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Abstract

This paper describes the limiting behavior of linear and decision feedback equalizers (DFEs) in single/multiple antenna

systems employing real/complex-valued modulation alphabets. The wideband frequency-selective channel is

modeled using a Rayleigh fading channel model with infinite number of time domain channel taps. Using this model,

we show that the considered equalizers offer a fixed post detection signal-to-noise ratio (post-SNR) at the equalizer

output that is close to the matched filter bound (MFB). General expressions for the post-SNR are obtained for

zero-forcing (ZF)-based conventional receivers as well as for the case of receivers employing widely linear (WL)

processing. Simulation is used to study the bit error rate (BER) performance of both minimum-mean-square-error

(MMSE) and ZF-based receivers. Results show that the considered receivers advantageously exploit the rich

frequency-selective channel to mitigate both fading and inter-symbol interference (ISI) while offering a performance

comparable to the MFB.

1 Introduction
Linear and decision feedback equalizers (DFEs) have

been widely studied for the past 50 years. With the

introduction of discrete Fourier transform-precoded-

orthogonal frequency-division multiple access (DFT-

precoded-OFDMA) [1,2] in the uplink of the long-

term evolution (LTE) standard [3], there has been

renewed interest in the design and analysis of these

two receivers operating in wideband frequency-selective

channels. DFT-precoded-OFDM, also known as single-

carrier FDMA (SC-FDMA), is a variant of OFDM

in which the modulation data is precoded using the

DFT before mapping the data on the subcarriers.

The resultant modulation signal exhibits low peak-to-

average power ratio (PAPR). As the frequency-selective

channel introduces inter-symbol interference (ISI), this

method requires sophisticated channel equalization at the

receiver.

In broadband wireless systems employing high band-

widths, the propagation channel typically exhibits high

frequency selectivity. For these systems, link performance

measures such as the diversity order and bit error rate
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(BER) of a conventional minimum mean-square error

(MMSE)-based linear equalizers have not yet been fully

characterized [4-9]. The noise enhancement phenomenon

which is inherent in linear equalizers poses a difficulty

in analyzing the receiver performance. The minimum

mean-square error decision feedback equalizer (MMSE-

DFE) [10,11], on the other hand, is an optimum canoni-

cal receiver for channels with ISI. In frequency-selective

channels, it provides full diversity, and the performance

is generally comparable to the optimum matched fil-

ter bound (MFB) [12]. Most of the prior works related

to linear and decision feedback equalizers discuss the

diversity order of the equalizers and do not quan-

tify the exact performance of the equalizer. In many

cases, simulation is typically used to determine the link

performance.

The performance loss caused by the decision feedback

section of the MMSE-DFE can be minimized by using a

receiver structure that uses the MMSE-DFE feed-forward

filter (FFF) as a pre-filter [13] which provides a minimum

phase response followed by a reduced state sequence

estimation (RSSE) [14] algorithm that uses set partition-

ing and state dependent decision feedback principles.

Note that the maximum likelihood sequence estimator

(MLSE) [15,16] can be viewed as a special case of RSSE.
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In typical channels, RSSE with an appropriately chosen

number of states performs close to MLSE [17]. In spite

of the availability of a number of alternatives to MLSE,

linear and decision feedback equalizers are generally pre-

ferred in wideband systems due to low implementation

complexity.
In DFT-precoded-OFDM systems, the MMSE-DFE

[18-20] equalizer can be implemented efficiently using a

frequency domain FFF followed by a time domain DFE

[21-31]. Computation of FFF and feedback filters (FBF) for

DFT-precoded-OFDM differs from conventional single-

carrier methods. Since DFT-precoded-OFDM permits

frequency domain equalization, it simplifies the computa-

tional requirements of both filter calculation and imple-

mentation. In [32], an iterative block DFE method is

proposed. This method uses a linear equalizer in the first

iteration and applies block-level soft decision feedback in

subsequent iterations. In this paper, we are mainly con-

cerned with the analysis of conventional DFEs based on

hard decision feedback.
For real-valued data transmission (e.g., binary phase-

shift keying (BPSK) or amplitude-shift keying (ASK)),

widely linear (WL) equalizers which jointly filter the

received signal and its complex-conjugate [33] are known

to outperform conventional receivers. This concept has

been applied for numerous wireless applications [34-43]

including equalization, interference suppression, multi-

user detection, etc. Implementation WL equalizers is dis-

cussed in [39] for conventional time domain single-carrier

systems. WL receiver algorithms are widely employed in

global system for mobile communication (GSM) for (a)

low-complexity equalization of binary Gaussianminimum

shift keying (GMSK) modulation in frequency-selective

channels (b) co-channel interference suppression using

a single-receiver antenna. The latter feature is popularly

known as single antenna interference cancelation (SAIC)

[43,44].
Throughout this paper, we assume that the receiver has

multiple spatially separated antennas. However, the anal-

ysis, and the results of this paper hold for the case of

single antenna as well. We consider a channel with v time

domain taps where the individual taps are modeled as

independent and identically distributed (i.i.d.) complex

Gaussian random variables with zero mean with per tap

variance of 1
v . The post-processing signal-to-noise power

ratio (post-SNR) of the considered equalizers is analyzed

in the limiting case as v → ∞. Using this model, Kuchi

[45] has shown that the SNR at the output of a multi-

antenna zero-forcing linear equalizer (ZF-LE) with Nr

antennas reaches a mean value of Nr−1
σ 2
n

, where σ 2
n denotes

the noise variance and Nr > 1. For the case of the single-

receiver antenna, both ZF-LE and MMSE-LE are shown

to perform poorly. Therefore, it is worthwhile to consider

the DFE as an implementation alternative.

In this paper, we further generalize the results of [45]

and analyze the limiting performance of three receiver

algorithms, namely (a) conventional ZF-DFE, (b) WL ZF-

LE and (c) WL ZF-DFE. While ZF-based methods per-

mit analytical evaluation of the post-SNR of the receiver,

simulation is used to study the performance of MMSE-

based receivers. The post-SNR bounds developed in this

paper provide new insights into the receiver performance.

Specifically, we show that, in i.i.d. fading channels with

infinitely high frequency selectivity, the post-SNR at the

output of all the considered receivers reach a fixed SNR.

Using these results, we quantify the performance gap of

a given receiver with respect to the MFB. In contrast to

the previous works where the focus is restricted to diver-

sity analysis, the results of this paper provide a framework

to analyze the link performance in channels with high

frequency selectivity.

We would like to remark here that in multi-user

OFDMA systems, impairments such as frequency off-

sets, I/Q imbalance, and channel time variations affect the

orthogonality of subcarriers and give rise to multi-user

interference. Sophisticated equalization techniques are

proposed in [46-49] to combat these impairments. In this

paper, we restrict our attention to performance analysis

in the presence of frequency-selective channels without

considering any of the aforementioned impairments.

The organization of the paper is as follows: In section 3,

we first generalize the finite-length ZF/MMSE-DFE

results to the infinite-length case. Then, we obtain a gen-

eral expression for the post-SNR of a ZF-DFE for the

case of infinite length i.i.d. fading channel under the

assumption of error-free decision feedback (ideal DFE).

In section 4, we present the limiting analysis for receivers

employing WL processing. Collection of complex and

complex-conjugated copies of the received signal effec-

tively doubles the number of receiver branches. We show

that these additional signal copies obtained through WL

processing helps the receiver to obtain a substantially

higher post-SNR compared to conventional LEs. Analo-

gous to the case of conventional ZF-DFE, in section 5, we

obtain filter settings for the WL ZF/MMSE-DFE receiver.

Then a general expression for the post-SNR of the WL

ZF-DFE is obtained for the case of infinite-length i.i.d. fad-

ing channel. In section 6, we present simulation results.

Finally, conclusions are drawn in section 7.

Notation The following notation is adopted throughout

the paper. Vectors are denoted using bold-face lower-

case letters, matrices are denoted using boldface upper-

case letters. Time domain quantities are denoted using

the subscript t. The M-point DFT of a vector ht(l)

is defined as h(k) =
∑M−1

l=0 ht(l)e
−j2πkl

M , where k =

0, 1, ..,M−1. The correspondingM-point IDFT is given by
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ht(l) = 1
M

∑M−1
k=0 h(k)e

j2πkl
M . The squared Euclidean norm

of a row/column vector h(k) = [h1(k), h2(k), .., hn(k)] is

denoted as ||h(k)||2 =
∑n

m=1 |hm(k)|2. The circular con-

volution between two length N sequences is defined as

x1(n) ⊙ x2(n) =
∑N−1

n=0 x1(n)x2((m− n))N where the sub-

script in x2((m − n))N denotes modulo N operation and

⊙ denotes circular convolution operation. The symbols

†, ∗, Tr denote Hermitian, complex-conjugate and trans-

pose operations, respectively and E [.] denotes expectation

operator.

2 Systemmodel
The DFT-precoded-OFDMA transmitter sends a block of

M i.i.d. real/complex-valued modulation alphabets with

zero-mean and variance σ 2
x . The DFT precoding of the

data stream xt(l) is accomplished using aM-point DFT as

x(k) =

M−1
∑

l=0

xt(l)e
−j2π lk

M , k = 0, ..,M − 1 (1)

where l and k denote the discrete time and subcarrier

indices, respectively. Throughout this paper, we consider

a wideband allocation. Therefore, the precoded data is

mapped to all the availableM contiguous subcarriers. The

time domain baseband signal s(t) is obtained using an

inverse discrete time Fourier transform (IDTFT)

s(t) =
1

M

M−1
∑

k=0

x(k)ej2πk�f (t−TCP), t ∈ [0,T + TCP]

(2)

where T is the useful portion of OFDMA symbol, TCP is

the duration of the cyclic prefix (CP) and �f = 1
T is the

subcarrier spacing.

3 MMSE-DFE receiver
The receiver front end operations such as sampling, syn-

chronization, CP removal and channel estimation oper-

ations are similar to a conventional system. Further,

the memory introduced by the propagation channel is

assumed to be less than that of the CP duration. Through-

out this paper, ideal knowledge of channel state informa-

tion is assumed at the receiver. We consider a receiver

equipped with Nr antennas. Stacking up the time domain

sample outputs of multiple-receiver antennas in a column

vector format, we get

yt(l) = st(l) ⊙ ht(l) + nt(l), l = 0, 1, ..,M − 1 (3)

where

yt(l) =
[

yt,1(l), .., yt,Nr (l)
]Tr

, ht(l) =
[

ht,1(l), .., ht,Nr (l)
]Tr

,

nt(l) =
[

nt,1(l), .., nt,Nr (l)
]Tr

denote the received signal, channel, and noise vectors of

size Nr × 1. Here, st(l) corresponds to the sampled ver-

sion of the analog signal s(t). The noise vector nt(l) is

composed of Nr i.i.d. complex-Gaussian noise random

variables eachwith zero-mean and variance
σ 2
n
2 per dimen-

sion. Note that ht(n) is assumed to be a time-limited

channel vector where each element of ht(n) has a duration

v samples and M >> v. Taking the M-point DFT of yt(l),

we get

y(k) = h(k)x(k) + n(k), k = 0, 1, ..,M − 1 (4)

where y(k) = DFT
[

yt(l)
]

, h(k) = DFT [ht(l)], x(k) =

DFT [st(l)], n(k) = DFT [nt(l)]. In the MMSE-DFE

receiver (see Figure 1), the received signal is filtered using

a vector-valued feed-forward filter to obtain: z(k) =

w(k)y(k). Let �z(k) = z(k) − b(k)x(k) is the ISI free sig-

nal where b(k) is the frequency domain FBF. Here, 1 +

b(k) = 1 +
∑L

l=1 bt(l)e
−j2πkl

M where the FBF is constrained

to have L time domain taps. Note that L is a receiver

design parameter and its value can be chosen to be equal

to the channel memory. As shown in Figure 1, the FBF is

implemented in time domain to obtain a decision variable

�zt(l) = zt(l) −

L
∑

m=1

bt(m)xt(l ⊖ m)

︸ ︷︷ ︸

ISI

(5)

where zt(l) is obtained after taking the IDFT of z(k) and

�zt(l) is the ISI free time domain signal which is fed to the

symbol demodulator. Here, the symbol ⊖ denotes right

circular shift operation.

MMSE-DFE filter expressions are given in [21] for the

single-receiver antenna case and results for multiple-

input-multiple-output (MIMO) systems are available in

[31]. In order to obtain an expression for the mean-square

error (MSE) which enables closed-form analysis in i.i.d.

fading channels, in Appendix 1, we first provide expres-

sions for the MMSE-DFE filter for the finite-length case,

then we generalize the results for the infinite-length sce-

nario. Using these results, for M → ∞, the post-SNR

defined as the SNR at the output of an unbiased MMSE-

DFE receiver is given by

SNRMMSE-DFE,M→∞ = e
limM→∞

1
M

∑M−1
k=0 ln

[

σ2x ||h(k)||2+σ2n

σ2n

]

− 1. (6)

3.1 Limiting performance of ZF-DFE in wideband

channels

Recognizing that the ZF-DFE enables one to obtain a

closed-form expression for the post-SNR, we analyze its
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Figure 1 Conventional MMSE-DFE.

behavior for the proposed i.i.d. fading channel with infi-

nite length. To this end, let

h(k) =

v−1
∑

l=0

ht(l)e
−j2πkl

M , k = 0, 1, ..,M − 1 (7)

where v is the effective channel length. We are interested

in determining the performance of the link for the limiting

case where v → ∞. Note that as v tends to∞, sinceM >>

v,M also tends to ∞. Therefore,

h(k) = lim
v→∞,M→∞

v−1
∑

l=0

ht(l)e
−j2πkl

M (8)

= lim
M→∞

M
∑

l=0

ht(l)e
−j2πkl

M . (9)

Note that the variable v is replaced with M in (8) line 2

because as v → ∞, M → ∞, since v << M. Next, we

model ht(l) as an i.i.d. zero-mean, complex-Gaussian vec-

tor with covariance E
(

ht(l)h
†
t (l)

)

= I
v . Note that per-tap

power is set to 1
v so that the total power contained in the

multi-path channel becomes unity. As v → ∞, we can

express the covariance term as: limv→∞ E
(

ht(l)h
†
t (l)

)

=

limv→∞
I
v = limM→∞

I
M . Again here, v is replaced with

M in the limit as v → ∞. We have an infinite num-

ber of taps with vanishingly small power. However, the

sum total power of all the taps is equal to unity. Using

(8), it can be shown that h(k) approaches an i.i.d. com-

plex Gaussian vector with zero mean and the covariance

tends to an identity matrix, i.e. limv→∞ E
(

h(k)h†(k)
)

→

I. More specifically, the probability density function of

the elements of the channel vector h(k) approaches an

i.i.d. complex Gaussian distribution with zero mean and

unit variance, and the vectors h(k) become statistically

independent for k = 0, 1, ..,M − 1.

By setting σ 2
n = 0 in the numerator of (6), we obtain the

post-SNR of a ZF-DFE as

SNRZF-DFE =
σ 2
x

σ 2
n

elimM→∞
1
M

∑M−1
k=0 ln ||h(k)||2 . (10)

Applying the central limit theorem (CLT), the r.v.,

limM→∞
1
M

∑M−1
k=0 ln ||h(k)||2 approaches Gaussian dis-

tribution with mean

E

[

lim
M→∞

1

M

M−1
∑

k=0

ln ||h(k)||2

]

= E
[

ln ||h(k)||2
]

(11)

and variance

Var

[

lim
M→∞

1

M

M−1
∑

k=0

ln ||h(k)||2

]

= lim
M→∞

1

M
Var

[

ln ||h(k)||2
]

.

(12)

The expected logarithm of a chi-square random

variable with 2Nr degrees-of-freedom (DOF) is [50]:

E
[

ln ||h(k)||2
]

=
(

−β +
∑Nr−1

m=1
1
m

)

where β =

0.577 is the Euler’s constant, and the variance is [50]:

Var
[

ln ||h(k)||2
]

=
∑∞

p=1
1

(p+Nr−1) . Since the variance

term takes a finite value (the series is absolutely con-

vergent), the variance of limM→∞
1
M

∑M−1
k=0 ln ||h(k)||2

approaches zero. Therefore, the SNR at the output of the

ZF-DFE approaches a constant value of

SNRZF-DFE =
σ 2
x e

(

−β +
∑Nr−1

m=1
1
m

)

σ 2
n

. (13)

Note that the ZF-LE provides a fixed mean SNR of [45]

SNRZF-LE =
σ 2
x (Nr − 1)

σ 2
n

, for Nr > 1. (14)

For comparison, post-SNR corresponding to the MFB is

given by SNRMFB = Nr

σ 2
n
.

The above result suggests that highly dispersive nature

of the frequency-selective channel can be exploited

advantageously to obtain a performance comparable to

the MFB. After evaluating the expression (13) for the

case of a single-receiver antenna, the ZF-DFE provides a

post-SNR of 0.5616
σ 2
n

that is 2.5-dB less than the MFB. For

this case, both ZF- and MMSE-based LEs perform poorly

compared to theMFB [45]. However, the ZF-DFE does not

suffer from this limitation and provides a substantial gain

over MMSE/ZF-LE. For Nr = 2, the loss of ZF-DFE with

respect to the MFB reduces to 1.19 dB whereas the ZF-LE

has a higher loss of 3.0 dB.
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3.2 DFE initialization

In the MMSE-DFE implementation considered in this

paper, the feedback filter is implemented in the time

domain. In (5), the ISI term
∑L

m=1 bt(m)xt(l ⊖ m) is

obtained by circularly convolving the FBF bt(l) with the

data sequence xt(l). For detecting the first data symbol

xt(0), the receiver has to eliminate the ISI caused by the

last L data symbols of the data sequence xt(l). Specifi-

cally, the DFE requires knowledge of the data symbols

xi = [xt(N − L), .., xt(N − 2), xt(N − 1)]. As proposed

in [28], we use a linear equalizer to obtain hard deci-

sions for the required elements contained in xi. These

symbol estimates are then used to initialize the DFE.

Simulation shows that this approach works quite well

and the loss in the performance compared to the case

of an ideal DFE is acceptable. We would like to remark

here that an iterative receiver is presented in [23] to

address the DFE initialization problem. The results of

this paper show that MMSE-LE-based initialization is

sufficient to obtain near-ideal performance. An alterna-

tive receiver initialization method is also discussed in

[31] for trellis-based receivers. Different iterative block

DFE methods have been proposed in [23,32] for DFE-

precoded-OFDMA systems. These methods use a linear

equalizer in the first iteration, then applies block level

decision feedback based on soft decisions in subsequent

iterations. In this paper, we are mainly concerned with

the analysis of conventional DFEs based on hard decision

feedback.

4 Widely linear frequency domainMMSE
equalizer

For the special case of real constellations, we consider a

frequency domain widely linear equalizer which jointly fil-

ters the complex-valued received signal and its complex-

conjugated and frequency reversed copy in frequency

domain (see Figure 2). Recall that the frequency domain

signal model is given by (4)

y(k) = h(k)x(k) + n(k), k = 0, 1, ..,M − 1. (15)

Applying complex conjugation and frequency reversal

operation on y(k), we get

y∗(M − k) = h∗(M − k)x∗(M − k)

+ n∗(M − k) (16)

= h∗(M − k)x(k)

+ n∗(M − k), k = 0, 1, ..,M − 1 (17)

where we use the fact that x∗(M−k) = x(k) for real-valued

modulation data. Combining (4) and (17) in vector form,

we have
[

y(k)

y∗(M − k)

]

=

[

h(k)

h∗(M − k)

]

x(k) +

[

n(k)

n∗(M − k)

]

.

(18)

We note that two copies of the frequency domainmodu-

lation signal x(k) are obtainedwith distinct channel coeffi-

cients. Using compact vector notation, ȳ(k) = h̄(k)x(k) +

n̄(k). The WL filter w̄(k) = [w(k),w∗(M − k)] jointly

filters the frequency domain signal y(k), and its complex-

conjugated and frequency-reversed copy y∗(M − k) to

obtain the scalar decision variable denoted as z̄(k). Let

z̄(k) = w(k)y(k) + w∗(M − k)y∗(M − k) = w̄(k)ȳ(k).

An estimate of the desired data is obtained as z̄t(l) =

IDFT[ z̄(k)]. Using standard MMSE estimation [18], the

vector-valued WLMMSE filter is given by

w̄(k) =
h̄†(k)

σ 2
n

σ 2
x

+ h̄†(k)h̄(k)
. (19)

Since w̄(k) = [w(k),w∗(M − k)], where w(k) =
h∗(k)

σ2n

σ2x
+h̄†(k)h̄(k)

, it is computationally efficient to calculate the

filter w(k) explicitly. The filter w∗(M− k) can be obtained

fromw(k) with low computational complexity using com-

plex conjugation and frequency reversal operations. The

minimumMSE for this case is expressed as

MSEWL MMSE =
1

M

M−1
∑

k=0

σ 2
nσ 2

x

σ 2
n + σ 2

x h̄
†(k)h̄(k)

. (20)

Figure 2WLMMSE-LE.
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Note that

h̄†(k)h̄(k) = ||h(k)||2 + ||h(M − k)||2.

Using this result, the MSE can be expressed as

MSEWL MMSE =
1

M

M−1
∑

k=0

⎡

⎣
σ 2
n

σ 2
n

σ 2
x

+
(

||h(k)||2 + ||h(M − k)||2
)

⎤

⎦ .

(21)

The post-SNR defined as the SNR at the output of the

WLMMSE receiver is given by

SNRWL MMSE =
σ 2
x

MSEWL MMSE

=
σ 2
x

σ 2
nD

(22)

where D = 1
M

∑M−1
k=0

⎡

⎣ 1
σ2n

σ2x
+(||h(k)||2+||h(M−k)||2)

⎤

⎦.

4.1 Liming performance of WL ZF-LE

To obtain a closed-form expression for the post-SNR at

the output of the equalizer, we analyze the performance of

a ZF WL-LE. Letting σ 2
n = 0 in the denominator of D, for

v → ∞, we letM → ∞. In this case, we get

D = lim
M→∞

1

M

M−1
∑

k=0

[

1
(

||h(k)||2 + ||h(M − k)||2
)

]

. (23)

Let Q(k) = ||h(k)||2 + ||h(M − k)||2. Then we have

Q(k) = Q(M − k), Q(0) = 2||h(0)||2, and Q
(
M
2

)

=

2
∣
∣
∣
∣h
(
M
2

)∣
∣
∣
∣
2
. Using this,

D = lim
M→∞

1

M

[

1

2||h(0)||2
+

1

2||h
(
M
2

)

||2

]

+ lim
M→∞

1
M
2

M
2 −1
∑

k=1

[

1
(

||h(k)||2 + ||h(M − k)||2
)

]

. (24)

For an i.i.d. channel with infinite frequency selectivity,

the entries of h(k) are i.i.d. complex Gaussian r.v.’s with

zero mean and unit variance. Therefore, ||h(k)||2 has chi-

square distribution. Since ||h(k)||2 always takes positive

values, in the limiting case asM → ∞, the first two terms

of D become vanishingly small. Then we end up with

D = lim
M→∞

1
M
2

M
2 −1
∑

k=1

[

1
(

||h(k)||2 + ||h(M − k)||2
)

]

. (25)

The expected value of D is given by

E [D] = lim
M→∞

M
2 − 1
M
2

E

[

1
[

||h(k)||2 + ||h(M − k)||2
]

]

(26)

→ E

[

1
[

||h(k)||2 + ||h(M − k)||2
]

]

. (27)

Since h(k) and h(M − k) are i.i.d r.v’s,
[

||h(k)||2+

||h(M − k)||2
]

is a sum of squares of 2Nr i.i.d. complex

Gaussian r.v’s. The term
[

1
[||h(k)||2+||h(M−k)||2]

]

has inverse

chi-square distribution with 4Nr real-valued DOF. Apply-

ing the result of [51], we have E
[

1
[||h(k)||2+||h(M−k)||2]

]

=

1
2Nr−1 and Var

[
1

[||h(k)||2+||h(M−k)||2]

]

= 1
2(2Nr−1)(Nr−1) for

Nr > 1. Therefore, the variance of D is given by

Var [D] = lim
M→∞

M
2 − 1

M2

4

1

2(2Nr − 1)(Nr − 1)
(28)

→ 0 for Nr > 1. (29)

The post-SNR of WL ZF-LE reaches a constant value of

SNRWL ZF-LE =
σ 2
x (2Nr − 1)

σ 2
n

, for Nr > 1. (30)

Note that the variance of
[

1
[||h(k)||2+||h(M−k)||2]

]

is

bounded only for Nr > 1.

4.1.1 Remark

In Equation 24, ||h(0)||2 and ||h
(
M
2

)

||2 are sum of

squares of Nr i.i.d. complex Gaussian r.v.’s which give

a chi-square random variable with 2Nr DOF while
[

||h(k)||2 + ||h(M − k)||2
]

has chi-square random vari-

able with 4Nr DOF. For the special case of Nr = 1, the

expected value of 1
||h(0)||2

or 1
||h
(
M
2

)

||2
is unbounded since it

has inverse chi-square distribution with two DOF. How-

ever, the mean of 1
[||h(k)||2+||h(M−k)||2]

is bounded for any

value of Nr . In the limiting case as M → ∞, the contri-

bution of the first two terms in (24) vanishes. However,

for the special case of Nr = 1, and for finite values of v,

h(k) and h(M − k) become correlated random variables.

Specifically for values of k = 0 and k = M
2 , these terms

become equal while for values of k in the vicinity of 0 and
M
2 they become highly correlated. Considering the first

two terms of Equation 24, we see that the terms 1
||h(0)||2

or 1
||h
(
M
2

)

||2
contribute to an increase in the MSE. Simi-

larly, since h(k) and h(M − k) can be highly correlated for

certain subcarrier locations, the term 1
[||h(k)||2+||h(M−k)||2]

contributes to an increase in MSE for those subcarrier

locations. The overall increase in the MSE can be con-

trolled by considering a WL MMSE which regularizes the

denominator terms. Simulation is used to quantify the

gain of WLMMSE-LE over ZF case.

For detection of real-valued symbols, only the real part

of the noise at the output of the equalizer contributes to

the error rate. Taking this into account, the post-SNR of a

conventional ZF-LE should be modified as

SNRConv ZF-LE, real =
2σ 2

x (Nr − 1)

σ 2
n

Nr > 1. (31)
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5 WLMMSE-DFE
In the WL MMSE-DFE receiver (see Figure 3), the

received signal and its conjugated time-reversed replicas

are filtered as

z̄(k) = w̄(k)ȳ(k)

where w̄(k) = [w(k),w∗(M − k)] is composed of two

vector-valued filters. Next, the ISI is eliminated using a

feedback filter as

ẑ(k) = z̄(k) − b̄(k)x(k).

Note that b̄(k) is the frequency domain feedback filter

where 1+ b̄(k) = 1+
∑L

l=1 b̄t(l)e
−j2πkl

M . The coefficients of

the FBF take real values only. The FBF is implemented in

the time domain to obtain a decision variable

ẑt(l) = z̄t(l) −

L
∑

m=1

b̄t(m)xt(l ⊖ m)

︸ ︷︷ ︸

ISI

(32)

which is fed to the symbol demodulator. Here, z̄t(l) =

IDFT[ z̄(k)] and ẑt(l) = IDFT[ ẑ(k)]. In Appendix 2, we

generalize the MMSE-DFE results for the WL case and

provide expressions for the FFF, FBF, and the MSE. We

note here that the FFF and FBF expressions are distinct

from the ones reported in the literature [30]. In addi-

tion, the receiver design presented in the Appendix has

low implementation complexity. Using the results in the

Appendix 2, the post-SNR of the WL MMSE-DFE, for

M → ∞, is given by (60)

SNRWL MMSE-DFE = e
limM→∞

1
M

∑M−1
k=0 ln

[
σ2x (||h(k)||2 + ||h(M−k)||2)+σ2n

σ2n

]

.

(33)

5.1 Performance of WL ZF-DFE in wideband channels

Setting σ 2
n = 0 in (33), the post-SNR of a WL ZF-DFE can

be expressed as

SNRWL ZF-DFE =
σ 2
x

σ 2
n

elimM→∞
1
M

∑M−1
k=0 ln

[

||h(k)||2 + ||h(M−k)||2
]

.

(34)

Inside the logarithm, we have a sum of squares of 2Nr

i.i.d. complex Gaussian r.v’s. In the limiting case as v →

∞, generalizing the analysis used for the conventional

ZF-DFE, we can show that the SNR of WL ZF-DFE

reaches a fixed value of

SNRWL ZF-DFE =
σ 2
x e

(

−β +
∑2Nr−1

m=1
1
m

)

σ 2
n

. (35)

For real-valued modulation, since only the real part of

the noise is relevant, the conventional ZF-DFE provides a

fixed SNR of

SNRZF-DFE =
2σ 2

x e

(

−β +
∑Nr−1

m=1
1
m

)

σ 2
n

. (36)

For Nr = 1, the ideal WL ZF-DFE offers a post-SNR

of 1.5265
σ 2
n

that is 1.17 dB away from the MFB. The actual

performance gap with practical FBF is determined using

BER simulation.

5.1.1 Remarks

• For the case of WL ZF/MMSE-DFE, we ignore the

potential MSE increase contributed by the terms

located at k = 0 and k = M
2 . Since at these locations,

the exponent in (34) involves the terms

E
[

ln ||h(0)||2
]

, E
[

ln
∣
∣
∣
∣h
(
M
2

)∣
∣
∣
∣
2
]

which take a finite

value, the overall increase in the MSE can be

neglected for finite values ofM.
• We note here that our main goal of the paper is to

expose the basic properties of conventional and WL

equalizers in wideband channels. Our aim is not to

promote the use of real constellations over typically

used complex modulation methods. However, the

analysis and results related to WL equalizers are

useful in systems where real constellations are

employed. One such application is discussed in [52]

where binary modulation along with duobinary

precoding is employed in the uplink of

DFT-precoded-OFDM to reduce the PAPR.

6 Results
We present BER simulation results for BPSK and 8-PSK

and 16-QAM (quadrature amplitude modulation) sys-

tems. In all cases, the FBF length is set equal to the channel

Figure 3WLMMSE-DFE.
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memory. Throughout the paper, we present results for a

20-tap i.i.d. Rayleigh fading channel with M = 512 in all

cases.

6.1 BER results for conventional equalizers

In the following, we consider the BER performance of

the single-antenna receivers. In Figure 4, the results are

shown for BPSK modulation using ZF receivers. The BER

of ideal DFE is close to the conventional DFE up to

BER = 10−4 and shows a degradation at low error rates.

This loss is mainly caused by the imperfect initialization

of the DFE. Note that the ZF-LE performs poorly due

to high noise enhancement. Therefore, initialization of

the ZF-DFE with ZE-LE decisions leads to severe error

propagation. In Figure 5, BER results are given for 16-

QAM system using ZF receivers. The results show that

when the ZF-DFE is initialized using known data, the

BER follows the ideal DFE case while initialization using

the ZF-LE leads to an error floor. In Figure 6, BER is

given for 16-QAM employing MMSE-based receivers.

Unlike the ZF case, initialization of the MMSE-DFE using

MMSE-LE does not cause severe error propagation and

the BER is within 2.0 dB of ideal MMSE-DFE. With lower

modulation alphabets, like BPSK, the difference between

the BER of MMSE-DFE and ideal MMSE-DFE is small

(see Figure 7) and the difference increases for higher

order constellations. This loss may be reduced using

low-complexity sequence estimation techniques such as

RSSE.

Next, we consider the BER performance of BPSK and

8-PSK system with two antennas (see Figures 8 and 9).

We observe that in the presence of multiple-receiver

antennas, the BER of LE improves considerably com-

pared to the single antenna case. As a result, initial-

ization of DFE using the LE does not cause significant

degradation.

The theoretical performance gap between the post-SNR

of the considered receivers and the MFB is tabulated in

Table 1 for an i.i.d. channel with infinite length. In Tables 2

and 3, we report the gap measured at BERs of 0.01 and

0.001, respectively. For ZF-based receivers, the gap mea-

sured using simulation is in good agreement with the

analytically obtained results.

6.2 BER of WL equalizers

In Figure 10, we show the BER for WL MMSE-based

receivers employing BPSK modulation for the case of

Nr = 1. Comparing with the results of Figure 7, we see

that WL processing provides a gain over conventional

receivers. In Figure 11, the results are given for WL ZF

receiver with Nr = 1. In section 4, it is shown that the

post-SNR ofWL ZF-LE approaches (2Nr−1)
σ 2
n

when v → ∞.

For the case of Nr = 1 and for finite values of v, we

argued that certain SNR penalty is expected. For the single
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0
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Figure 4 BPSK, conventional ZF receivers, L = 20, Nr = 1.
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Figure 5 16-QAM, conventional ZF receivers, L = 20, Nr = 1.
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Figure 6 16-QAM, conventional MMSE receivers, L = 20, Nr = 1.
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Figure 7 BPSK, conventional MMSE receivers, L = 20, Nr = 1.
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Figure 8 BPSK, conventional MMSE receivers, L = 20, Nr = 2.
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Figure 9 8-PSK, conventional ZF receivers, L = 20, Nr = 2.

antenna case, while we expect a 3.0-dB SNR gap between

the post-SNR ofWL ZF-LE andMFB, Tables 2 and 3 show

a gap of 3.2 and 3.8 dB, respectively. However, for the dual

antenna case, the gap reported in Tables 2 and 3 is in good

agreement with the analytically obtained results given in

Table 1.

Referring to Figures 10 and 11, we note that the SNR

difference between ideal DFE and actual DFE with LE-

based initialization is approximately 0.4 dB for both ZF

and MMSE cases for Nr = 1. In Figures 12 and 13,

results are given for the case of Nr = 2. We see

that the performance of actual DFE is very close to

that of the ideal DFE. The additional DOF obtained by

WL processing aid the WL DFEs to mitigate the error

propagation.

Table 1 Theoretically expected SNR gap of the receiver

with respect to theMFB in decibels (dB)

Receiver type Gap for Nr = 1 Gap for Nr = 2

Conv ZF-LE NA 3.0

Conv ZF-DFE 2.5 1.19

WL ZF-LE 3.0 1.25

WL ZF-DFE 1.17 0.5644

7 Conclusions
This paper describes the limiting behavior of conven-

tional andWL equalizers in wideband frequency-selective

channels. For systems employing DFT-precoded-OFDM

modulation, closed-form expressions are obtained for the

post-SNR of conventional and WL receivers employing

ZF-LE and ZF-DFE; simulation is used to assess the per-

formance of MMSE-based receivers. In i.i.d. fading chan-

nels with infinite channel memory, the post-SNR reaches

a fixed value that is comparable to the MFB in most

cases.

Table 2 SNR gap of the receiver with respect to MFB in

decibels (dB) at BER = 0.01 for BPSK

Receiver type Gap for Nr = 1 Gap forNr = 2

Conv ZF-LE NA 3.0

Conv ZF-DFE 2.5 1.2

Conv MMSE-LE 3.4 1.65

Conv MMSE-DFE 1.4 0.75

WL ZF-LE 3.2 1.3

WL ZF-DFE 1.2 0.6

WL MMSE-LE 2.15 1.0

WL MMSE-DFE 1.0 0.5
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Table 3 SNR gap of the receiver with respect to MFB in

decibels (dB) at BER = 0.001 for BPSK

Receiver type Gap for Nr = 1 Gap for Nr = 2

Conv ZF-LE NA 3.2

Conv ZF-DFE 2.6 1.1

Conv MMSE-LE 4.2 2.0

Conv MMSE-DFE 1.7 0.8

WL ZF-LE 3.8 1.4

WL ZF-DFE 1.17 0.6

WL MMSE-LE 2.55 1.0

WL MMSE-DFE 1.05 0.5

Both conventional MMSE-LE and ZF-LE offer near

optimal performance only when the receiver has multi-

ple antennas, whereas ideal ZF-DFE and ideal MMSE-

DFE perform close to the MFB with a fixed SNR

penalty even when the receiver has a single antenna. For

single-antenna MMSE-DFE with decision feedback, the

penalty compared to the ideal DFE is approximately 2.0

dB for 16-QAM systems at high SNRs. The total gap

compared to MFB is 4.5 dB. Low-complexity receiver

algorithms that further reduce this gap need to be devel-

oped. Unlike the single antenna case, the presence of

multiple antennas helps the DFEs to reach a perfor-

mance close to the MFB. Multiple-receiver antennas

are also shown to reduce the error propagation of the

DFEs.

For single-antenna systems employing real-valued mod-

ulation alphabets, WL receiver processing can be used

to obtain a performance advantage over conventional

receivers. In particular, the WL MMSE-LE performs

within 3.2 to 3.8 dB of the MFB while the WL MMSE-

DFE reduces the gap with respect to the MFB to 1.0

dB. Results show that the multi-antenna WL receivers

(both LEs and DFEs) perform very close to the MFB

as predicted by the infinite length i.i.d. fading channel

model.

We note here that the proposed infinite length i.i.d fad-

ing channel model can be used to obtain the limiting

performance of MIMO systems employing spatial multi-

plexing (SM). The analysis has been carried out in [53] for

the case of MIMO ZF-LE where it is shown that the post-

SNR of the receiver reaches a constant value of Nr−Nt

σ 2
n

for

Nr > Nt , where Nt is the SM rate. Extension to the gen-

eral case of SM employing ZF/MMSE-DFEs is yet to be

considered.

Endnote
a (A + BCD)−1 = A−1+A−1B

(

C−1 + DA−1B
)−1

DA−1
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Figure 10 BPSK, WLMMSE receivers, L = 20, Nr = 1.
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Figure 11 BPSK, WL ZF receivers, L = 20, Nr = 1.
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Figure 12 BPSK, WL ZF receivers, L = 20, Nr = 2.
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Figure 13 BPSK, WLMMSE receivers, L = 20, Nr = 2.

Appendices
Appendix 1

Derivation of MMSE-DFE filter settings

We obtain closed-form expressions for the FFF, FBF and

MSE for the case when the FBF is restricted to have finite

length. First, we show that the MSE minimizing solution

for the FBF becomes a finite length prediction error fil-

ter that whitens the error covariance at the output of the

MMSE-LE. The solution obtained in our case becomes

a multiple-receiver antenna generalization of the results

presented in [21]. Similarly, Gerstacker et al. [31] pre-

sented an alternative approach for MIMO systems where

the problem of designing the FBF is formulated as one of

finite length prediction error filter design. This alterna-

tive approach results in a solution that agrees with our

results for the multiple-receiver antenna case. We fur-

ther generalize our results to the infinite length filter case

which facilitates performance analysis in i.i.d. fading chan-

nels. The derivations presented in this section follow the

approach presented in [13,18]. We define an error signal

e(k) = �z(k) − x(k). (37)

This is written in time domain as

et(l) = zt(l) − xt(l) −

L
∑

m=1

bt(m)xt(l ⊖ m). (38)

Define: ree(k) = E
(

||e(k)||2
)

. Using Parseval’s theorem:
1
M

∑M−1
k=0 ||e(k)||2 =

∑M−1
l=0 ||et(l)||

2. Taking expectation

on both sides, we get

1

M

M−1
∑

k=0

ree(k) =

M
∑

l=0

E
(

||et(l)||
2
)

.

The MSE is defined as MSE = E
(

||et(l)||
2
)

which is

independent of the time index l. It can be written as

MSE =
1

M2

M−1
∑

k=0

ree(k).

Next, we obtain an expression for the FFF in frequency

domain. Applying orthogonality principle [18]

E
(

e(k)y†(k)
)

= 0, for k = 0, 1, ..,M − 1. (39)

Substituting (37), in (39), and evaluating the expecta-

tion, the FFF can be expressed as

w(k) = (1 + b(k))Rxy(k)R
−1
yy (k) (40)

where Rxy(k) = E
(

x(k)y†(k)
)

= rxx(k)h
†(k) and

Ryy(k) = E
(

y(k)y†(k)
)

=
[

h(k)rxx(k)h
†(k) + Rnn(k)

]

.

Here rxx(k) = E
(

||x(k)||2
)

= Mσ 2
x and Rnn(k) = E
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(

n(k)n†(k)
)

= Mσ 2
n I. The FFF can be expressed in alter-

native form as

w(k) = (1 + b(k))rxx(k)h
†(k)

[

h(k)rxx(k)h
†(k) + Rnn(k)

]−1
(41)

= (1 + b(k))
[

R−1
xx (k) + h†(k)R−1

nn (k)h(k)
]−1

h†(k)R−1
nn (k)

(42)

=
(1 + b(k))

|h(k)|2 +
σ 2
n

σ 2
x

h†(k). (43)

Note that (43) follows from applying matrix inversion

lemmaa. With this choice of FFF, the minimum MSE can

be shown to be [13,18]

MSE =
1

M2

M−1
∑

k=0

ree(k) =
1

M

M−1
∑

k=0

σ 2
n |(1 + b(k))|2

||h(k)||2 +
σ 2
n

σ 2
x

. (44)

To obtain the coefficients bt(l), we take the partial

derivatives

∂MSE

∂bt(l)
=

1

M

M−1
∑

k=0

σ 2
n

∂
∂bt(l)

[∣
∣
∣

∣
∣
∣

(

1 +
∑L

l=1 bt(l)e
−

j2πkl
M

)∣
∣
∣

∣
∣
∣

2
]

||h(k)||2 +
σ 2
n

σ 2
x

. (45)

Let

∂

∂bt(l)

⎡

⎣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

1 +

L
∑

l=1

bt(l)e
−

j2πkl
M

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2
⎤

⎦

=
∂

∂bt(l)

[(

1 +

L
∑

l=1

bt(l)e
−

j2πkl
M +

L
∑

l=1

b∗
t (l)e

j2πkl
M

+

L
∑

l=1

L
∑

m=1

bt(l)b
∗
t (m)e

−j2πk(l−m)
M

)]

.

Treating bt(l) and b∗
t (l) as independent variables,

we get ∂
∂bt(l)

[∣
∣
∣

∣
∣
∣

(

1 +
∑L

l=1 bt(l)e
−

j2πkl
M

)∣
∣
∣

∣
∣
∣

2
]

=
[

e−
j2πkl
M +

∑L
m=1 b

∗
t (m)e

−j2πk(l−m)
M

)]

. Substituting this result in (45)

and setting the partial derivatives to zero, we obtain the

MSE minimizing condition

1

M

M−1
∑

k=0

σ 2
n

[

e−
j2πkl
M +

∑L
m=1 b

∗
t (m)e

−j2πk(l−m)
M

)]

||h(k)||2 +
σ 2
n

σ 2
x

= 0. (46)

We define the following IDFT pair

q(l) =
1

M

M−1
∑

k=0

σ 2
n

||h(k)||2+
σ 2
n

σ 2
x

ej2πkl, l = 0, 1, ..,M − 1. (47)

Note that
σ 2
n

||h(k)||2+
σ2n

σ2x

is the frequency domain error

covariance at the output of a MMSE-LE [18] where q(l)

is the corresponding time domain error covariance. Now,

we can express (46) in compact form as

Ab∗ = −q∗ (48)

where the (l,m)th element of the matrix A is given by

A(l,m) = q(m − l), b = [bt(1), bt(2), .., bt(L)]Tr , and

q =
[

q(1), q(2), .., q(L + 1)
]Tr

. The elements of the FBF

can be obtained by solving (48). It can be seen that the

MSE minimizing solution for the FBF becomes a finite

length prediction error filter of order L that whitens the

error covariance at the output of the MMSE-LE. The

FBF coefficients can be calculated efficiently using

the Levinson-Durbin recursion. The minimum MSE can

be obtained by substituting the values of the FBF coeffi-

cients in the MSE expression (44). Next, we characterize

the MMSE-DFE for the case ofM → ∞.

Expanding the log spectrum using the DFT

ln

[

||h(k)||2 +
σ 2
n

σ 2
x

]

=

M−1
∑

l=0

c(l)e
−j2π lk

M , k = 0, 1, ..,M − 1

(49)

where

c(l) =
1

M

M−1
∑

k=0

ln

[

||h(k)||2 +
σ 2
n

σ 2
x

]

e
j2π lk
M , l = 0, 2, ..,M − 1

(50)

with c(0) = 1
M

∑M−1
k=0 ln

[

||h(k)||2 +
σ 2
n

σ 2
x

]

and c(l) =

c∗(−l) = c∗(M ⊖ l). For odd values of M, let us rewrite

(49) as

[

||h(k)||2 +
σ 2
n

σ 2
x

]

= e
∑M−1

l=0 c(l)e
−j2π lk

M

= ec0e
∑

M−1
2

l=1 c(l)e
−

j2π lk
M

e

∑M−1

l= M−1
2 +1

c∗(M−l)e
−j2π lk

M

= ec0e
∑

M−1
2

l=1 c(l)e
−

j2π lk
M

e
∑

M−1
2

l=1 c∗(l)e
−j2π lk

M

= γ g(k)g∗(k)

where γ = ec(0), g(k) = e
∑

M−1
2

l=1 c(l)e
−j2π lk

M
. In the limiting

case asM → ∞, the DFTs approach discrete-time Fourier

transforms (DTFTs) i.e.,

h(k) → h(f ), g(k) → g(f )
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where

g(f ) = e
∑∞

l=1 c(l)e
−j2π lf

= 1 +

∞
∑

q=1

(∑∞
l=1 c(l)e

−j2π lf
)q

q

= 1 +

∞
∑

l=1

gt(l)e
−j2π lf .

The result on line 2 is obtained by expanding the expo-

nential function into an infinite series. The coefficients

gt(l) are obtained by collecting appropriate terms in the

summation on line 2. Note that g(f ) is a causal, monic, and

minimum-phase filter with all its poles and zeros inside

the unit circle. Similarly, g∗(f ) is a non-causal, monic, and

maximum phase filter. ForM → ∞, (50) can be written as

c(l) = lim
M→∞

1

M

M−1
∑

k=0

ln

[

||h(k)||2 +
σ 2
n

σ 2
x

]

e
j2π lk
M

→

∫ 1

0
ln

[

||h(f )||2 +
σ 2
n

σ 2
x

]

ej2π lf df

where h(f ) =
∑∞

l=0 ht(l)e
j2π lf is the DTFT of ht(l) which

is a periodic in f with period 1. Further,

γ = e
limM→∞

1
M

∑M−1
k=0 ln

[

||h(k)||2 +
σ2n

σ2x

]

→ e

∫ 1
0 ln

[

||h(f )||2 +
σ2n

σ2x

]

df
.

Now, we write the spectrum factorization for the con-

tinuous case as [13,18]

[

||h(f )||2 +
σ 2
n

σ 2
x

]

= γ g(f )g∗(f ). (51)

The MSE given by (44) becomes

MSE = lim
M→∞

1

M

M−1
∑

k=0

σ 2
n ||1 + b(k)||2

||h(k)||2 +
σ 2
n

σ 2
x

(52)

→

∫ 1

0

σ 2
n ||1 + b(f )||2

||h(f )||2 +
σ 2
n

σ 2
x

df (53)

where

1 + b(f ) = 1 +

∞
∑

l=1

bt(l)e
−j2π lf .

The optimum choice which minimizes theMSE given in

(53) is given by 1 + b(f ) = g(f ) [13,18]. Using this, and

substituting (51) in theMSE expression (53), we obtain the

minimumMSE as

MSEM→∞ =
σ 2
n

γ
.

Assuming ideal decision feedback, the SNR at the output

of the MMSE-DFE is given by

SNRMMSE-DFE =
σ 2
x

MSE

=
σ 2
x

σ 2
n

e
limM→∞

1
M

∑M−1
k=0 ln

[

h†(k)h(k)+
σ2n

σ2x

]

→ e

∫ 1
0 ln

[

σ2x

σ2n
||h(f )||2 + 1

]

df
.

Appendix 2

Derivation ofWLMMSE-DFE filter settings

In this section, we discuss the design aspects of WL

MMSEDFE. The key implementation differences between

conventional and WL equalizers are highlighted. Specif-

ically, we notice that the noise covariance term at the

output of the WL MMSE section exhibits even symme-

try in frequency domain. This property is exploited to

reduce the computational complexity of FFF and FBF filter

calculation.

The error signal for WL case is defined as

ē(k) = ẑ(k) − x(k).

In time domain

ēt(l) = z̄t(l) −

L
∑

m=0

b̄t(m)xt(l ⊖ m)

where b̄t(l) = IDFT(b̄(k)). Let r̄ee(k) = E(||ē(k)||2). The

total MSE is given by

MSEWL DFE =
1

M2

M−1
∑

k=0

r̄ee(k) =
1

M2

M−1
∑

k=0

E
(

||ē(k)||2
)

.

Following the conventional MMSE-DFE case, the MSE

minimizing solution for the WL FFF can be obtained as

w̄(k) =
1 + b̄(k)

||h(k)||2 + ||h(M − k)||2 +
σ 2
n

σ 2
x

h̄†(k)

=
1 + b̄(k)

||h(k)||2 + ||h(M − k)||2 +
σ 2
n

σ 2
x

[

h∗(k),h(M − k)
]

.

Let P(k) = ||h(k)||2 + ||h(M − k)||2 +
σ 2
n

σ 2
x
. This is a

real-valued function which exhibits even symmetry, i.e.

P(k) = P(M − k) for k = 0, 1, ..,M − 1. Similar to the

WL MMSE-LE case, it is computationally efficient to cal-

culate the filter w(k) explicitly. The second filter can be

obtained from the first by applying complex conjugation

and frequency reversal operations.
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The minimumMSE can be expressed as

MSEWL DFE =
1

M

M−1
∑

k=0

σ 2
n ||1 + b̄(k)||2

P(k)
.

Consider the partial derivatives

∂MSEWL DFE

∂ b̄t(l)
=

1

M

M−1
∑

k=0

Mσ 2
n

∂

∂ b̄t(l)

[∣
∣
∣

∣
∣
∣

(

1 +
∑L

l=1 b̄t(l)e
−

j2πkl
M

)∣
∣
∣

∣
∣
∣

2
]

P(k)
.

(54)

Let

∂

∂ b̄t(l)

⎡

⎣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

1 +

L
∑

l=1

b̄t(l)e
−

j2πkl
M

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2
⎤

⎦

=
∂

∂ b̄t(l)

[(

1 +

L
∑

l=1

2b̄t(l) cos

(
2πkl

M

)

+

L
∑

l=1

L
∑

m=1

b̄t(l)b̄t(m)e
−j2πk(l−m)

M

)]

= 2 cos

(
2πkl

M

)

+

L
∑

m=1

2b̄t(m) cos

(
2πk(l − m)

M

)

.

Substituting this result in (54) and setting the partial

derivatives to zero, we get

1

M

M−1
∑

k=0

Mσ 2
n

[

2 cos
(
2πkl
M

)

+
∑L

m=1 2bt(m) cos
(
2πk(l−m)

M

)]

P(k)
= 0.

(55)

Let us define the following transform pair

q̄(l) =
1

M

M−1
∑

k=0

σ 2
n

P(k)
cos

(
2πkl

M

)

. (56)

It can be implemented with low complexity using stan-

dard inverse fast Fourier transform (IFFT) algorithm.

Alternatively, noting that P(k) = P(M − k), we can write

(56) as

q̄(l) =
1

M

⎡

⎢
⎣P(0) + P

(
M

2

)

+

M
2 −1
∑

k=0

P(k) cos

(
2πkl

M

)

+

M−1
∑

k=M
2 +1

P(M − k) cos

(
2πkl

M

)

⎤

⎥
⎦ (57)

=
2

M

⎡

⎢
⎣

(

P(0) + P
(
M
2

))

2
+

M
2 −1
∑

k=0

P(k) cos

(
2πkl

M

)

⎤

⎥
⎦ , (58)

l = 0, 1, ..,
M

2
.

The last term involves M
2 point type-1 DCT of P(k).

Note that q̄(l) needs to be calculated only for the first M
2

terms since the rest of the coefficients can be obtained

exploiting the even symmetry of q̄(l) i.e., q̄(l) = q̄(M − l).

TheMSEminimizing condition (55) can be expressed in

vector-matrix form as

Āb̄ = −q̄ (59)

where the (l,m)th element of the matrix Ā denotes

as Ā(l,m) is given by Ā(l,m) = q̄(m − l), b̄ =

[ b̄t(1), b̄t(2), .., b̄t(L)]Tr , and q̄ =[ q̄(1), q̄(2), .., q̄(L)]Tr .

Note that FBF can be calculated with low complexity using

Levinson-Durbin recursion which involves real-valued

quantities whereas the FBF for the conventional case

involves complex values. Now we consider the infinite

length filter case.

Following the derivations for the conventional case, we

can show that

MSEWL MMSE-DFE = lim
M→∞

1

M

M−1
∑

k=0

σ 2
n ||1 + b̄(k)||2

||h(k)||2 + ||h(M − k)||2 +
σ 2
n

σ 2
x

→

∫ 1

0

σ 2
n ||1 + b̄(f )||2

||h(f )||2 + ||h(−f )||2 +
σ 2
n

σ 2
x

df

and

SNRWL MMSE-DFE = e
limM→∞

1
M

∑M−1
k=0 ln

[

σ2x

σ2n
(||h(k)||2 + ||h(M−k)||2)+ 1

]

→ e

∫ 1
0 ln

[

σ2x

σ2n
(||h(f )||2 + ||h(−f )||2)+ 1

]

df
.

(60)
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