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Abstract

We provide a number of algorithmic results for the following family of problems: For a given

binary m × n matrix A and a nonnegative integer k, decide whether there is a “simple” binary

matrix B which differs from A in at most k entries. For an integer r, the “simplicity” of B is

characterized as follows.

Binary r-Means: Matrix B has at most r different columns. This problem is known to be

NP-complete already for r = 2. We show that the problem is solvable in time 2O(k log k) ·
(nm)O(1) and thus is fixed-parameter tractable parameterized by k. We also complement this

result by showing that when being parameterized by r and k, the problem admits an algorithm

of running time 2O(r3/2·
√

k log k)(nm)O(1), which is subexponential in k for r ∈ o((k/ log k)1/3).

Low GF(2)-Rank Approximation: Matrix B is of GF(2)-rank at most r. This problem

is known to be NP-complete already for r = 1. It is also known to be W[1]-hard when

parameterized by k. Interestingly, when parameterized by r and k, the problem is not only

fixed-parameter tractable, but it is solvable in time 2O(r3/2·
√

k log k)(nm)O(1), which is subex-

ponential in k for r ∈ o((k/ log k)1/3).

Low Boolean-Rank Approximation: Matrix B is of Boolean rank at most r. The

problem is known to be NP-complete for k = 0 as well as for r = 1. We show that it is

solvable in subexponential in k time 2O(r2r·
√

k log k)(nm)O(1).
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1 Introduction

In this paper we consider the following generic problem. Given a binary m × n matrix, that

is a matrix with entries from domain {0, 1}, A = (aij) ∈ {0, 1}m×n, the task is to find a

“simple” binary m × n matrix B which approximates A subject to some specified constrains.

One of the most widely studied error measures is the Frobenius norm, which for a matrix A

is defined as

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij |2.

Here the sums are taken over R. Then for a given nonnegative integer k, we want to decide

whether there is a matrix B with certain properties such that ‖A − B‖2
F ≤ k.

We consider the binary matrix approximation problems when for a given integer r, the

approximation binary matrix B

(A1) has at most r pairwise-distinct columns,

(A2) is of GF(2)-rank at most r, and

(A3) is of Boolean rank at most r.

Each of these variants is very well-studied. Before defining each of the problems formally and

providing an overview of the relevant results, the following observation is in order. Since we

approximate a binary matrix by a binary matrix, in this case minimizing the Frobenius norm

of A − B is equivalent to minimizing the ℓ0-norm of A − B, where the measure ‖A‖0 is the

number of non-zero entries of matrix A. We also will be using another equivalent way of

measuring the quality of approximation of a binary matrix A by a binary matrix B by taking

the sum of the Hamming distances between their columns. Let us recall that the Hamming

distance between two vectors x, y ∈ {0, 1}m, where x = (x1, . . . , xm)⊺ and y = (y1, . . . , ym)⊺,

is dH(x, y) =
∑m

i=1 |xi − yi| or, in words, the number of positions i ∈ {1, . . . , m} where xi

and yi differ. Then for binary m × n matrix A with columns a1, . . . , an and matrix B with

columns b1, . . . , bn, we define dH(A, B) =
∑n

i=1 dH(ai, bi). In other words, dH(A, B) is the

number of positions with different entries in matrices A and B. Then we have the following.

‖A − B‖2
F = ‖A − B‖0 = dH(A, B) =

n
∑

i=1

dH(ai, bi). (1)

Problem (A1): Binary r-Means. By (1), the problem of approximating a binary m × n

matrix A by a binary m × n matrix B with at most r different columns (problem (A1)) is

equivalent to the following clustering problem. For given a set of n binary m-dimensional

vectors a1, . . . , an (which constitute the columns of matrix A) and a positive integer r,

Binary r-Means aims to partition the vectors in at most r clusters, as to minimize the

sum of within-clusters sums of Hamming distances to their binary means. More formally,

Input: An m × n matrix A with columns (a1, . . . , a
n), r ∈ N and a nonnegative integer k.

Question: Is there a positive integer r′ ≤ r, a partition {I1, . . . , Ir′ } of {1, . . . , n} and vectors

c
1, . . . , c

r′ ∈ {0, 1}m such that
∑r′

i=1

∑

j∈Ii
dH(ci, a

j) ≤ k?

Binary r-Means



F. V. Fomin, P. A. Golovach, and F. Panolan 53:3

To see the equivalence of Binary r-Means and problem (A1), it is sufficient to observe

that the pairwise different columns of an approximate matrix B such that ‖A − B‖0 ≤ k can

be used as vectors c1, . . . , cr′

, r′ ≤ r. As far as the mean vectors are selected, a partition of

columns of A can be obtained by assigning each column-vector ai to its closest mean vector

cj (ties breaking arbitrarily). Then for such clustering the total sum of distances from vectors

within cluster to their centers does not exceed k. Similarly, a solution to Binary r-Means

can be used as columns (with possible repetitions) of matrix B such that ‖A − B‖0 ≤ k. For

that we put bi = cj , where cj is the closest vector to ai.

This problem was introduced by Kleinberg, Papadimitriou, and Raghavan [37] as one of

the examples of segmentation problems. Approximation algorithms for optimization versions

of this problem were given by Alon and Sudakov [3] and Ostrovsky and Rabani [53], who

referred to it as clustering in the Hamming cube. In bioinformatics, the case when r = 2 is

known under the name Binary-Constructive-MEC (Minimum Error Correction) and

was studied as a model for the Single Individual Haplotyping problem [13].

Binary r-Means can be seen as a discrete variant of the well-known k-Means Cluster-

ing. (Since in problems (A2) and (A3) we use r for the rank of the approximation matrix, we

also use r in (A1) to denote the number of clusters which is commonly denoted by k in the

literature on means clustering.) This problem has been studied thoroughly, particularly in

the areas of computational geometry and machine learning. We refer to [1, 6, 39] for further

references to the works on k-Means Clustering.

Problem (A2): Low GF(2)-Rank Approximation. Let A be a m × n binary matrix. In

this case we view the elements of A as elements of GF(2), the Galois field of two elements.

Then the GF(2)-rank of A is the minimum r such that A = U · V, where U and V are

m × r and r × n binary matrices respectively, and arithmetic operations are over GF(2).

Equivalently, this is the minimum number of binary vectors, such that every column (row) of

A is a linear combination (over GF(2)) of these vectors. Then (A2) is the following problem.

Input: An m × n-matrix A over GF(2), r ∈ N and a nonnegative integer k.

Question: Is there a binary m × n-matrix B with GF(2)-rank ≤ r and ‖A − B‖2
F ≤ k?

Low GF(2)-Rank Approximation

Low GF(2)-Rank Approximation arises naturally in applications involving binary data

sets and serves as an important tool in dimension reduction for high-dimensional data sets

with binary attributes, see [17, 35, 31, 38, 54, 57, 62] for further references and numerous

applications of the problem.

Low GF(2)-Rank Approximation can be rephrased as a special variant (over GF(2))

of the problem finding the rigidity of a matrix. (For a target rank r, the rigidity of a matrix

A over a field F is the minimum Hamming distance between A and a matrix of rank at most

r.) Rigidity is a classical concept in Computational Complexity Theory studied due to its

connections with lower bounds for arithmetic circuits [29, 30, 58, 55]. We refer to [41] for an

extensive survey on this topic.

Low GF(2)-Rank Approximation is also a special case of a general class of problems

approximating a matrix by a matrix with a small non-negative rank. Already Non-negative

Matrix Factorization (NMF) is a nontrivial problem and it appears in many settings. In

particular, in machine learning, approximation by a non-negative low rank matrix has gained

extreme popularity after the influential article in Nature by Lee and Seung [40]. NMF is

an ubiquitous problem and besides machine learning, it has been independently introduced

ICALP 2018
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and studied in combinatorial optimization [21, 61], and communication complexity [2, 42].

An extended overview of applications of NMF in statistics, quantum mechanics, biology,

economics, and chemometrics, can be found in the work of Cohen and Rothblum [15] and

recent books [12, 51, 25].

Problem (A3): Low Boolean-Rank Approximation. Let A be a binary m×n matrix. This

time we view the elements of A as Boolean variables. The Boolean rank of A is the minimum

r such that A = U ∧ V for a Boolean m × r matrix U and a Boolean r × n matrix V, where

the product is Boolean, that is, the logical ∧ plays the role of multiplication and ∨ the role of

sum. Here 0 ∧ 0 = 0, 0 ∧ 1 = 0, 1 ∧ 1 = 1 , 0 ∨ 0 = 0, 0 ∨ 1 = 1, and 1 ∨ 1 = 1. Thus the matrix

product is over the Boolean semi-ring (0, 1, ∧, ∨). This can be equivalently expressed as the

normal matrix product with addition defined as 1+1 = 1. Binary matrices equipped with such

algebra are called Boolean matrices. Equivalently, A = (aij) ∈ {0, 1}m×n has the Boolean

rank 1 if A = x⊺ ∧y, where x = (x1, x2, . . . , xm) ∈ {0, 1}m and y = (y1, y2, . . . , yn) ∈ {0, 1}n

are nonzero vectors and the product is Boolean, that is, aij = xi ∧ yj . Then the Boolean

rank of A is the minimum integer r such that A = a(1) ∨ · · · ∨ a(r), where a(1), . . . , a(r) are

matrices of Boolean rank 1; zero matrix is the unique matrix with the Boolean rank 0. Then

Low Boolean-Rank Approximation is defined as follows.

Input: A Boolean m × n matrix A, r ∈ N and a nonnegative integer k.

Question: Is there a Boolean m × n matrix B of Boolean rank ≤ r and dH(A, B) ≤ k?

Low Boolean-Rank Approximation

For r = 1 Low Boolean-Rank Approximation coincides with Low GF(2)-Rank

Approximation but for r > 1 these are different problems.

Boolean low-rank approximation has attracted much attention, especially in the data

mining and knowledge discovery communities. In data mining, matrix decompositions are

often used to produce concise representations of data. Since much of the real data is binary

or even Boolean in nature, Boolean low-rank approximation could provide a deeper insight

into the semantics associated with the original matrix. There is a big body of work done on

Low Boolean-Rank Approximation, see e.g. [7, 9, 17, 43, 48, 49].

P-Matrix Approximation. While at first glance Low GF(2)-Rank Approximation and

Low Boolean-Rank Approximation look very similar, algorithmically the latter problem

is more challenging. The fact that GF(2) is a field allows to play with different equivalent

definitions of rank like row rank and column ranks. We exploit this strongly in our algorithm

for Low GF(2)-Rank Approximation. For Low Boolean-Rank Approximation the

matrix product is over the Boolean semi-ring and nice properties of the GF(2)-rank cannot

be used here (see, e.g. [32]). Our algorithm for Low Boolean-Rank Approximation is

based on solving an auxiliary P-Matrix Approximation problem, where the task is to

approximate a matrix A by a matrix B whose block structure is defined by a given pattern

matrix P. It appears, that P-Matrix Approximation is also an interesting problem on its

own.

More formally, let P = (pij) ∈ {0, 1}p×q be a binary p × q matrix. We say that a

binary m × n matrix B = (bij) ∈ {0, 1}m×n is a P-matrix if there is a partition {I1, . . . , Ip}
of {1, . . . , m} and a partition {J1, . . . , Jq} of {1, . . . , n} such that for every i ∈ {1, . . . , p},

j ∈ {1, . . . , q}, s ∈ Ii and t ∈ Jj , bst = pij . In words, the columns and rows of B can be

permuted such that the block structure of the resulting matrix is defined by P.
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Input: An m × n binary matrix A, a pattern binary matrix P and a nonnegative integer k.

Question: Is there an m × n P-matrix B such that ‖A − B‖2
F ≤ k?

P-Matrix Approximation

The notion of P-matrix was implicitly defined by Wulff et al. [60] as an auxiliary tool for

their approximation algorithm for the related monochromatic biclustering problem. Since

Low GF(2)-Rank Approximation remains NP-complete for r = 1 [26], we have that

P-Matrix Approximation is NP-complete already for the very simple pattern matrix

P =

(

0 0

0 1

)

.

1.1 Related work

In this subsection we give an overview of previous related algorithmic and complexity

results for problems (A1)–(A3), as well as related problems. Since each of the problems has

many practical applications, there is a tremendous amount of literature on heuristics and

implementations. In this overview we concentrate on known results about algorithms with

proven guarantee, with emphasis on parameterized complexity.

Problem (A1): Binary r-Means. Binary r-Means is trivially solvable in polynomial time

for r = 1, and as was shown by Feige in [20], is NP-complete for every r ≥ 2.

PTAS (polynomial time approximation scheme) for optimization variants of Binary

r-Means were developed in [3, 53]. Approximation algorithms for more general k-Means

Clustering is a thoroughly studied topic [1, 6, 39]. Inaba et al. [33] have shown that the

general k-Means Clustering is solvable in time nmr+1 (here n is the number of vectors,

m is the dimension and r the number of required clusters). We are not aware of any, except

the trivial brute-force, exact algorithm for Binary r-Means prior to our work.

Problem (A2): Low GF(2)-Rank Approximation. When the low-rank approximation mat-

rix B is not required to be binary, then the optimal Frobenius norm rank-r approximation of

(not necessarily binary) matrix A can be efficiently found via the singular value decomposition

(SVD). This is an extremely well-studied problem and we refer to surveys for an overview of

algorithms for low rank approximation [36, 44, 59]. However, SVD does not guarantee to

find an optimal solution in the case when additional structural constrains on the low-rank

approximation matrix B (like being non-negative or binary) are imposed.

In fact, most of these constrained variants of low-rank approximation are NP-hard. In

particular, Gillis and Vavasis [26] and Dan et al. [17] have shown that Low GF(2)-

Rank Approximation is NP-complete for every r ≥ 1. Approximation algorithms for

the optimization version of Low Boolean-Rank Approximation were considered in

[34, 35, 17, 38, 57, 10] among others.

Most of the known results about the parameterized complexity of the problem follows

from the results for Matrix Rigidity. Fomin et al. have proved in [24] that for every

finite field, and in particular GF(2), Matrix Rigidity over a finite field is W[1]-hard being

parameterized by k. This implies that Low GF(2)-Rank Approximation is W[1]-hard

when parameterized by k. However, when parameterized by k and r, the problem becomes

fixed-parameter tractable. For Low GF(2)-Rank Approximation, the algorithm from

[24] runs in time 2O(f(r)
√

k log k)(nm)O(1), where f is some function of r. While the function

f(r) is not specified in [24], the algorithm in [24] invokes enumeration of all 2r × 2r binary

matrices of rank r, and thus the running time is at least double-exponential in r.

ICALP 2018
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Meesum, Misra, and Saurabh [46], and Meesum and Saurabh [47] considered parameterized

algorithms for related problems about editing of the adjacencies of a graph (or directed

graph) targeting a graph with adjacency matrix of small rank.

Problem (A3): Low Boolean-Rank Approximation. It follows from the rank definitions

that a matrix is of Boolean rank r = 1 if and only if its GF(2)-rank is 1. Thus by the results

of Gillis and Vavasis [26] and Dan et al. [17] Low Boolean-Rank Approximation is

NP-complete already for r = 1.

While computing GF(2)-rank (or rank over any other field) of a matrix can be performed in

polynomial time, deciding whether the Boolean rank of a given matrix is at most r is already

an NP-complete problem. Thus Low Boolean-Rank Approximation is NP-complete

already for k = 0. This follows from the well-known relation between the Boolean rank and

covering edges of a bipartite graph by bicliques [28]. Let us briefly describe this equivalence.

For Boolean matrix A, let GA be the corresponding bipartite graph, i.e. the bipartite graph

whose biadjacency matrix is A. By the equivalent definition of the Boolean rank, A has

Boolean rank r if and only if it is the logical disjunction of r Boolean matrices of rank 1.

But for every bipartite graph whose biadjacency matrix is a Boolean matrix of rank at

most 1, its edges can be covered by at most one biclique (complete bipartite graph). Thus

deciding whether a matrix is of Boolean rank r is exactly the same as deciding whether

edges of a bipartite graph can be covered by at most r bicliques. The latter Biclique

Cover problem is known to be NP-complete [52]. Biclique Cover is solvable in time

22O(r)

(nm)O(1) [27] and unless Exponential Time Hypothesis (ETH) fails, it cannot be solved

in time 22o(r)

(nm)O(1) [11].

For the special case r = 1 Low Boolean-Rank Approximation and k ≤ ‖A‖0/240,

Bringmann, Kolev and Woodruff gave an exact algorithm of running time 2k/
√

‖A‖0(nm)O(1)

[10]. (Let us remind that the ℓ0-norm of a matrix is the number of its non-zero entries.)

More generally, exact algorithms for NMF were studied by Cohen and Rothblum in [15].

Arora et al. [5] and Moitra [50], who showed that for a fixed value of r, NMF is solvable in

polynomial time. Related are also the works of Razenshteyn et al. [56] on weighted low-rank

approximation, Clarkson and Woodruff [14] on robust subspace approximation, and Basu et

al. [8] on PSD factorization.

Observe that all these problems could be seen as matrix editing problems. For Binary

r-Means, we can assume that r ≤ n as otherwise we have a trivial YES-instance. Then the

problem asks whether it is possible to edit at most k entries of the input matrix, that is,

replace some 0-s by 1-s and some 1-s by 0-s, in such a way that the obtained matrix has at

most r pairwise-distinct columns. Respectively, Low GF(2)-Rank Approximation asks

whether it is possible to edit at most k entries of the input matrix to obtain a matrix of rank

at most r. In P-Matrix Approximation, we ask whether we can edit at most k elements

to obtain a P-matrix. A lot of work in graph algorithms has been done on graph editing

problems, in particular parameterized subexponential time algorithms were developed for a

number of problems, including various cluster editing problems [19, 23].

1.2 Our results and methods

We study the parameterized complexity of Binary r-Means, Low GF(2)-Rank Approx-

imation and Low Boolean-Rank Approximation. We refer to the recent books of Cygan

et al. [16] and Downey and Fellows [18] for the introduction to Parameterized Algorithms

and Complexity. Our results are summarized in Table 1.
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Table 1 Parameterized complexity of low-rank approximation. GF(2) Approx stands for Low

GF(2)-Rank Approximation and Bool Approx for Low Boolean-Rank Approximation. We

omit the polynomial factor (nm)O(1) in running times.

k r k + r

Binary r-Means 2O(k log k), Thm 1 NP-c for r ≥ 2 [20] 2O(r3/2
·

√
k log k), Thm 3

GF(2) Approx W[1]-hard [24] NP-c for r ≥ 1 [26, 17] 2O(r3/2
·

√
k log k), Thm 4

Boolean Approx NP-c for k = 0 [52] NP-c for r ≥ 1 [26, 17] 2O(r2r
·

√
k log k), Thm 2

Our first main result concerns Binary r-Means. We show (Theorem 1) that the problem

is solvable in time 2O(k log k) · (nm)O(1). Therefore, Binary r-Means is FPT parameterized

by k. Since Low GF(2)-Rank Approximation parameterized by k is W[1]-hard and Low

Boolean-Rank Approximation is NP-complete for any fixed k ≥ 0, we find Theorem 1

quite surprising. The proof of Theorem 1 is based on a fundamental result of Marx [45] about

the complexity of a problem on strings, namely Consensus Patterns. We solve Binary

r-Means by constructing a two-stage FPT Turing reduction to Consensus Patterns.

First, we use the color coding technique of Alon, Yuster, and Zwick from [4] to reduce Binary

r-Means to some special auxiliary problem and then show that this problem can be reduced

to Consensus Patterns, and this allows us to apply the algorithm of Marx [45].

Our second main result concerns Low Boolean-Rank Approximation. As we men-

tioned above, the problem is NP-complete for k = 0, as well as for r = 1, and hence is

intractable being parameterized by k or by r only. On the other hand, a simpler Low GF(2)-

Rank Approximation is not only FPT parameterized by k + r, by [24] it is solvable in time

2O(f(r)
√

k log k)(nm)O(1), where f is some function of r, and thus is subexponential in k. It is

natural to ask whether a similar complexity behavior could be expected for Low Boolean-

Rank Approximation. Our second main result, Theorem 2, shows that this is indeed the

case: Low Boolean-Rank Approximation is solvable in time 2O(r2r·
√

k log k)(nm)O(1).

The proof of this theorem is technical and consists of several steps. We first develop a

subexponential algorithm for solving auxiliary P-Matrix Approximation, and then con-

struct an FPT Turing reduction from Low Boolean-Rank Approximation to P-Matrix

Approximation.

Let us note that due to the relation of Boolean rank computation to Biclique Cover, the

result of [11] implies that unless Exponential Time Hypothesis (ETH) fails, Low Boolean-

Rank Approximation cannot be solved in time 22o(r)

f(k)(nm)O(1) for any function f .

Thus the dependence in r in our algorithm cannot be improved significantly unless ETH fails.

Interestingly, the technique developed for solving P-Matrix Approximation can be

used to obtain algorithms of running times 2O(r3/2·
√

k log k)(nm)O(1) for Binary r-Means

and Low GF(2)-Rank Approximation (Theorems 3 and 4 respectively). For Binary

r-Means, Theorems 3 provides much better running time than Theorem 1 for values of

r ∈ o((k log k)1/3).

For Low GF(2)-Rank Approximation, comparing Theorem 4 and the running time

2O(f(r)
√

k log k)(nm)O(1) from [24], let us note that Theorem 4 not only slightly improves

the exponential dependence in k by
√

log k; it also drastically improves the exponential

dependence in r, from 22r

to 2r3/2

.

Due to space restrictions, we only give high level descriptions of our algorithms. In

Section 2 we sketch the algorithm for Binary r-Means parameterized by k, and in Section 3

we explain how we construct FPT algorithms for Binary r-Means and Low GF(2)-Rank

Approximation parameterized by k and r that are subexponential in k. The full proofs

and further results can be found in [22].

ICALP 2018
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2 Binary r-Means parameterized by k

In this section we give a description of our FPT algorithm for Binary r-Means that runs in

time 2O(k log k) · (nm)O(1) (Theorem 1).

Let (A, r, k) be an instance of Binary r-Means where A is a matrix with columns

(a1, . . . , an). We say that a partition {I1, . . . , Ir′} of {1, . . . , n} for r′ ≤ r is a solution for

this instance if there are vectors c1, . . . , cr′ ∈ {0, 1}m such that
∑r′

i=1

∑

j∈Ii
dH(ci, aj) ≤ k.

We say that each Ii or, equivalently, the multiset of columns {aj | j ∈ Ii} (some columns

could be the same) is a cluster and ci the mean of the cluster. Observe that given a cluster

I ⊆ {1, . . . , n}, one can easily compute an optimal mean c = (c1, . . . , cm)⊺ as follows. Let

aj = (a1j , . . . , amj)⊺ for j ∈ {1, . . . , n}. For each i ∈ {1, . . . , m}, consider the multiset

Si = {aij | j ∈ I} and put ci = 0 or ci = 1 according to the majority of elements in Si, that

is, ci = 0 if at least half of the elements in Si are 0-s and ci = 1 otherwise. We refer to this

construction of c as the majority rule.

An initial cluster is an inclusion maximal set I ⊆ {1, . . . , n} such that all the columns in

the initial cluster are equal. The property of initial clusters we build upon is that there is

always an optimal solution that does not split any of the initial clusters. More formally, we

say that a partition {I1, . . . , Ir′} of the columns of matrix A is regular if for every initial

cluster I, there is i ∈ {1, . . . , r′} such that I ⊆ Ii. Respectively, if (A, r, k) is a yes-instance

of Binary r-Means, then there is a solution {I1, . . . , Ir′} forming a regular partition and

we call such a solution regular. In words, in a regular solution every two equal columns of

A are placed in the same cluster. Thus in a regular solution {I1, . . . , Ir′}, each cluster Ii is

either simple, that is, contains exactly one initial cluster and all its columns are equal, or Ii

is composite, that is composed of several initial clusters. One can show that there is always

an optimal solution to Binary r-Means that is regular.

Moreover, we can assume that a solution we seek for is not only regular but has stronger

property. Indeed, let {I1, . . . , Ir′} be a regular solution for instance (A, r, k). Denote

by c1, . . . , cr′

the corresponding means of the clusters. Let Ii be a composite cluster of

{I1, . . . , Ir′} that contains h ≥ 2 initial clusters. Then
∑

j∈Ii
(ci, aj) ≥ h − 1. Therefore, for

every yes-instance, a regular solution {I1, . . . , Ir′} contains at most k composite clusters; all

the remaining clusters are simple. Moreover, the total number of initial clusters used to

form the composite clusters is at most 2k. Note also that if Ii is a simple cluster then for

ci = ah for an arbitrary h ∈ Ii, we have that
∑

j∈Ii
(ci, aj) = 0, that is, simple clusters do

not contribute to the total cost of the solution.

Thus the essence of the problem is to find the way of composing initial clusters into

composite ones. More precisely, for the instance (A, r, k), let I be the family of the initial

clusters. Let s = |I|. Then finding a solution for Binary r-Means is equivalent to finding a

set I ′ ⊆ I of size at most 2k such that I ′ can be used to form at most r − s + |I ′| composite

clusters. In other words, we are looking for I ′ ⊆ I of size at most 2k such that there is a

partition {P1, . . . , Pt} of I ′ with t ≤ r − s + |I ′| (each set Pi says which initial clusters of I ′

are used to form a composite cluster) and vectors s1, . . . , st ∈ {0, 1}m with the property that

t
∑

i=1

∑

I∈Pi

∑

j∈I

dH(si, aj) ≤ k.

If s ≤ r, then (A, r, k) is a trivial yes-instance of the problem with I being a solution. If

r + k < s, then (A, r, k) is a trivial no-instance. From now on we assume that r < s ≤ r + k.

If we color uniformly at random initial clusters with 2k colors, then with a “reasonable”

probability each composite cluster is composed from initial clusters of different colors. This
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will provide us with an additional structural information, which will bring us much closer to

a solution. We use the classic color coding technique of Alon, Yuster, and Zwick from [4]

to distinguish initial clusters of I ′ from each other. At the end we obtain a deterministic

algorithm but, for simplicity, we describe a randomized Monte-Carlo algorithm here. We color

the elements of I independently and uniformly at random by 2k colors 1, . . . , 2k. Observe

that if (A, r, k) is a yes-instance, then at most 2k initial clusters in a solution that are

included in composite clusters are colored by distinct colors with the probability at least
(2k)!

(2k)2k ≥ e−2k. We say that a solution {I1, . . . , Ir′} for (A, r, k) is a colorful solution if all

initial clusters that are included in composite clusters of {I1, . . . , Ir′} are colored by distinct

colors. We construct an algorithm for finding a colorful solution (if it exists).

Let us fix some coloring of initial clusters in 2k colors. For i ∈ {1, . . . , 2k}, let Ii be the set

of initial clusters colored by color i. Note that some sets Ii could be empty. We consider all

possible partitions P = {P1, . . . , Pt} of nonempty subsets of {1, . . . , 2k} such that each set of

P contains at least two elements. Notice that if (A, r, k) has a colorful solution {I1, . . . , Ir′},

then there is P = {P1, . . . , Pt} such that a cluster Ii of the solution is formed from initial

clusters colored with colors Pj for some j ∈ {1, . . . , t}. Moreover, two different composite

clusters are colored with colors from different sets of P. We go through all possible partitions

P, and if (A, r, k) has a colorful solution, we will find the corresponding partition P. Let us

fix a partition P = {P1, . . . , Pt}. If s − |P1| − · · · − |Pt| + t > r, we discard the current choice

of P . Assume from now that this is not the case. For each i ∈ {1, . . . , t}, we do the following.

Let Pi = {i1, . . . , ip} ⊆ {1, . . . , 2k}. Then with this notation Iij
is the set of initial clusters

colored by color ij . For j ∈ {1, . . . , p}, we use J i
j =

⋃

I∈Iij
I to denote the set of indices

contained in clusters colored by ij . We also define J i = J i
1 ∪ · · · ∪ J i

p, which is the set of

indices contained in clusters colored by colors from {i1, . . . , ip}. Denote by Ai the submatrix

of A containing the columns ah with h ∈ J i. We want to solve an auxiliary problem of

finding the minimum integer di ≤ k such that there is a set of initial clusters Li
1, . . . , Li

p and

a vector si ∈ {0, 1}m such that Li
j ⊆ J i

j for i ∈ {1, . . . , p} and
∑p

i=1

∑

j∈Li
j

dH(si, aj) ≤ di.

In words, for a set of colors Pi = {i1, . . . , ip}, we want to find the best selection of initial

clusters Li
1, . . . , Li

p such that each of the clusters Li
j is colored by ij ; the best is in the sense

that the total Hamming distance di from the columns corresponding to the selected set of

clusters to their means is the minimum over all such selections.

Assume that we have an algorithm for this auxiliary problem. If such a value of di does

not exist for some i ∈ {1, . . . , t}, we discard the current choice of P. Otherwise, we find the

set of clusters Li
1, . . . , Li

p and si. Let Li = Li
1 ∪ · · · ∪ Li

p. We check whether d1 + · · · + dt ≤ k.

If it holds, we return the colorful solution with the composite clusters L1, . . . , Lt whose means

are s1, . . . , st respectively and the remaining clusters are simple. Otherwise, we discard the

choice of P. If for one of the choices of P we find a colorful solution, we return it and stop.

If we fail to find a solution for all possible P, we return the answer NO and stop. If the

described algorithm produces a solution, then because simple clusters do not contribute to

the total cost of the solution it is possible to verify that the produced solution is a colorful

solution to (A, r, k).

So everything boils down to finding the optimal value di together with the corresponding

initial clusters and their means. Let us remind that a regular partition {I1, . . . , Ip} of

{1, . . . , n} is a partition where any two indices corresponding to equal columns of A are

assigned to the same cluster Ii. We call this the auxiliary problem Cluster Selection.
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Input: An m × n-matrix A with columns a
1, . . . , a

n, a regular partition {I1, . . . , Ip} of

{1, . . . , n}, and a nonnegative integer d.

Question: Is there a set of initial clusters J1, . . . , Jp and a vector c ∈ {0, 1}m such that Ji ⊆ Ii

for i ∈ {1, . . . , p} and
∑p

i=1

∑

j∈Ji
dH(c, a

j) ≤ d?

Cluster Selection

Thus in Cluster Selection, for each cluster Ii, we have to select exactly one initial cluster

Ji contained in Ii such that the total Hamming distance of the columns of the selected

clusters to their means does not exceed d.

We prove that Cluster Selection is FPT when parameterized by d. The proof of this

result is based on a reduction to the problem about strings. More precisely, we apply the

result of Marx [45] about the Consensus Patterns problem. Recall that for two strings a

and b of the same length, the Hamming distance dH(a, b) between strings is defined as the

number of position where the strings differ.

Input: A set of p strings {s1, . . . , sp} over an alphabet Σ, a positive integer t and a

nonnegative integer d.

Question: Is there a string s of length t over Σ, and a length t substring s′
i of si for every

i ∈ {1, . . . , p} such that
∑p

i=1
dH(s, s′

i) ≤ d?

Consensus Patterns

Marx proved in [45] that Consensus Patterns can be solved in time δO(δ) · |Σ|δ · L9

where δ = d/p and L the input size, i.e., the total length of all the strings in the input. This

implies that Consensus Patterns can be solved in time 2O(d log d) · L9 if |Σ| is fixed. We

construct an FPT Turing reduction from Cluster Selection to Consensus Patterns.

The reduction is technical but the rough idea is the following. We guess the number of

elements in every cluster of the solution J1, . . . , Jp. For each guess, (ℓ1 = |J1|, . . . , ℓp = |Jp|),
we delete from Ii all initial clusters which size is not equal to ℓi. Then for each Ii, we make ℓi

equal strings. Each of theses strings consists of substrings corresponding to distinct columns

of A with indices from Ii which are separated by special splitting substrings constructed by

making use of two additional symbols. Thus in total we use alphabet Σ with 4 letters. This

way, the choice of substrings corresponds to the choice of initial clusters.

Summarizing, our algorithm for Binary r-Means consists of two FPT Turing reduc-

tions. First, we design a reduction to Cluster Selection that, in its turn, is reduced to

Consensus Patterns. This gives our first main result.

◮ Theorem 1. Binary r-Means is solvable in time 2O(k log k) · (nm)O(1).

3 Subexponential algorithms

The main result of this section is an FPT algorithm for Low Boolean-Rank Approxima-

tion parameterized by k and r that is subexponential in k. Note that Low Boolean-Rank

Approximation is more complicated than Low GF(2)-Rank Approximation. The main

reason to that is that the elements of the matrices do not form a field and thus many nice

properties of matrix-rank cannot be used here. The way we handle this issue is to solve the

P-Matrix Approximation problem.

Let A be a Boolean m×n-matrix with the Boolean rank r ≥ 1. Then A = A(1) ∨. . .∨A(r)

where A(1), . . . , A(r) are matrices of Boolean rank 1. It implies that A has at most 2r pairwise-

distinct rows and at most 2r pairwise-distinct columns. Hence, the Boolean rank of A is

at most r if and only if there is a 2r × 2r-matrix P of Boolean rank at most r such that
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A is a P-matrix. Respectively, the Low Boolean-Rank Approximation problem can

be reformulated as follows: Decide whether there is a 2r × 2r-pattern matrix P with the

Boolean rank at most r and an m × n P-matrix B such that ‖A − B‖2
F ≤ k. We generate

all 2r × 2r-matrices P of Boolean rank at most r, and then for each matrix P, we solve

P-Matrix Approximation for the instance (A, P, k). We return YES if we obtain at least

one yes-instance of P-Matrix Approximation, and we return NO otherwise. Thus, using

the algorithm for P-Matrix Approximation from Theorem 5 (See later in this section),

we obtain the following theorem.

◮ Theorem 2. Low Boolean-Rank Approximation is solvable in 2O(r2r
√

k log k)·(nm)O(1)

time.

Now we sketch the main ideas behind our algorithm for P-Matrix Approximation. In

fact, we exploit the same ideas to construct subexponential in k time algorithms for Binary

r-Means and Low GF(2)-Rank Approximation, and these algorithms are great deal less

technical. Hence, we concentrate here on these problems.

Let (A, r, k) be an instance of Binary r-Means where A is a matrix with columns

(a1, . . . , an). Recall that given a solution {I1, . . . , Ir′}, one can compute the corresponding

means c1, . . . , cr′ ∈ {0, 1}m using the majority rule. Note that in the opposite direction,

given a set of means c1, . . . , cr′

, we can construct clusters {I1, . . . , Ir′} as follows: for each

column aj , find the closest ci, i ∈ {1, . . . , r′}, that is such that dH(ci, aj) is minimum and

assign j to Ii. Note that this procedure does not guarantee that all clusters are nonempty

but we can simply delete empty clusters. Hence, we can define a solution as a set of means

C = {c1, . . . , cr′}.

It can be observed that we can restrict ourself by considering only solutions of special

type. Let a1, . . . , am be the rows of A. We say that a vector c = (c1, . . . , cm)⊺ ∈ {0, 1}m

agrees with A if ci = cj whenever ai = aj for i, j ∈ {1, . . . , m}. If (A, r, k) is a yes-instance

of Binary r-Means, then it can be shown that (A, r, k) has a solution such that for each

cluster of the solution its mean agrees with A. Also it could be seen that if (A, r, k) is a

yes-instance of Binary r-Means, then A has at most r + k pairwise-distinct columns and

at most 2r + k pairwise-distinct rows. These observations allow us to construct a recursive

branching algorithm for Binary r-Means.

First, we preprocess the instance (A, r, k): if A has at least r + k + 1 pairwise-distinct

columns or at least 2r + k + 1 distinct rows, we return the answer NO and stop. Now on we

assume that this is not the case.

Assume that we are given a partial clustering of some columns of A represented by a

family of means {c1, . . . , cs}, a budget d and the set I of remaining columns of A which

have to be clustered. The algorithm tries to extend the partial solution by not exceeding

the budget d ≤ k. Some of the columns from I can go to the existing cluster and some

can form new clusters. Suppose that we know the minimum Hamming distance h ≤ d

from vectors in new clusters to their means (in the algorithm we consider all possible

values of h). Then all vectors which are within distance less than h to the already existing

means, can be assigned to the existing clusters. Then we will be basically left with two

options. Either the number of columns to be assigned to new clusters does not exceed
√

d log(2r + d) ≤
√

k log(2r + k); in this case we brute-force in all possible partitions of

I. Or we can upper bound h ≤
√

d/ log(2r + d) ≤
√

k/ log(2r + k). In the latter case we

branch on all possible vectors that agree with A and are at distance at most h from one of

the at most r + k columns of I. Due to the fact that the number of distinct rows of A is

at most 2r + k, the number of branches for each column of I is at most (2r + k)h. In each
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branch of our algorithm, we add a new mean to the partial solution and call our algorithm

recursively. Note that the depth of the recursion is upper bounded by r.

This way we obtain the following theorem.

◮ Theorem 3. Binary r-Means is solvable in time 2O(r
√

k log(2r+k)) · (nm)O(1).

The general idea of the subexponential time algorithm for Low GF(2)-Rank Approx-

imation is similar but the algorithm is more complicated. Let (A, r, k) be an instance of

Low GF(2)-Rank Approximation where a1, . . . , an are the columns of A. We observe

that (A, r, k) is a yes-instance if and only if there is a positive integer r′ ≤ r and linearly

independent vectors c1, . . . , cr′ ∈ {0, 1}m over GF(2) such that

n
∑

i=1

min{dH(s, ai) | s =
⊕

j∈I

cj , I ⊆ {1, . . . , r′}} ≤ k;

we use “
⊕

” to denote the summation over GF(2). Respectively, we construct the recursive

branching algorithm for Low GF(2)-Rank Approximation that tries to extend a partial

solution represented by a family of linearly independent vectors. We use the properties that if

(A, r, k) is a yes-instance, then the number of pairwise distinct columns and rows is at most

2r + k and we can select new vectors that agree with A. We obtain the following theorem.

◮ Theorem 4. Low GF(2)-Rank Approximation is solvable in time 2O(r
√

k log(2r+k)) ·
(nm)O(1).

For P-Matrix Approximation, we use the same approach based on the combination of

branching and local search but because we have to follow the structure of the pattern matrix

P , the algorithm becomes technical. We get the following running time for the problem.

◮ Theorem 5. P-Matrix Approximation is solvable in time

2O((p+q)
√

k log(p+k)+p log p+q log q+q log(q+k)) · (nm)O(1).

Note that the running time in Theorem 5 is asymmetric in p and q due to the fact that we

treat rows and columns in different way but, trivially, the instances (A, P, k) and (A⊺, P⊺, k)

of P-Matrix Approximation are equivalent.

4 Conclusion and open problems

In this paper we provide a number of parameterized algorithms for a number of binary

matrix-approximation problems. Our results uncover some parts of the complexity landscape

of these fascinating problems. We hope that our work will facilitate further investigation of

this important and exciting area. We conclude with the following concrete open problems

about bivariate complexity of Binary r-Means, Low GF(2)-Rank Approximation, and

Low Boolean-Rank Approximation.

For Binary r-Means we have shown that the problem is solvable in time 2O(k log k) ·
(nm)O(1). A natural question is whether this running time is optimal. While the lower bound

of the kind 2o(k) · (nm)O(1) or 2o(k log k) · (nm)O(1) seems to be most plausible here, we do

not know any strong argument against, say a 2o(k) · (nm)O(1)-time algorithm. At least for

the number of distinct columns r ∈ o((k/ log k)1/3) we have a subexponential in k algorithm,

so maybe we can solve the problem in time subexponential in k for any value of r?

For Low GF(2)-Rank Approximation we have an algorithm solving the problem in

time 2O(r3/2·
√

k log k)(nm)O(1). Here, shaving off the
√

log k factor in the exponent seems to
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be a reasonable thing. However, we do not know how to do it even at the cost of a worse

dependence in r. In other words, could the problem be solvable in time 2O(f(r)·
√

k)(nm)O(1)

for some function f? On the other hand, we also do not know how to rule out algorithms

running in time 2o(r)·o(k)(nm)O(1).

For Low Boolean-Rank Approximation, how far is our upper bound

2O(r2r·
√

k log k)(nm)O(1) from the optimal? For example, we know that for any function

f , the solvability of the problem in time 22o(r)

f(k)(nm)O(1) implies the failure of ETH. Could

we rule out any 2o(
√

k)f(r)(nm)O(1) algorithm?
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