
SIAM J. DISCRETE MATH. c\bigcirc 2019 SIAM. Published by SIAM under the terms
Vol. 33, No. 1, pp. 327–345 of the Creative Commons 4.0 license

PARAMETERIZED SINGLE-EXPONENTIAL TIME POLYNOMIAL

SPACE ALGORITHM FOR STEINER TREE\ast

FEDOR V. FOMIN† , PETTERI KASKI‡ , DANIEL LOKSHTANOV§ , FAHAD PANOLAN† ,

AND SAKET SAURABH¶

Abstract. In the Steiner Tree problem, we are given as input a connected n-vertex graph
with edge weights in {1, 2, . . . ,W}, and a set of k terminal vertices. Our task is to compute a
minimum-weight tree that contains all of the terminals. The main result of the paper is an algorithm
solving Steiner Tree in time O(7.97k · n4 · logW) and using O(n3 · lognW · log k) space. This is
the first single-exponential time, polynomial space FPT algorithm for the weighted Steiner Tree

problem. Whereas our main result seeks to optimize the polynomial dependency in n for both the
running time and space usage, it is possible to trade between polynomial dependence in n and the
single-exponential dependence in k to obtain faster running time as a function of k, but at the cost of
increased running time and space usage as a function of n. In particular, we show that there exists
a polynomial space algorithm for Steiner Tree running in O(6.751knO(1) logW) time. Finally, by
pushing such a trade-off between a polynomial in n and an exponential in k dependencies, we show
that for any \epsilon > 0 there is an nO(f(\epsilon)) logW space 4(1+\epsilon)knO(f(\epsilon)) logW time algorithm for Steiner

Tree, where f is a computable function depending only on \epsilon .

Key words. Steiner tree, FPT algorithm, recurrence relation

AMS subject classifications. 05C85, 68Q25, 68W05, 68W40

DOI. 10.1137/17M1140030

1. Introduction. Steiner Tree problem, or minimum Steiner Tree prob-
lem, is a term for a class of problems in combinatorial optimization. Steiner Tree

problem is formulated in various subfields of computer science like graph algorithms,
computational geometry, etc. In this work we study the Steiner Tree problem in
graphs. In the Steiner Tree problem, we are given as input a connected n-vertex
graph, a nonnegative weight function w : E(G) \rightarrow \{ 1, 2, . . . ,W\} , and a set of ter-
minal vertices T \subseteq V (G). The task is to find a minimum-weight connected subgraph
ST of G containing all terminal nodes T . In this paper we use the parameter k = | T | .
In this work we consider the word RAM model of computation. But we assume that
the edge weights are large and hence the memory required for weight W is \scrO (logW)
words. Moreover, operations like compare, add, or multiply two weights W1 and W2

take \scrO (log(W1 \cdot W2)) time.
Steiner Tree is one of the central and best-studied problems in computer science

with various applications. We refer to the book of Prömel and Steger [22] for an

∗Received by the editors July 24, 2017; accepted for publication (in revised form) October 22,
2018; published electronically February 5, 2019. Preliminary versions of this paper appeared in the
Proceedings of ICALP 2015.

http://www.siam.org/journals/sidma/33-1/M114003.html
Funding: The research of the authors was supported by the European Research Council un-

der the European Unions Seventh Framework Programme (FP/2007-2013)/ERC grant Agreements
267959, 338077, and 306992, and NFR MULTIVAL project.

†Department of Informatics, University of Bergen, N-5020 Norway (fomin@ii.uib.no, fahad.
panolan@ii.uib.no).

‡Department of Information and Computer Science, Aalto University, Espoo, FI-00076 Finland
(petteri.kaski@aalto.fi).

§Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA
93106 (daniello@ucsb.edu).

¶The Institute of Mathematical Sciences, HBNI, Chennai, 600 113 India, and Department of
Informatics, University of Bergen, Bergen, N-5020 Norway (saket@imsc.res.in).

327

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

328 FOMIN, KASKI, LOKSHTANOV, PANOLAN, AND SAURABH

overview of the results and applications of the Steiner Tree problem. Steiner

Tree is known to be APX-complete, even when the graph is complete and all edge
weights are either 1 or 2 [2]. On the other hand, the problem admits a constant factor
approximation algorithm, and the currently best such algorithm (after a long chain
of improvements) is due to Byrka et al. and has approximation ratio ln 4 + \varepsilon < 1.39
[6].

Steiner Tree is a fundamental problem in parameterized algorithms [7, 8, 10,
19]. The classic algorithm for Steiner Tree of Dreyfus and Wagner [9] from 1971
might well be the first parameterized algorithm for any problem. The study of param-
eterized algorithms for Steiner Tree has led to the design of important techniques,
such as fast subset convolution [3] and the use of branching walks [18]. Research
on the parameterized complexity of Steiner Tree is still ongoing, with very recent
significant advances for the planar version of the problem [20, 21, 17].

Algorithms for Steiner Tree are frequently used as a subroutine in fixed-
parameter tractable (FPT) algorithms for other problems; examples include vertex
cover problems [15], near-perfect phylogenetic tree reconstruction [4], and connectivity
augmentation problems [1].

Motivation and earlier work. For more than 30 years, the fastest FPT al-
gorithm for Steiner Tree was the 3k \cdot logW \cdot n\scrO (1)-time dynamic programming
algorithm by Dreyfus and Wagner [9]. Fuchs et al. [14] gave an improved algorithm
with running time \scrO ((2 + \varepsilon)knf(1/\varepsilon) logW). For the unweighted version of the prob-
lem, Björklund et al. [3] gave a 2kn\scrO (1)-time algorithm. All of these algorithms are
based on dynamic programming and use exponential space.

Algorithms with high space complexity are in practice more constrained because
the amount of memory is not easily scaled beyond hardware constraints, whereas time
complexity can be alleviated by allowing for more time for the algorithm to finish.
Furthermore, algorithms with low space complexity are typically easier to parallelize
and more cache-friendly. These considerations motivate a quest for algorithms whose
memory requirements scale polynomially in the size of the input, even if such algo-
rithms may be slower than their exponential space counterparts. The first polynomial
space 2\scrO (k)n\scrO (1)-time algorithm for the unweighted Steiner Tree problem is due
to Nederlof [18]. This algorithm runs in time 2kn\scrO (1), matching the running time of
the best known exponential space algorithm. Nederlof’s algorithm can be extended
to the weighted case; unfortunately this comes at the cost of an \scrO (W) factor both
in the time and the space complexity. Lokshtanov and Nederlof [16] showed that the
\scrO (W) factor can be removed from the space bound, but with a factor \scrO (W) in the
running time. The algorithm of Lokshtanov and Nederlof [16] runs in 2k \cdot n\scrO (1) \cdot W
time and uses n\scrO (1) logW space. Note that both the algorithm of Nederlof [18] and
the algorithm of Lokshtanov and Nederlof [16] have an \scrO (W) factor in their running
time. Thus the running time of these algorithms depends exponentially on the input
size, and therefore these algorithms are not FPT algorithms for weighted Steiner

Tree.
For weighted Steiner Tree, the only known polynomial space FPT algorithm

has a 2\scrO (k log k) running time dependence on the parameter k. This algorithm follows
from combining a (27/4)k \cdot n\scrO (log k) \cdot logW time, polynomial space algorithm by Fomin
et al. [11] with the Dreyfus–Wagner algorithm. Indeed, one runs the algorithm of
Fomin et al. [11] if n \leq 2k, and the Dreyfus–Wagner algorithm if n > 2k. If n \leq 2k,
the running time of the algorithm of Fomin et al. is bounded from above by 2\scrO (k log k).
When n > 2k, the Dreyfus–Wagner algorithm becomes a polynomial time (and space)

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

POLY-SPACE FAST FPT ALGORITHM FOR STEINER TREE 329

algorithm.
Prior to this work, the existence of a polynomial space algorithm with running

time 2\scrO (k) \cdot n\scrO (1) \cdot logW , i.e., a single-exponential time polynomial space FPT algo-
rithm, was an open problem asked explicitly in [11, 16].

Contributions and methodology. The starting point of our present algorithm
is the (27/4)k \cdot n\scrO (log k) \cdot logW time, polynomial-space algorithm by Fomin et al. [11].
This algorithm crucially exploits the possibility for balanced separation (cf. Lemma
2.1). Specifically, an optimal Steiner tree ST can be partitioned into two trees ST1

and ST2 containing the terminal sets T1 and T2, respectively, so that the following
three properties are satisfied:

(1) The two trees share exactly one vertex v and no edges.
(2) Neither of the two trees ST1 or ST2 contains more than a 2/3 fraction of the

terminal set T .
(3) The tree ST1 is an optimal Steiner tree for the terminal set T1\cup \{ v\} , and ST2

is an optimal Steiner tree for the terminal set T2 \cup \{ v\} .
Conversely, to find the optimal tree ST for the terminal set T , it suffices to (1)

guess the vertex v, (2) partition T into T1 and T2, and (3) recursively find optimal trees
for the terminal sets T1\cup \{ v\} and T2\cup \{ v\} . The most unbalanced partition (T1, T2) of
T in (2) has one block containing 1/3 fraction of T and another block containing 2/3
fraction of T . Since there are n choices for v, and

\bigl(

k
k/3

\bigr)

ways to partition T into two

sets T1 and T2 such that | T1| = | T | /3, the running time of the algorithm is essentially
governed by the recurrence

(1) T (n, k) \leq n \cdot

\biggl(

k

k/3

\biggr)

\cdot (T (n, k/3) + T (n, 2k/3)).

Unraveling (1) gives the (27/4)k \cdot n\scrO (log k) \cdot logW upper bound for the running time,
and it is easy to see that the algorithm runs in polynomial space. However, this
algorithm is not an FPT algorithm because of the n\scrO (log k) factor in the running time.

The factor n\scrO (log k) is incurred by the factor n in (1), which in turn originates
from the need to iterate over all possible choices for the vertex v in each recursive
call. In effect the recursion tracks an \scrO (log k)-sized set S of split vertices (together
with a subset T \prime of the terminal vertices T) when it traverses the recursion tree from
the root to a leaf.

The key idea in our new algorithm is to redesign the recurrence for optimal Steiner
trees so that we obtain control over the size of S using an alternation between

1. balanced separation steps (as described above) and
2. novel resplitting steps that maintain the size of S at no more than three

vertices throughout the recurrence.
In essence, a resplit takes a set S of size 3 and splits that set into three sets of size
2 by combining each element in S with an arbitrary vertex v, while at the same
time splitting the terminal set T \prime into three parts in all possible (not only balanced)
ways. While the combinatorial intuition for resplitting is elementary (cf. Lemma 2.2
below), the implementation and analysis requires a somewhat careful combination of
ingredients.

Namely, to run in polynomial space, it is not possible to use extensive amounts of
memory to store intermediate results to avoid recomputation. Yet, if no memorization
is used, the novel recurrence does not lead to an FPT algorithm, let alone to a single-
exponential FPT algorithm. Thus neither a purely dynamic programming nor a purely
recursive implementation will lead to the desired algorithm. A combination of the two

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

330 FOMIN, KASKI, LOKSHTANOV, PANOLAN, AND SAURABH

will, however, give a single-exponential time algorithm that uses polynomial space.

Roughly, our approach is to employ recursive evaluation over subsets T \prime of the
terminal set T , but each recursive call with T \prime will compute and return the optimal
solutions for every possible set S of split vertices. Since by resplitting we have arranged
that S always has size at most 3, this hybrid evaluation approach will use polynomial
space. Since each recursive call on T \prime yields the optimum weights for every possible
S, we can use dynamic programming to efficiently combine these weights so that
single-exponential running time results.

In precise terms, our main result is as follows.

Theorem 1. Steiner Tree can be solved in time \scrO (7.97kn4 log(nW)) using

space \scrO (n3 log(nW) log k).

Whereas our main result seeks to optimize the polynomial dependency in n for
both the running time and space usage, it is possible to trade between polynomial
dependency in n and the single-exponential dependency in k to obtain faster running
time as a function of k, but at the cost of increased running time and space usage
as a function of n. In particular, we can use larger (but still constant-size) sets S to
avoid recomputation and to arrive at a somewhat faster algorithm.

Theorem 2. There exists a polynomial-space algorithm for Steiner Tree run-

ning in \scrO (6.751kn\scrO (1) logW) time.

Finally, by using more ideas, like introducing even balanced separators of larger
cardinality in trees and generalizing our Steiner Tree algorithm on Subset Steiner

Forest, we obtain the following theorem.

Theorem 3. For any \epsilon > 0 there is an n\scrO (f(\epsilon)) logW space 4(1+\epsilon)kn\scrO (f(\epsilon)) logW
time algorithm for Steiner Tree, where f is a computable function depending only

on \epsilon .

Notice that to get polynomial space parameterized single-exponential time al-
gorithms for the unweighted version of Steiner Tree, it is enough to substitute
uniform weight to all of the edges (for example, the weight of each edge is 2) in the
above theorems.

2. Preliminaries. Given a graph G, we write V (G) and E(G) for the set of
vertices and edges of G, respectively. For subgraphs G1, G2 of G, we write G1 + G2

for the subgraph of G with vertex set V (G1) \cup V (G2) and edge set E(G1) \cup E(G2).
For a graph G, S \subseteq V (G) and v \in V (G), we use G - S and G - v to denote the
induced subgraphs G[V (G)\setminus S] and G[V (G)\setminus \{ v\}], respectively. The minimum weight
of a Steiner tree of G on terminals T is denoted by stG(T). When graph G is clear
from the context, we will simply write st(T). For a set U and a nonnegative integer
i, we use

\bigl(

U
i

\bigr)

and
\bigl(

U
\leq i

\bigr)

to denote the set of all subsets of U of size exactly i and the
set of all subsets of U of size at most i, respectively.

Partitions. A partition of a nonempty set U is a collection of nonempty, pairwise
disjoint subsets of U whose union is U . The subsets are called blocks. For a set U ,
we write U1 \uplus U2 \uplus \cdot \cdot \cdot \uplus U\ell = U if U1, U2, . . . , U\ell is a partition of U . For a set U and
a positive integer i, we use P(U) and Pi(U) to denote the set of all partitions of U
and the set of all partitions of U into i blocks, respectively. For convenience we use
P(\emptyset) = \{ \emptyset \} . For a set U and a constant \epsilon \geq 0, we use \scrB \epsilon (U) to denote the set of all
partitions (U1, U2) of U into two blocks such that | U1| , | U2| \leq

\bigl(

1
2 + \epsilon

\bigr)

| U | . For a set
U , a subset U \prime of U, and a partition P \in P(U), we use P [U \prime] to denote the restriction
of partition P on the set U \prime , i.e., the blocks in P [U \prime] are obtained by deleting U \setminus U \prime

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

POLY-SPACE FAST FPT ALGORITHM FOR STEINER TREE 331

from the blocks of P . For a set U and partitions P1, P2 \in P(U), we say partition P1

refines partition P2, denoted by P1 \preceq P2, if every block of P1 is contained in some
block of P2. We also use P1 \preceq P2 if P1 is a restriction of a partition in P(U) which
refines partition P2. That is, for a set U , a subset U \prime of U , and partitions P1 \in P(U \prime)
and P2 \in P(U), we write P1 \preceq P2 if each block of P1 is contained in some block of P2.
For two partitions P1 and P2 in P(U), the join of P1 and P2, denoted by P1 \sqcup P2, is
the smallest (with respect to \preceq) partition P refined by both P1 and P2. For a graph
G, we use PG to denote the partition \{ V (C) | C is a connected component of G\} of
V (G).

Separation and resplitting. A set of nodes S is called an \alpha -separator of a
graph G, 0 < \alpha \leq 1, if the vertex set V (G) \setminus S can be partitioned into sets VL and
VR of size at most \alpha n each, such that no vertex of VL is adjacent to any vertex of VR.
We next define a similar notion, which turns out to be useful for Steiner trees. Given
a Steiner tree ST on terminals T , an \alpha -Steiner separator S of ST is a subset of nodes
which partitions ST - S into two forests \scrR 1 and \scrR 2, each one containing at most \alpha k
terminals from T .

Lemma 2.1 (separation). (See [5, 11].) Every Steiner tree ST on terminal set T ,
| T | \geq 3, has a 2/3-Steiner separator S = \{ s\} of size one.

The following easy lemma enables us to control the size of the split set at no more
than three vertices.

Lemma 2.2 (resplitting). Let F be a tree and S \in
\bigl(

V (F)
3

\bigr)

. Then there is a vertex

v \in V (F) such that each connected component in F - v contains at most one vertex

of S.

Proof. Let S = \{ s1, s2, s3\} . Let P1 be the unique path between s1 and s3 in the
tree F . Let P2 be the unique path between s3 and s2 in the tree F . If P1 and P2

are edge-disjoint, then V (P1) \cap V (P2) = \{ s3\} and P1P2 is the unique path between
s1 and s2. Thus any connected component in G - s3 will not contain both s1 and
s2. In this case s3 is the required vertex. Suppose V (P1)\cap V (P2) \not = \{ s3\} . For a path

P = u1u2 . . . u\ell in a graph G, let
\leftarrow -
P denote the reverse path u\ell u\ell - 1 . . . u1. Consider

the unique path
\leftarrow -
P1 between s3 and s1, which is the reverse of the path P1. Since F is

a tree, these paths
\leftarrow -
P1 and P2 will be of the form P1 = Q

\leftarrow -
P1

\prime and P2 = QP \prime
2. Note that

Q is a path starting at s3. Let w be the last vertex in the path Q. Since F is a tree,

V (
\leftarrow -
P1

\prime) \cap V (P \prime
2) = \{ w\} . Now consider the graph G - w. Any connected component

in G - w will not contain more than one vertex from \{ s1, s2, s3\} , because the unique
path between any pair of vertices in \{ s1, s2, s3\} passes through w.

3. Algorithm. In this section, we design an algorithm for Steiner Tree which
runs in \scrO (7.97kn4 log(nW)) time using \scrO (n3 log(nW) log k) space. Most algorithms
for Steiner Tree, including ours, are based on recurrence relations that reduce
finding an optimal Steiner tree to finding optimal Steiner trees in the same graph,
but with a smaller terminal set. We first define two functions fi for i \in \{ 2, 3\} . Each
function fi, i \in \{ 2, 3\} takes as input a vertex set S of size at most i (the split set
defined in the introduction) and a subset T \prime of T . The function fi(S, T

\prime) returns a
real number. We will define the functions using recurrence relations, and then prove
that fi(S, T

\prime) is exactly stG(T
\prime \cup S). These two functions are alternatively invoked

by our algorithm. Later we define two more functions fi for i \in \{ 0, 1\} , and they are
invoked only in the first two recursive steps of our algorithm.

For T \prime \subseteq T , i \in \{ 2, 3\} , and S \in
\bigl(

V (G)
\leq i

\bigr)

, we define fi(S, T
\prime) as follows. When

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

332 FOMIN, KASKI, LOKSHTANOV, PANOLAN, AND SAURABH

| T \prime | \leq 2, we set fi(S, T
\prime) = stG(T

\prime \cup S). For | T \prime | \geq 3, we define fi(S, T
\prime) using the

following recurrences.

Separation.

f2(S, T
\prime) = min

(T1,T2)\in \scrB 1
6
(T \prime)

min
v\in V (G)
S1\uplus S2=S

f3
\bigl(

S1 \cup \{ v\} , T1

\bigr)

+ f3
\bigl(

S2 \cup \{ v\} , T2

\bigr)

.(2)

Resplitting.

f3(S, T
\prime) = min

(T1,T2,T3)\in P3(T \prime)
min

S1\uplus S2\uplus S3=S
| S1| ,| S2| ,| S3| \leq 1

v\in V (G)

3
\sum

r=1

f2
\bigl(

Sr \cup \{ v\} , Tr

\bigr)

.(3)

The recurrences (2) and (3) are recurrence relations for Steiner Tree as proved
in the following lemma.

Lemma 3.1. For all T \prime \subseteq T , i \in \{ 2, 3\} , and S \in
\bigl(

V (G)
\leq i

\bigr)

it holds that fi(S, T
\prime) =

stG(T
\prime \cup S).

Proof. We prove the lemma using induction on | T \prime | . For the base case | T \prime | \leq 2,
the lemma holds by the definition of fi. For the inductive step, let us assume that
the lemma holds for all T \prime \prime of size less than j. We proceed to show that fi(S, T

\prime) =
stG(T

\prime \cup S) for all T \prime \subseteq T with | T \prime | = j. We split into cases based on i and in each
case establish the inequalities fi(S, T

\prime) \leq stG(T
\prime \cup S) and fi(S, T

\prime) \geq stG(T
\prime \cup S) to

conclude equality.

Case 1: i = 2. By (2), we know that there are a vertex v \in V (G), a partition
S1\uplus S2 = S, and another partition (T1, T2) \in \scrB 1/6(T

\prime) such that fi(S, T
\prime) = fi+1(S1\cup

\{ v\} , T1) + fi+1(S2 \cup \{ v\} , T2). Since (T1, T2) \in \scrB 1/6(T
\prime) and | T \prime | \geq 3, we have that

| T1| , | T2| < | T
\prime | . Then by induction hypothesis,

fi+1(S1 \cup \{ v\} , T1) = stG(T1 \cup S1 \cup \{ v\})

and
fi+1(S2 \cup \{ v\} , T2) = stG(T2 \cup S2 \cup \{ v\}).

So we have that

fi(S, T
\prime) = stG(T1 \cup S1 \cup \{ v\}) + stG(T2 \cup S2 \cup \{ v\}).

Let ST1 be an optimum Steiner tree for the set of terminals T1 \cup S1 \cup \{ v\} and let ST2

be an optimum Steiner tree for the set of terminals T2\cup S2\cup \{ v\} . Note that ST1+ST2

is a connected subgraph containing T1 \cup T2 \cup S and

w(E(ST1 + ST2)) \leq stG(T1 \cup S1 \cup \{ v\}) + stG(T2 \cup S2 \cup \{ v\}).

This implies that

stG(T
\prime \cup S) \leq w(E(ST1+ST2)) \leq stG(T1\cup S1\cup \{ v\})+ stG(T2\cup S2\cup \{ v\}) = fi(S, T

\prime).

Hence fi(S, T
\prime) \geq stG(T

\prime \cup S).
Conversely, let ST be an optimum Steiner tree for the set of terminals T \prime \cup S.

Thus ST is also a Steiner tree for the set of terminals T \prime . Hence by Lemma 2.1,

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

POLY-SPACE FAST FPT ALGORITHM FOR STEINER TREE 333

we know that there is a 2/3-Steiner separator \{ v\} of size one for the tree ST on the
terminal set T \prime . Let F1 and F2 be two forests created by the separator \{ v\} , such that
V (Fr) \cap T \prime \leq 2| T \prime | /3 for each 1 \leq r \leq 2. Let Tr = V (Fr) \cap T \prime , 1 \leq r \leq 2. If v \in T \prime

and | T1| \leq | T2| , then we replace T1 with T1 \cup \{ v\} . If v \in T \prime and | T1| > | T2| , then
we replace T2 with T2 \cup \{ v\} . Note that (T1, T2) is a partition of T \prime . Since \{ v\} is a
2/3-Steiner separator and | T \prime | \geq 3, we have that

| T1| , | T2| \leq 2| T \prime | /3 \leq

\biggl(

1

2
+

1

6

\biggr)

| T \prime | < | T \prime | .

Hence (T1, T2) \in \scrB 1/6(T
\prime). For any r \in \{ 1, 2\} , let STr = ST [V (Fr) \cup \{ v\}] and let

Sr = V (STr) \cap S. Thus

fi+1(S1 \cup \{ v\} , T1) + fi+1(S2 \cup \{ v\} , T2) \geq fi(S, T
\prime).

Note that ST1 = ST [V (F1) \cup \{ v\}] and ST2 = ST [V (F2) \cup \{ v\}] are subtrees of ST .
By the induction hypothesis, we have that fi+1(S1 \cup \{ v\} , T1) = stG(T1 \cup S1 \cup \{ v\})
and fi+1(S2 \cup \{ v\} , T2) = stG(T2 \cup S2 \cup \{ v\}). Since ST1 and ST2 are trees containing
T1 \cup S1 \cup \{ v\} and T2 \cup S2 \cup \{ v\} , respectively, we have

w(E(ST1)) + w(E(ST2)) \geq stG(T1 \cup S1 \cup \{ v\}) + stG(T2 \cup S2 \cup \{ v\})

= fi+1(S1 \cup \{ v\} , T1) + fi+1(S2 \cup \{ v\} , T2) \geq fi(S, T
\prime).

Since V (ST1)\cap V (ST2) = \{ v\} and T \prime \cup S \subseteq V (ST1)\cup V (ST2), we have that stG(T
\prime \cup

S) = w(E(ST1)) + w(E(ST2)). Thus fi(S, T
\prime) \leq stG(T

\prime \cup S).

Case 2: i = 3. By (3), there are v \in V (G), S1, S2, S3 \in
\bigl(

S
\leq 1

\bigr)

, S1 \uplus S2 \uplus S3 = S,

and a partition (T1, T2, T3) \in P3(T
\prime) such that

f3(S, T
\prime) =

3
\sum

r=1

f2(Sr \cup \{ v\} , Tr).

We have shown (in Case 1) that f2(Sr\cup \{ v\} , Tr) = stG(Tr\cup Sr\cup \{ v\}) for all 1 \leq r \leq 3.

Therefore, f3(S, T
\prime) =

\sum 3
r=1 stG(Tr \cup Sr \cup \{ v\}). Let STr be an optimum Steiner tree

for the set of terminals Tr\cup Sr\cup \{ v\} for all r. Note that ST1+ST2+ST3 is a connected
subgraph containing T1 \cup T2 \cup T3 \cup S and

w(E(ST1 + ST2 + ST3)) \leq
3
\sum

r=1

stG(Tr \cup Sr \cup \{ v\}).

Thus

stG(T
\prime \cup S) \leq w(E(ST1 + ST2 + ST3)) \leq

3
\sum

r=1

stG(Tr \cup Sr \cup \{ v\}) = f3(S, T
\prime).

Hence f3(S, T
\prime) \geq stG(T

\prime \cup S).
Conversely, let ST be an optimum Steiner tree for the set of terminals T \prime \cup S.

By Lemma 2.2, there is a vertex v \in V (ST) such that each connected component C
in ST - v contains at most one vertex from S. Let \scrC 1, \scrC 2, and \scrC 3 be a partition of
connected components of ST - v such that | V (\scrC r)\cap S| \leq 1 for all 1 \leq r \leq 3. For each
r, let Tr = T \prime \cap V (\scrC r) and STr = ST [V (\scrC r)\cup \{ v\}]. If v \in T \prime , then we replace T1 with

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

334 FOMIN, KASKI, LOKSHTANOV, PANOLAN, AND SAURABH

T1 \cup \{ v\} . Note that (T1, T2, T3) is a partition of T \prime . Hence (T1, T2, T3) \in P3(T
\prime). For

each r, let Sr = (S \setminus \{ v\}) \cap V (STr). Since each \scrC r contains at most one vertex from
S, | Sr| \leq 1. This implies

3
\sum

r=1

f2(Sr \cup \{ v\} , Tr) \geq f3(S, T
\prime).

Note that STr = ST [V (\scrC r) \cup \{ v\}] is a tree for each r. Since V (\scrC 1) \cup V (\scrC 2) \cup V (\scrC 3) \cup
\{ v\} = V (ST) and for all 1 \leq r1 \not = r2 \leq 3 it holds that V (\scrC r1) \cap V (\scrC r2) = \emptyset , we have

stG(T
\prime \cup S) = w(E(ST))

=

3
\sum

r=1

w(E(STr)) \geq
3
\sum

r=1

f2(Sr \cup \{ v\} , Tr) \geq f3(S, T
\prime).

Thus f3(S, T
\prime) \leq stG(T

\prime \cup S).

We would like to mention that 3 is the smallest size of S for which we can do
resplitting and reduce the size of the separator (i.e., first argument in the function
fi). Our algorithm uses (2) and (3) repeatedly to compute the weight of an optimum
Steiner tree. Notice that f2(\emptyset , T) is equal to the weight of an optimum Steiner tree.
Since f3 runs over all partitions of size 3, unlike the balanced partitions in the case
of f2, f3 is costlier for the running time of the algorithm. Also notice that f2(\emptyset , T)
invokes two instances of f3 with the first argument being size one sets in each instance.
In fact for those two instances of f3, we do not have to make a resplitting step. Thus
towards designing a faster algorithm we define two more functions f0 and f1 which
are defined similarly to f2. For T

\prime \subseteq T , i \in \{ 0, 1\} , and S \in
\bigl(

V (G)
\leq i

\bigr)

, we define fi(S, T
\prime)

as follows. When | T \prime | \leq 2, we set fi(S, T
\prime) = stG(T

\prime \cup S). For | T \prime | \geq 3, we define
fi(S, T

\prime) using the following recurrence:

fi(S, T
\prime) = min

(T1,T2)\in \scrB 1
6
(T \prime)

min
v\in V (G)
S1\uplus S2=S

fi+1

\bigl(

S1 \cup \{ v\} , T1

\bigr)

+ fi+1

\bigl(

S2 \cup \{ v\} , T2

\bigr)

.(4)

Lemma 3.2. For all T \prime \subseteq T , i \in \{ 0, 1\} , and S \in
\bigl(

V (G)
\leq i

\bigr)

it holds that fi(S, T
\prime) =

stG(T
\prime \cup S).

Proof. By substituting i = 1 in Case 1 of the proof of Lemma 3.1 and the fact
that f2(S1\cup \{ v\} , T1) = stG(T1\cup S1\cup \{ v\}) and f2(S2\cup \{ v\} , T2) = stG(T2\cup S2\cup \{ v\}) (by
Lemma 3.1), we conclude that f1(S, T

\prime) = stG(T
\prime \cup S). Again, by arguments similar

to that of the proof for the case i = 1, we conclude that f0(S, T
\prime) = stG(T

\prime \cup S).

A näıve way of turning the recurrences into an algorithm would be to simply make
one recursive procedure for each fi, and apply (4), (2), and (3) directly. However,
this would result in a factor n\scrO (log k) in the running time, which we seek to avoid.
The reason to get a factor n\scrO (log k) in the running time of a näıve implementation is
the number of branches of each node in the recurrence tree is at least n\scrO (1) (because
the number of choices of separators for each recurrence is n\scrO (1)) and the depth of
the recurrence tree is \scrO (log k) (because of the balanced partition in (2)). Like the
näıve approach, our algorithm has one recursive procedure Fi for each function fi.
The procedure Fi takes as input a subset T \prime of the terminal set, and returns an array
that, for every S \in

\bigl(

V (G)
\leq i

\bigr)

, contains fi(S, T
\prime).

The key observation is that if we seek to compute fi(S, T
\prime) for a fixed T \prime and all

choices of S \in
\bigl(

V (G)
\leq i

\bigr)

using recurrence (4) or (2) or (3), we should not just iterate over

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

POLY-SPACE FAST FPT ALGORITHM FOR STEINER TREE 335

Algorithm 1: Implementation of procedure Fi for i \in \{ 0, 1, 2\} .

Input: T \prime \subseteq T
Output: stG(T

\prime \cup S) for all S \in
\bigl(

V (G)
\leq i

\bigr)

1 if | T \prime | \leq 2 then

2 for S \in
\bigl(

V (G)
\leq i

\bigr)

do

3 A[S]\leftarrow stG(T
\prime \cup S) (compute using the Dreyfus–Wagner algorithm)

4 end

5 return A

6 end

7 for S \in
\bigl(

V (G)
\leq i

\bigr)

do

8 A[S]\leftarrow \infty
9 end

10 for T1, T2 \in \scrB 1/6(T
\prime) do

11 A1 \leftarrow Fi+1(T1)
12 A2 \leftarrow Fi+1(T2)

13 for S1 \uplus S2 \in
\bigl(

V (G)
\leq i

\bigr)

such that | S2| \leq | S1| and v \in V (G) do

14 if A[S1 \uplus S2] > A1[S1 \cup \{ v\}] +A2[S2 \cup \{ v\}] then
15 A[S1 \uplus S2]\leftarrow A1[S1 \cup \{ v\}] +A2[S2 \cup \{ v\}]
16 end

17 end

18 end

19 return A.

every choice of S and then apply the recurrence to compute fi(S, T
\prime); it is much faster

to compute all of the entries of the return array of Fi simultaneously, by iterating over
every eligible partition of T \prime , making the required calls to Fi+1 (or Fi - 1 if we are using
recurrence (3)), and updating the appropriate array entries to yield the return array
of Fi. Next, we give pseudocode for the procedures F0, F1, F2, F3.

The procedure Fi for 0 \leq i \leq 2 operates as follows. (See Algorithm 1.) Let
T \prime \subseteq T be the input to the procedure Fi. If | T \prime | \leq 2, then Fi computes stG(T

\prime \cup S)

for all S \in
\bigl(

V (G)
\leq i

\bigr)

using the Dreyfus–Wagner algorithm and returns these values. The

procedure Fi has an array A indexed by S \in
\bigl(

V (G)
\leq i

\bigr)

. At the end of the procedure

Fi, A[S] will contain the value stG(T
\prime \cup S) for each S \in

\bigl(

V (G)
\leq i

\bigr)

. For each (T1, T2) \in

\scrB 1/6(T
\prime) (line 10), Fi calls Fi+1(T1) and Fi+1(T2) and it returns two sets of values

\{ fi+1(S, T1) | S \in
\bigl(

V (G)
\leq i+1

\bigr)

\} and \{ fi(S, T2) | S \in
\bigl(

V (G)
\leq i

\bigr)

\} , respectively. Let A1 and A2

be two arrays used to store the return values of Fi+1(T1) and Fi+1(T2), respectively.

That is, A1[S] = fi+1(S, T1) for each S \in
\bigl(

V (G)
\leq i+1

\bigr)

and A2[S
\prime] = fi+1(S

\prime , T2) for each

S\prime \in
\bigl(

V (G)
\leq i+1

\bigr)

. Now we update A as follows. For each S1 \uplus S2 \in
\bigl(

V (G)
\leq i

\bigr)

and v \in V (G)

(line 13), if A[S1 \uplus S2] > A1[S1 \cup \{ v\}] + A2[S2 \cup \{ v\}], then we update the entry
A[S1 \uplus S2], with the value A1[S1 \cup \{ v\}] +A2[S2 \cup \{ v\}]. So at the end of the inner for
loop, A[S] contains the value

min
v\in V (G)
S1\uplus S2=S

fi+1(S1 \cup \{ v\} , T1) + fi+1(S2 \cup \{ v\} , T2).

Since we do have a outer for loop which runs over (T1, T2) \in \scrB 1/6(T
\prime), we have

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

336 FOMIN, KASKI, LOKSHTANOV, PANOLAN, AND SAURABH

Algorithm 2: Implementation of procedure F3.

Input: T \prime \subseteq T
Output: stG(T

\prime \cup S) for all S \in
\bigl(

V (G)
\leq 3

\bigr)

1 if | T \prime | \leq 2 then

2 for S \in
\bigl(

V (G)
\leq 3

\bigr)

do

3 A[S]\leftarrow stG(T
\prime \cup S) (compute using the Dreyfus–Wagner algorithm)

4 end

5 return A

6 end

7 for S \in
\bigl(

V (G)
\leq 3

\bigr)

do

8 A[S]\leftarrow \infty
9 end

10 for T1, T2, T3 \in P3(T
\prime) do

11 A1 \leftarrow F2(T1)
12 A2 \leftarrow F2(T2)
13 A3 \leftarrow F2(T3)

14 for S1, S2, S3 \in
\bigl(

V (G)
\leq 1

\bigr)

and v \in V (G) do

15 if A[S1 \cup S2 \cup S3] > A1[S1 \cup \{ v\}] +A2[S2 \cup \{ v\}] +A3[S3 \cup \{ v\}] then
16 A[S1 \cup S2 \cup S3]\leftarrow A1[S1 \cup \{ v\}] +A2[S2 \cup \{ v\}] +A3[S3 \cup \{ v\}]
17 end

18 end

19 end

20 return A.

updated A[S] with

min
(T1,T2)\in \scrB 1/6(T \prime)

min
v\in V (G)
S1\uplus S2=S

fi+1(S1 \cup \{ v\} , T1) + fi+1(S2 \cup \{ v\} , T2)

at the end of the procedure. Then Fi will return A.
The procedure F3 works as follows. (See Algorithm 2.) Let T \prime \subseteq T be the input

to the procedure F3. If | T \prime | \leq 2, then F3 computes stG(T
\prime \cup S) for all S \in

\bigl(

V (G)
\leq 3

\bigr)

using the Dreyfus–Wagner algorithm and returns these values. The procedure F3

has an array A indexed by S \in
\bigl(

V (G)
\leq 3

\bigr)

. At the end of the procedure F3, A[S] will

contain the value stG(T
\prime \cup S) for all S \in

\bigl(

V (G)
\leq 3

\bigr)

. For each (T1, T2, T3) \in P3(T
\prime)

(line 10), F3 calls F2(T1), F2(T2), and F2(T3), and it returns three sets of values

\{ f2(S, T1) | S \in
\bigl(

V (G)
\leq 2

\bigr)

\} , \{ f2(S, T2) | S \in
\bigl(

V (G)
\leq 2

\bigr)

\} and \{ f2(S, T3) | S \in
\bigl(

V (G)
\leq 2

\bigr)

\} ,

respectively. Let A1, A2, and A3 be three arrays used to store the outputs of F2(T1),
F2(T2), and F2(T3), respectively. That is, Ar[S] = f2(S, Tr) for r \in \{ 1, 2, 3\} . Now

we update A as follows. For each S1, S2, S3 \in
\bigl(

V (G)
\leq 1

\bigr)

and v \in V (G) (line 14), if

A[S1 \cup S2 \cup S3] > A1[S1 \cup \{ v\}] + A2[S2 \cup \{ v\}] + A3[S3 \cup \{ v\}], then we update the
entry A[S1 \cup S2 \cup S3], with the value A1[S1 \cup \{ v\}] +A2[S2 \cup \{ v\}] +A3[S3 \cup \{ v\}]. So
at the end of the inner for loop, A[S] contains the value

min
S1\cup S2\cup S3=S

| S1| ,| S2| ,| S3| \leq 1
v\in V (G)

3
\sum

r=1

f2(Sr \cup \{ v\} , Tr).

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

POLY-SPACE FAST FPT ALGORITHM FOR STEINER TREE 337

Since we do have a outer for loop which runs over (T1, T2, T3) \in P3(T
\prime), we have

updated A[S] with

min
(T1,T2,T3)\in P3(T \prime)

min
S1\cup S2\cup S3=S

| S1| ,| S2| ,| S3| \leq 1
v\in V (G)

3
\sum

r=1

f2(Sr \cup \{ v\} , Tr)

at the end of the procedure. Then F3 will return A as the output.
In what follows, we prove the correctness and analyze the running time and

memory usage of the call to the procedure F0(T).

Lemma 3.3. For every i \leq 3, and every set T \prime \subseteq T , the procedure Fi(T
\prime) outputs

an array that contains fi(S, T
\prime) for every S \in

\bigl(

V (G)
\leq i

\bigr)

.

Proof. Correctness of the lemma follows directly by an induction on | T | . Indeed,
assuming that the lemma statement holds for the recursive calls made by the procedure
Fi, it is easy to see that each entry of the output table is exactly equal to the right-
hand side of recurrence (4) or (2) (recurrence (3) in the case of F3).

Observation 3.1. The recursion tree of the procedure F0(T) has depth \scrO (log k).

Proof. For every i \leq 2 the procedure Fi(T
\prime) only makes recursive calls to Fi+1(T

\prime \prime)
where | T \prime \prime | \leq 2| T \prime | /3. The procedure F3(T

\prime) makes recursive calls to F2(T
\prime \prime) where

| T \prime \prime | \leq | T \prime | . Therefore, on any root-leaf path in the recursion tree, the size of the
considered terminal set T \prime drops by a constant factor every second step. When the
terminal set reaches size at most 2, no further recursive calls are made. Thus any
root-leaf path has length at most \scrO (log k).

Lemma 3.4. The procedure F0(T) uses \scrO (n
3 log(nW) log k) space.

Proof. As each Fi, i \in \{ 0, 1, 2, 3\} , is a recursive procedure once its recursive call is
returned, the memory used by the recursive procedure can be reused. Thus to upper
bound the space used by the procedure F0(T), it is sufficient to upper bound the
memory usage of every individual recursive call, not taking into account the memory
used by its recursive calls, and then multiply this upper bound by the depth of the
recursion tree.

Each individual recursive call will at any point of time keep a constant number
of tables, each containing at most \scrO (n3) entries. Each entry is a number less than
or equal to nW ; therefore, each entry can be represented using at most \scrO (log(nW))
bits. Thus each individual recursive call uses at most \scrO (n3 log(nW)) bits. Combining
this with Observation 3.1 proves the lemma.

Next, we analyze the running time of the algorithm. On an n-vertex graph, let
\tau i(k) be the total number of arithmetic operations of the procedure Fi(T

\prime) for all
i \leq 3, where k = | T \prime | . It follows directly from the structure of the procedures Fi for
i \leq 2, that there exists a constant C such that the following recurrence holds for \tau i,
i \leq 2:

\tau i(k) \leq
\sum

k
3\leq j\leq 2k

3

\biggl(

k

j

\biggr)

(\tau i+1(j) + \tau i+1(k - j) + Cn3)

\leq 2
\sum

k
3\leq j\leq 2k

3

\biggl(

k

j

\biggr)

(\tau i+1(j) + Cn3) \leq 2k max
k
3\leq j\leq 2k

3

\biggl(

k

j

\biggr)

(\tau i+1(j) + Cn3).(5)

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

338 FOMIN, KASKI, LOKSHTANOV, PANOLAN, AND SAURABH

In the above expression, the term Cn3 is the time required to execute the inner for

loop of Fi. Let
\bigl(

k
i1,i2,i3

\bigr)

be the number of partitions of k distinct elements into sets
of sizes i1, i2, and i3 such that i1 + i2 + i3 = k. It follows directly from the structure
of the procedure F3 that there exists a constant C such that the following recurrence
holds for \tau 3:

\tau 3(k) =
\sum

i1+i2+i3=k

\biggl(

k

i1, i2, i3

\biggr)

(\tau 2(i1) + \tau 2(i2) + \tau 2(i3) + Cn4)

\leq
\sum

i1\geq i2,i3
i1+i2+i3=k

\biggl(

k

i1, i2, i3

\biggr)

3 \cdot (\tau 2(i1) + Cn4)

\leq 3
\sum

i1\geq
k
3

\biggl(

k

i1

\biggr)

2k - i1 \cdot (\tau 2(i1) + Cn4)

\leq 3kmax
i1\geq

k
3

\biggl(

k

i1

\biggr)

2k - i1 \cdot (\tau 2(i1) + Cn4).(6)

In the above expression, the term Cn4 is the time required to execute the inner for

loop of F3. Now we will bound \tau 3(k) from above using (5) and (6). The following
facts are required for the proof.

Fact 1 (see [13, Lemma 3.13]). By Stirling’s approximation, we have that
\bigl(

k
\alpha k

\bigr)

\leq
\bigl(

\alpha - \alpha (1 - \alpha)(\alpha - 1)
\bigr) k
.

Fact 2. For every fixed x \geq 4, the function f(y) = xy

yy(1 - y)1 - y is increasing on

the interval (0, 2/3].

Lemma 3.5. There exists a constant C such that \tau 3(k) \leq C \cdot 11.7899kn4.

Proof. We prove by induction on k that \tau 2(k) \leq Ĉk(c log k)9.78977kn4 and \tau 3(k) \leq
Ĉk(c log k)11.7898kn4, where Ĉ and c are constants. We will select the constant Ĉ to
be larger than the constants of (5) and (6), and sufficiently large so that the base case
of the induction holds. We prove the inductive step. By the induction hypothesis and
(5), we have that

\tau 2(k) \leq 2k max
1
3\leq \alpha \leq 2

3

\biggl(

k

\alpha k

\biggr)

\Bigl(

Ĉ(\alpha k)(c log\alpha k)11.7898\alpha kn4 + Ĉn3
\Bigr)

\leq 2k

\biggl(

11.78982/3

(2/3)2/3(1/3)1/3

\biggr) k

\cdot

\Biggl(

Ĉ

\biggl(

2k

3

\biggr) (c log 2k/3)

n4 + Ĉn3

\Biggr)

(Facts 1 and 2)

\leq 2k \cdot (9.78977)k \cdot

\Biggl(

Ĉ

\biggl(

2k

3

\biggr) (c log 2k/3)

n4 + Ĉn3

\Biggr)

\leq 9.78977k \cdot Ĉk(c log k)n4.

The last inequality holds if c is a sufficiently large constant (independent of k). By

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

POLY-SPACE FAST FPT ALGORITHM FOR STEINER TREE 339

the induction hypothesis and (6), we have that

\tau 3(k) \leq 3k max
1\geq \alpha \geq 1

3

\biggl(

k

\alpha k

\biggr)

2(1 - \alpha)k \cdot
\Bigl(

9.78977\alpha k \cdot Ĉ(\alpha k)(c log\alpha k)n4 + Ĉn4
\Bigr)

\leq 3k max
1\geq \alpha \geq 1

3

\Bigl(

\alpha - \alpha (1 - \alpha)(\alpha - 1)2(1 - \alpha)9.78977\alpha
\Bigr) k

\cdot
\Bigl(

Ĉ(\alpha k)(c log\alpha k) + Ĉn4
\Bigr)

\leq 11.7898k \cdot Ĉk(c log k)n4.

The last inequality holds for sufficiently large constants Ĉ and c. For a sufficiently
large constant C it holds that

C \cdot 11.7899kn4 \geq 11.7898k \cdot Ĉk(c log k)n4,

completing the proof.

To upper bound \tau 0(k) from \tau 3(k), we repeatedly use the following lemma.

Lemma 3.6. For every i \leq 2 and constants Ci+1 and \beta i+1 \geq 4 such that for

every k \geq 1 we have \tau i+1(k) \leq Ci+1\beta
k
i+1n

4, there exists a constant Ci such that

\tau i(k) \leq Ci \cdot 1.8899
k \cdot \beta

2k/3
i+1 \cdot n

4.

Proof. By (5) we have that

\tau i(k) \leq 2k max
k
3\leq j\leq 2k

3

\biggl(

k

j

\biggr)

(\tau i+1(j) + Cn3)

\leq (2k + C) max
k
3\leq j\leq 2k

3

\biggl(

k

j

\biggr)

(Ci+1\beta
j
i+1n

4)

\leq Ci+1 \cdot (2k + C) \cdot

\biggl(

3

22/3

\biggr) k

\cdot \beta
2k/3
i+1 \cdot n

4

\leq Ci \cdot 1.8899
k \cdot \beta

2k/3
i+1 \cdot n

4.

The last inequality holds for a sufficiently large Ci depending on Ci+1 and \beta i+1 but
not on k.

Lemma 3.7. The procedure F0(T) uses \scrO (7.97
kn4 log(nW)) time.

Proof. We show that \tau 0(k) = \scrO (7.9631kn4). Since each arithmetic operation
takes at most \scrO (log(nW)) time, the lemma follows. Applying Lemma 3.6 on the
upper bound for \tau 3(k) from Lemma 3.5 proves that

\tau 2(k) = \scrO (1.8899
k \cdot 11.78992k/3n4) = \scrO (9.790kn4).

Reapplying Lemma 3.6 on the above upper bound for \tau 2(k) yields

\tau 1(k) = \scrO (1.8899
k \cdot 9.7902k/3n4) = \scrO (8.6489kn4).

Reapplying Lemma 3.6 on the above upper bound for \tau 1(k) yields

\tau 0(k) = \scrO (1.8899
k \cdot 8.64892k/3n4) = \scrO (7.9631kn4).

This completes the proof.

We are now in position to prove our main theorem.

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

340 FOMIN, KASKI, LOKSHTANOV, PANOLAN, AND SAURABH

Proof of Theorem 1. The algorithm calls the procedure F0(T) and returns the
value stored for f0(\emptyset , T). By Lemma 3.3, the procedure F0(T) correctly computes
f0(\emptyset , T), and by Lemma 3.1, this is exactly equal to the weight of an optimal Steiner
tree. By Lemma 3.4, the space used by the algorithm is at most \scrO (n3 log(nW) log k),
and by Lemma 3.7, the time used is \scrO (7.97kn4 log(nW)).

3.1. Obtaining better parameter dependence. The algorithm from Theo-
rem 1 is based on defining and computing the functions fi, 0 \leq i \leq 3. The functions
fi, i \leq 2, are defined using recurrence (2), while the function f3 is defined using
recurrence (3). For every constant t \geq 4, we could obtain an algorithm for Steiner

Tree by defining functions fi, 0 \leq i \leq t - 1, using (2) and ft using (3). A proof
identical to that of Lemma 3.1 shows that fi(S, T

\prime) = STG(S \cup T \prime) for every i \leq t.
We can now compute f0(\emptyset , T) using an algorithm almost identical to the algorithm

of 1, except that now we have t+1 procedures, namely a procedure Fi for each i \leq t.
For each i and terminal set T \prime \subseteq T , a call to the procedure Fi(T

\prime) computes an array
containing fi(S, T

\prime) for every set S of size at most i.
For i < t, the procedure Fi is based on (2) and is essentially the same as Al-

gorithm 1. Further, the procedure Ft is based on (3) and is essentially the same as
Algorithm 2. The correctness of the algorithm and an \scrO (nt log(nW)) upper bound on
the space usage follow from arguments identical to Lemmas 3.3 and 3.4, respectively.

For the running time bound, an argument identical to Lemma 3.5 shows that
\tau t(k) = \scrO (11.7899

knt+1). Furthermore, Lemma 3.6 now holds for i \leq t - 1. In the
proof of Lemma 3.7, the bound for \tau 0(k) is obtained by starting with the\scrO (11.7899kn4)
bound for \tau 3 and applying Lemma 3.6 three times. Here we can upper bound \tau 0(k)
by starting with the \scrO (11.7899knt+1) bound for \tau t and applying Lemma 3.6 t times.
This yields a C0 \cdot \beta

k
0 upper bound for \tau 0(k), where

\beta 0 = (11.7899(2/3)
t

)1.8899
\sum t - 1

i=0(2/3)
i

.

It is easy to see that when t \geq 25 the upper bound for \beta 0 is a number between 6.75
and 6.751. This proves Theorem 2.

4. Faster polynomial space algorithm. In this section, for any \epsilon > 0, we de-
sign a 4(1+\epsilon)kn\scrO (f(\epsilon)) logW time, n\scrO (f \prime (\epsilon)) logW space algorithm for Steiner Tree,
where f and f \prime are computable functions that depend only on \epsilon . Towards that we
need to explain Subset Steiner Forest problem and show that the algorithm in
section 3 can be generalized to an algorithm for Subset Steiner Forest. In sub-
section 4.1 we explain Subset Steiner Forest. Then in subsection 4.2 we give a
faster polynomial space algorithm for Steiner Tree.

4.1. Subset Steiner forest. In this subsection we generalize our parameterized
single-exponential time polynomial space algorithm (the algorithm in section 3) to a
general version of the Steiner Tree problem, named Subset Steiner Forest.

Definition 4.1. Let G be a graph, w : E(G)\rightarrow \{ 1, 2, . . . ,W\} be a nonnegative

weight function, \scrS be a partition of a subset of vertices, and T \subseteq V (G) be a set of

terminals. A subgraph G\prime of G is called a subset Steiner forest of G on the partition

\scrS and the terminal set T if the following conditions hold:

\bullet T \cup
\bigl(
\bigcup

S\in \scrS S
\bigr)

\subseteq V (G\prime),
\bullet for all S \in \scrS , there is a connected component C in G\prime such that S \subseteq V (C),

and

\bullet for any t \in T , the connected component C in G\prime , containing t, also contains

some S \in \scrS .

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

POLY-SPACE FAST FPT ALGORITHM FOR STEINER TREE 341

We use sfG(\scrS , T) to denote the minimum weight of a subset Steiner forest of G on

the partition \scrS and the terminal set T .

In Subset Steiner Forest, the objective is to find a subset Steiner forest of
minimum weight for an input graph G, a set of terminals T , and a partition \scrS of a
subset Y of vertices. For the application considered in this paper, we assume that | Y |
is a constant. Thus, the formal definition of a Subset Steiner Forest is as follows.

Subset Steiner Forest Parameter: k = | T |
Input: An undirected graph G, a nonnegative weight function w : E(G) \rightarrow
\{ 1, 2, . . . ,W\} , a partition \scrS of a subset Y of vertices, and a set of terminals T ,
where | Y | is a constant.
Question: A minimum weight subset Steiner forest of G on the partition \scrS and
the terminal set T.

The recurrence relations defined for Steiner Tree (see (4), (2) and (3)) can be
generalized to get recurrence relations for Subset Steiner Forest. That is, we
define four functions fi for i \in \{ 0, 1, 2, 3\} . In what follows let \scrS = \{ S1, . . . , Sr\} be
a partition of a subset Y of the vertex set such that for all j, | Sj | \leq c, where c and
r are constants. Each function fi takes as input a subset T \prime of T and a partition \scrS
of a vertex subset Y , of size r, such that for all S \in \scrS , | S| \leq c + i. These functions
fi are recurrence relations for Subset Steiner Forest. That is fi(\scrS , T

\prime) is exactly
sfG(\scrS , T

\prime). Now we define fi(\scrS , T
\prime) for all i \in \{ 0, 1, 2, 3\} . When | T \prime | \leq c + 3,

fi(\scrS , T
\prime) = sfG(\scrS , T

\prime). For | T \prime | > c + 3, we define fi(S, T
\prime) using the following

recurrences.

Separation. For i \in \{ 0, 1, 2\} , let us define

fi(\scrS , T
\prime) = min

2
\sum

\ell =1

fi+1

\bigl(

\{ S
(\ell)
1 \cup \{ v1\} \} , . . . , \{ S

(\ell)
r \cup \{ vr\} \} , T\ell

\bigr)

,(7)

where the minimum is taken over partition (T1, T2) \in \scrB 1
6
(T \prime), vertices v1, . . . , vr \in

V (G), and partition S
(1)
j \uplus S

(2)
j of Sj for all j \in [r].

Resplitting. For i = 3, let us define

fi(\scrS , T
\prime) = min

3
\sum

\ell =1

fi - 1

\bigl(

\{ S
(\ell)
1 \cup \{ v1\} \} , . . . , \{ S

(\ell)
r \cup \{ vr\} \} , T\ell

\bigr)

,(8)

where the minimum is taken over partition (T1, T2, T3) \in P3(T
\prime), vertices v1, . . . , vr \in

V (G), and for all j \in [r], partition S
(1)
j \uplus S

(2)
j \uplus S

(3)
j of Sj such that | S

(1)
j | , | S

(2)
j | , | S

(3)
j | \leq

c - 2.
The proof of correctness of the above recurrence relation is a generalization of the

proof of correctness of the recurrence relations of Steiner Tree (see (4), (2), and
(3)). As in section 3, a recursive algorithm using (7) and (8) can be designed, which
leads to the following theorem.

Theorem 4. Subset Steiner Forest can be solved in \scrO (7.97knr(c+4)

log(nW)) time using nr(c+3) log(nW) \cdot log k space.

4.2. Polynomial space 4(1+\bfitepsilon)\bfitk
n

O(\bfitf (\bfitepsilon)) time algorithm. In this subsection
we design a faster polynomial space algorithm for Steiner Tree using Subset

Steiner Forest. We design a new recurrence relation for subset Steiner forest

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

342 FOMIN, KASKI, LOKSHTANOV, PANOLAN, AND SAURABH

using a notion of \alpha -Steiner separator for subset Steiner forest. Given a subset Steiner
forest SF on a set of terminals T and a partition \scrS of a vertex subset, an \alpha -Steiner
separator S of SF is a subset of nodes which partitions SF - S in two forests \scrR 1 and
\scrR 2, each one containing at most \alpha | T | terminals from T . The following lemma follows
from Lemma 1 (sharp separation) of [12].

Lemma 4.2 (c-separation). For any constant c \geq 0, every subset Steiner forest

SF on terminal set T and family \scrS has a
\bigl(

1
2 + 1

2c/2

\bigr)

-Steiner separator S of size at

most c.

We design a recurrence relation g(c) for subset Steiner forest for any constant
c \geq 2. The function g(c) takes inputs S \subseteq V (G), PS \in P(S), and a set of terminals
T . When | T | \leq c, the value of g(c)(S, PS , T) is defined to be sfG(PS , T). Otherwise,
g(c)(S, PS , T) is defined by the following recurrence relation. Let us fix \alpha = 1

2(c/2)
,

g(c)(S, PS , T) = min(g(c)(S\prime , P1, T1) + g(c)(S\prime , P2, T2)),(9)

where the minimum is taken over partition (T1, T2) \in \scrB \alpha (T), a super set S\prime \supseteq S, and
partitions P1, P2 \in P(S\prime) such that | S\prime \setminus S| \leq c and PS \preceq P1 \sqcup P2.

We need to show that (9) is a recurrence relation for a Subset Steiner Forest

and we prove it in Lemma 4.4. The following lemma is useful for proving Lemma 4.4.

Lemma 4.3. Let G be a graph, S\prime , T \subseteq V (G), and P1, P2 \in P(S\prime). Let F1 and

F2 be subset Steiner forests for the pairs (P1, T) and (P2, T), respectively. Let S \subseteq S\prime

and PS \in P(S) such that PS \preceq P1 \sqcup P2. Then F1 + F2 is a subset Steiner forest for

the pair (PS , T).

Proof. Let F = F1 + F2. Since F1 is a subset Steiner forest for the pair (P1, T),
where P1 \in P(S\prime), we have that S\prime \cup T \subseteq V (F1). This implies that S \cup T \subseteq V (F).
Now we need to show that for any Q \in PS , there is a component C in F such that
Q \subseteq V (C). Since F1 and F2 are subset Steiner forests for the pairs (P1, T) and
(P2, T), respectively, the graph F = F1 + F2 is a subset Steiner forest for the pair
(P1 \sqcup P2, T). Since PS \preceq P1 \sqcup P2 any Q \in PS is completely contained in a block
Q\prime in P1 \sqcup P2. Since F is a subset Steiner forest for the pair (P1 \sqcup P2, T), there is
a component C in F such that Q\prime \subseteq V (C). This implies that Q \subseteq V (C). This
completes the proof of the lemma.

Now we show that the above recurrence (9) is indeed a recurrence relation for
subset Steiner forest.

Lemma 4.4. For any T \subseteq V (G), any partition PS of vertex subset S of G, and

any constant c \geq 2, it holds that g(c)(S, PS , T) = sfG(PS , T).

Proof. We prove the lemma using induction on | T | . For the base case, when
| T | \leq c, the lemma holds by the definition of g(c). For the inductive step, let us
assume that the lemma holds for all T \prime of size less than j and any S\prime \subseteq V (G) and
any partition PS\prime \in P(S\prime). We now show that g(c)(S, PS , T) = sfG(PS , T) for all

T \in
\bigl(

V (G)
j

\bigr)

, S \subseteq V (G), and PS \in P(S). Fix a set T \in
\bigl(

V (G)
j

\bigr)

, S \subseteq V (G), and

PS \in P(S). Let \alpha = 1
2(c/2)

.

First, we show that g(c)(S, PS , T) \geq sfG(PS , T). By (9), we know there exist
(T1, T2) \in \scrB \alpha (T), S

\prime \supseteq S, and P1, P2 \in P(S\prime) such that | S\prime \setminus S| \leq c, PS \preceq P1 \sqcup P2,
and

g(c)(S, PS , T) = g(c)(S\prime , P1, T1) + g(c)(S\prime , P2, T2).

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

POLY-SPACE FAST FPT ALGORITHM FOR STEINER TREE 343

Since (T1, T2) \in \scrB \alpha (T) and | T | \geq 2, we have that | T1| , | T2| < | T | . Then by induc-
tion hypothesis g(c)(S\prime , P1, T1) = sfG(P1, T1) and g(c)(S\prime , P2, T2) = sfG(P2, T2). So
we have that g(c)(S, PS , T) = sfG(P1, T1) + sfG(P2, T2). Let SF1 and SF2 be opti-
mum subset Steiner forests for the pairs (P1, T1) and (P2, T2), respectively. Hence, by
Lemma 4.3, G\prime = SF1 + SF2 is a subset Steiner forest for the pair (PS , T). Thus
we have shown that G\prime is a subset Steiner forest for the pair (PS , T) of weight
g(c)(S, PS , T). This implies that g(c)(S, PS , T) \geq sfG(PS , T).

Conversely, let SF be an optimum subset Steiner forest for the pair (PS , T). By
Lemma 4.2 we know that there exists an (12 +\alpha)-Steiner separator S\prime \prime of SF such that
| S\prime \prime | \leq c. Let S\prime = S\prime \prime \cup S. Since S\prime \supseteq S\prime \prime , S\prime is also an (12+\alpha)-Steiner separator of SF .
Let \scrR 1 and \scrR 2 be the forests created by S\prime such that | V (\scrR 1) \cap T | \leq (12 + \alpha)| T | and
| V (\scrR 2)\cap T | \leq (12+\alpha)| T | . Let T1 = V (\scrR 1)\cap T and T2 = V (\scrR 2)\cap T . If T1\cup T2 \not = T , then
arbitrarily add each vertex in T \setminus (T1\cup T2) to either T1 or T2 such that | Tr| \leq (12+\alpha)| T |
for any r \in \{ 0, 1\} . Note that (T1, T2) \in \scrB \alpha (T). Since S\prime is a separator for \scrR 1 and \scrR 2

in SF , there is no edge in E(SF) which is incident to both \scrR 1 and \scrR 2. Let E1 be the
set of edges in E(SF) which are incident to \scrR 1, and let E2 = E(SF) \setminus E1. Consider
the graphs F1 = (V (\scrR 1) \cup S\prime , E1) and F2 = (V (\scrR 2) \cup S\prime , E2). The graphs F1 and
F2 are subset Steiner forests for the pairs (PF1

[S\prime], T1) and (PF2
[S\prime], T2), respectively

(recall that for a graph G, PG is the partition of V (G), where each block is the vertex
set of a component in G). Thus we have that

w(SF) = w(F1) + w(F2) \geq sfG(PF1
[S\prime], T1) + sfG(PF2

[S\prime], T2).(10)

Since F1 + F2 = SF , we have that PS \preceq PF1
[S\prime] \sqcup PF2

[S\prime]. Thus, we have that
| S\prime \setminus S| \leq c, (T1, T2) \in \scrB \alpha (T), and PF1

[S\prime], PF2
[S\prime] \in P(S\prime) such that PS \preceq PF1

[S\prime] \sqcup
PF2

[S\prime]. Hence by induction hypothesis and our recurrence relation (9), we have that
sfG(PF1 [S

\prime], T1)+sfG(PF2 [S
\prime], T2) \geq g(c)(S, PS , T). Combining this with (10), we get

g(c)(S, PS , T) \leq w(SF) = sfG(PS , T).

Now for any \epsilon > 0, we explain an n\scrO (f \prime (\epsilon)) logW space 4(1+\epsilon)kn\scrO (f(\epsilon)) logW time
algorithm for Steiner Tree. We fix (later) two constants c \geq 4 and d based on \epsilon .

Let \alpha = 1
2(c/2)

and \beta =
\bigl(

1
2 + \alpha

\bigr) d
. The algorithm is a recursive algorithm based on (9).

Whenever the cardinality of the terminal set in a recursive call is bounded by \beta k, the
algorithm uses 4 as a black box. Otherwise, it branches according to (9). The initial
call to the recurrence is on the set of terminals T , S = \emptyset , and PS = \emptyset . Since each
application of (9) reduces the cardinality of the terminal set by a factor of (12 +\alpha), the
depth of the recurrence tree is bounded by d. Hence the total number of vertices in
the partition when our algorithm invokes Theorem 4 is bounded by d \cdot c. This implies
that the space usage of our algorithm is bounded by (ndc(dc+1) + d) logW .

Now we bound the running time of the algorithm. Let T (k) be the running time
of the algorithm for an n-vertex graph.

Lemma 4.5. There exists a constant C such that for any k\prime \leq k,

T (k\prime) = C \cdot (dc)(2dc)d
\prime

ncd\prime

ncd(cd+4)2d
\prime

log nW \cdot (7.97)\beta k4k
\prime

2
2k\prime

1 - 2α ,

where d\prime = log 1
2+\alpha

\beta k
k\prime
.

Proof. Let C be a constant such that the algorithm in Theorem 4 runs in time
C \cdot 7.97knr(c+4) log(nW). We prove the lemma by induction on k\prime . Assume that the
lemma holds for all values of k\prime < k. Now we need to bound T (k). According to (9),

T (k) = ncc2c2k \cdot 2 \cdot T

\biggl(\biggl(

1

2
+ \alpha

\biggr)

k

\biggr)

.(11)

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

344 FOMIN, KASKI, LOKSHTANOV, PANOLAN, AND SAURABH

Let \gamma =
\bigl(

1
2 + \alpha

\bigr)

. Now by induction hypothesis, we simplify (11) as

T (k) = ncc2c2k \cdot 2 \cdot T (\gamma k)

= ncc2c2k+1 \cdot C(dc)(2dc)d
\prime

ncd\prime

ncd(cd+4)2d
\prime

log(nW) \cdot (7.97)\beta k4\gamma k2
2γk

1 - 2α ,(12)

where d\prime = log\gamma
\beta k
\gamma k \leq d - 1.

Substituting d\prime = d - 1 in (12),

T (k) = C \cdot (dc)(2dc)dncdncd(cd+4)2d log(nW) \cdot 2k(7.97)\beta k4\gamma k2
2γk

1 - 2α .(13)

Claim 4.6. 2k4\gamma k2
2γk

1 - 2α \leq 4k2
2k

1 - 2α .

Proof. We prove that

2k4\gamma k2
2γk

1 - 2α \leq 2k \cdot 2(1+2\alpha)k \cdot 2
(1+2α)k
1 - 2α

\leq 4k \cdot 2(2\alpha +
1+2α
1 - 2α)k.(14)

Here \alpha = 1
2(c/2)

. For c \geq 4,
\bigl(

2\alpha + 1+2\alpha
1 - 2\alpha

\bigr)

\leq 2
1 - 2\alpha . This completes the proof of the

claim.

By applying Claim 4.6 in (13), we get

T (k) = C \cdot (dc)(2dc)dncdncd(cd+4)2d log(nW) \cdot (7.97)\beta k4k2
2k

1 - 2α .

This completes the proof.

Thus, for any \epsilon > 0, by choosing constants c and d such that (7.97)\beta k2
2k

1 - 2α \leq 4\epsilon k,
we derive the following theorem.

Theorem 3. For any \epsilon > 0 there is an n\scrO (f \prime (\epsilon)) logW space 4(1+\epsilon)kn\scrO (f(\epsilon)) logW
time algorithm for Steiner Tree, where f and f \prime are computable functions depending

only on \epsilon .

5. Conclusion. In this paper we designed the first polynomial space single-
exponential FPT algorithm for Steiner Tree. Our algorithm runs in \scrO (7.96kn4

log(nW)) time. We also designed an \scrO (4(1+\epsilon)knf(\epsilon)) algorithm with \scrO (nf \prime (\epsilon)) space
complexity for any \epsilon > 0. Getting a faster algorithm without paying much on the
polynomial factor and the space usage is an interesting open problem.

REFERENCES

[1] M. Basavaraju, F. V. Fomin, P. A. Golovach, P. Misra, M. S. Ramanujan, and

S. Saurabh, Parameterized algorithms to preserve connectivity, in Proceedings of the 41st
International Colloquium of Automata, Languages and Programming (ICALP), Lecture
Notes in Comput. Sci. 8572, Springer, Heidelberg, 2014, pp. 800–811.

[2] M. W. Bern and P. E. Plassmann, The Steiner problem with edge lengths 1 and 2, Inform.
Process. Lett., 32 (1989), pp. 171–176.

[3] A. Bj\"orklund, T. Husfeldt, P. Kaski, and M. Koivisto, Fourier meets Möbius: Fast subset

convolution, in Proceedings of the 39th Annual ACM Symposium on Theory of Computing
(STOC), ACM, New York, 2007, pp. 67–74.

[4] G. E. Blelloch, K. Dhamdhere, E. Halperin, R. Ravi, R. Schwartz, and S. Sridhar,
Fixed parameter tractability of binary near-perfect phylogenetic tree reconstruction, in Pro-
ceedings of the 33rd International Colloquium of Automata, Languages and Programming
(ICALP), Lecture Notes in Comput. Sci. 4051, Springer, Berlin, 2006, pp. 667–678.

[5] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput.
Sci., 209 (1998), pp. 1–45.

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

POLY-SPACE FAST FPT ALGORITHM FOR STEINER TREE 345

[6] J. Byrka, F. Grandoni, T. Rothvo{\ss}, and L. Sanit\`a, Steiner tree approximation via iterative

randomized rounding, J. ACM, 60 (2013), 6.
[7] M. Cygan, F. V. Fomin, \L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,

M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, Cham, 2015.
[8] R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity, Texts Com-

put. Sci., Springer, London, 2013.
[9] S. E. Dreyfus and R. A. Wagner, The Steiner problem in graphs, Networks, 1 (1971),

pp. 195–207.
[10] J. Flum and M. Grohe, Parameterized Complexity Theory, Texts Theoret. Comput. Sci.

EATCS Ser., Springer-Verlag, Berlin, 2006.
[11] F. V. Fomin, F. Grandoni, D. Kratsch, D. Lokshtanov, and S. Saurabh, Computing

optimal Steiner trees in polynomial space, Algorithmica, 65 (2013), pp. 584–604.
[12] F. V. Fomin, F. Grandoni, D. Lokshtanov, and S. Saurabh, Sharp separation and appli-

cations to exact and parameterized algorithms, Algorithmica, 63 (2012), pp. 692–706.
[13] F. V. Fomin and D. Kratsch, Exact Exponential Algorithms, Texts Theoret. Comput. Sci.

EATCS Ser., Springer, Heidelberg, 2010.
[14] B. Fuchs, W. Kern, D. M\"olle, S. Richter, P. Rossmanith, and X. Wang, Dynamic pro-

gramming for minimum Steiner trees, Theory Comput. Syst., 41 (2007), pp. 493–500.
[15] J. Guo, R. Niedermeier, and S. Wernicke, Parameterized complexity of generalized vertex

cover problems, in Proceedings of the 9th International Workshop Algorithms and Data
Structures (WADS), Lecture Notes in Comput. Sci. 3608, Springer, Berlin, 2005, pp. 36–48.

[16] D. Lokshtanov and J. Nederlof, Saving space by algebraization, in Proceedings of the
42nd Annual ACM Symposium on Theory of Computing (STOC), ACM, New York, 2010,
pp. 321–330.

[17] D. Marx, M. Pilipczuk, and M. Pilipczuk, On subexponential parameterized algorithms

for Steiner tree and directed subset TSP on planar graphs, in Proceedings of the 59th
IEEE Annual Symposium on Foundations of Computer Science, 2018, pp. 474–484, https:
//dblp.org/rec/bibtex/conf/focs/MarxPP18.

[18] J. Nederlof, Fast polynomial-space algorithms using inclusion-exclusion, Algorithmica, 65
(2013), pp. 868–884.

[19] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford Lecture Ser. Math. Appl.
31, Oxford University Press, Oxford, UK, 2006.

[20] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen, Subexponential-time

parameterized algorithm for Steiner tree on planar graphs, in Proceedings of the 30th
International Symposium on Theoretical Aspects of Computer Science (STACS), Leibniz
International Proceedings in Informatics (LIPIcs) 20, Dagstuhl, Germany, 2013, Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Wadern, Germany, pp. 353–364.

[21] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen, Network sparsification

for Steiner problems on planar and bounded-genus graphs, in Proceedings of the 55th
Annual Symposium on Foundations of Computer Science (FOCS), IEEE, Los Alamitos,
CA, 2014, pp. 276–285.

[22] H. J. Pr\"omel and A. Steger, The Steiner Tree Problem. A Tour through Graphs, Algorithms,

and Complexity, Adv. Lectures Math., Friedr. Vieweg & Sohn, Braunschweig, 2002.

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

2
 t

o
 5

2
.4

0
.1

1
6
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se

	Introduction
	Preliminaries
	Algorithm
	Obtaining better parameter dependence

	Faster polynomial space algorithm
	Subset Steiner forest
	Polynomial space 4(1+)knO(f()) time algorithm

	Conclusion
	References

