicting the

anticancer potency of an unknown molecule and it • s

GI50 across different cancer cell lines. This web server

consists of three modules for designing, library screening

and chemical analogs screening.

Draw molecule

This web server provides a user-friendly interface with

options to draw a chemical compound using Marvin

applet as shown in (Fig. 5a) [41]. The output consists of

a 3D structure of query molecule with physicochemical

properties and hybrid score. The five most similar anti-

cancer molecules along with their NSC ID, PubChem

ID, Mean_logGI50, Tanimoto similarity score, Potency

score and physicochemical properties are also displayed.

The details button provides the GI50 and LogGI50 score

of similar molecule against different NCI-60 cancer cell

lines. The user can select and further load either query

molecule or any five similar molecules for further modi-

fications based upon the structural similarity (Fig. 5c).

The modified molecule can be further used as query

molecule for increasing its potential anticancer activity.

Scan library

This web server also provides the provision to scan a

chemical library in SMILES format [42]. The output

consists of query molecule and five most similar antican-

cer molecules along with their other details as described

above in tabular format (Fig. 5d).

Chemical analogs

We have also provided facility for the users to screen an-

alogs generated from different combination of scaffold,

building blocks and linkers using SmiLib [43] package

(Fig. 5b) and subsequent prediction of their anticancer

potency score. The results consist of query molecule and

five most similar anticancer molecules in a tabular

format.

Standalone

For the screening of thousands of molecules, we have

developed CancerIN standalone, written in Python. The

standalone version can screen thousands of molecules in

less than 10 min. The input consists of a single file hav-

ing chemical structures (SMILE format) of molecules for

screening. The standalone version can be easily updated

by replacing the underlying data file. The user can easily

increase or decrease the number of fingerprints used for

final prediction. The source code allows the scientific

community to utilize the novel similarity-based method

for prediction of various types of molecules.

In brief, the CancerIN web server predicts the antican-

cer capability of a single molecule, a library of chemicals

or analogs. Since, our method also consider similarity, it

also displays the GI50 of the similar anticancer molecule

Table 2 The performance of potency score based method

developed using different sets of fingerprints

Number of
fingerprints

Sensitivity Specificity Accuracy MCC FPR ROC

50 79.59 93.37 86.94 0.74 0.09 0.92

100 82.36 95.7 89.48 0.79 0.06 0.95

150 83.17 96.15 90.1 0.81 0.05 0.95

200 83.14 96.3 90.16 0.81 0.05 0.95

126 84.62 96.45 90.94 0.82 0.05 0.95

Table 1 The individual performance of best 10 selected

fingerprints using MCC based approach

Best 10 fingerprints Sensitivity Specificity Accuracy MCC FPR AUC

PubchemFP12 79.3 65.1 71.69 0.45 0.48 0.72

ExtFP1013 52.5 85.7 70.19 0.41 0.65 0.69

ExtFP1012 78.4 61.9 69.61 0.41 0.47 0.7

PubchemFP192 58.4 79.4 69.6 0.39 0.61 0.69

GraphFP382 73.3 63.8 68.27 0.37 0.50 0.69

ExtFP1016 42 88.7 66.91 0.35 0.71 0.65

PubchemFP199 28.1 95.4 64.01 0.32 0.80 0.62

ExtFP1015 70.7 61.5 65.77 0.32 0.50 0.66

MACCSFP105 70.1 60.6 64.98 0.31 0.50 0.65

FP799 34.7 89.6 64.01 0.29 0.75 0.62
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Table 3 Comparative performance of models developed using 126 fingerprints at various thresholds has been shown in this table

SVM Random Forest IBK Naïve Bayes

Threshold Accuracy MCC Threshold Accuracy MCC Accuracy MCC Accuracy MCC

−1 72.40 0.54 0 46.63 0.00 46.63 0.00 46.63 0.00

−0.8 80.58 0.65 0.1 67.74 0.47 80.22 0.63 75.06 0.50

−0.6 84.72 0.72 0.2 77.73 0.61 82.59 0.67 74.99 0.50

−0.4 87.52 0.76 0.3 83.71 0.69 83.98 0.68 74.98 0.50

−0.2 89.60 0.79 0.4 86.33 0.73 85.71 0.72 74.92 0.50

0 90.40 0.81 0.5 87.47 0.75 85.31 0.71 74.86 0.49

0.2 90.24 0.80 0.6 86.47 0.73 85.10 0.71 74.79 0.49

0.4 89.00 0.79 0.7 83.81 0.69 82.73 0.67 74.79 0.49

0.6 86.35 0.74 0.8 79.03 0.62 81.22 0.65 74.81 0.49

0.8 82.65 0.68 0.9 71.86 0.51 80.90 0.65 74.77 0.49

1.0 70.49 0.48 1.0 59.30 0.28 80.87 0.65 73.37 0.48

Fig. 4 ROC plot of potency score, SVM and hybrid method developed using 126 fingerprints
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across different cancer cell lines. A careful analysis of

the anticancer efficacy of five similar molecules aids in

understanding the anticancer efficacy of query molecule

against various cancer cell lines. The standalone version

of CancerIN allows the users to scan a vast library of

molecules for the screening of potential anticancer mol-

ecules. This standalone is available at CancerIN website

http://crdd.osdd.net/oscadd/cancerin.

Discussion and conclusion
The continuous development of novel anticancer drugs

is imperative in order to tackle multi-drug resistance in

cancer. At the same time, the development of an anti-

cancer drug is very time-consuming, expensive and

labor-intensive task. However, an integrated approach

consisting of both computational and experimental ap-

proaches would be of great significance. Computational

approaches are very helpful to identify or to narrow

down potential lead molecules in a very short period

without involving much money. Subsequently, the ex-

perimental approach may be used to validate these pre-

dictions. In this study, we developed QSAR models by

Fig. 5 Various modules of CancerIN showing the input format and output display: a The Marvin draw applet for drawing molecules, b The input

form for generation of analogs, c The output page of draw molecule module, and d. The result page of scan library showing the list of query

molecules and the most similar anticancer molecules

Table 4 Comparative performance of CDRUG (existing method)

and our models based on potency score, SVM and hybrid

approach

Method Sensitivity Specificity Accuracy MCC FPR AUC

CDRUG 65 - - - 0.05 0.88

74 0.10

81 - - - 0.20

Potency Score 65.8 98.9 83.5 0.7 0.02 0.95

74.26 98.42 87.15 0.76 0.02

84.62 96.45 90.94 0.82 0.05

SVM 65.47 98.66 83.34 0.69 0.02 0.95

74.16 97.63 86.8 0.75 0.03

89.02 91.52 90.42 0.81 0.09

Hybrid 65.57 99.63 83.75 0.71 0.01 0.98

74.41 99.11 87.59 0.77 0.01

92.38 92.55 92.47 0.85 0.08
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considering the whole cell for anticancer activity for any

class of molecules. The aim of the present study was to

develop an efficient in silico method for screening of an-

ticancer molecules against NCI-60 cancer cell lines.

Thus, our method is a general method for predicting an-

ticancer molecules irrespective of drug target or cell line.

The performance of potency score method introduced in

this study is comparable with models developed using

machine-learning classifiers (e.g., Random forest, SVM,

IBK and Naïve Bayes). We further improve the perform-

ance of our method by combining potency-score based

model and SVM based method. In past, a method

CDRUG has been developed on same dataset of chemicals

for predicting anticancer molecules. Our best models

outperform existing method CDRUG. Finally, we inte-

grated these models in a web server for the betterment

of scientific society working in this field.

Additional files

Additional file 1: Figure S1. Counts of Functional groups present in

anticancer and non-anticancer molecules. Table S1. Shows frequency of

occurrence of MCS in anticancer and non-anticancer compounds according

to LibMCS module of Chemaxon. Structures were search using jcsearch

module of Chemaxon with substructure search option. Table S2. The

individual performance of best 126 selected fingerprints using MCC based

approach. Table S3. Performance of hybrid method developed using 126

fingerprints on different sensitivity. (DOC 356 kb)
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