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Abstract

The classic K-Cycle problem asks if a graph G, with vertex set V (G), has a simple cycle

containing all vertices of a given set K ™ V (G). In terms of colored graphs, it can be rephrased

as follows: Given a graph G, a set K ™ V (G) and an injective coloring c : K æ {1, 2, . . . , |K|},

decide if G has a simple cycle containing each color in {1, 2, . . . , |K|} (once). Another problem

widely known since the introduction of color coding is Colorful Cycle. Given a graph G and

a coloring c : V (G) æ {1, 2, . . . , k} for some k œ N, it asks if G has a simple cycle of length k

containing each color in {1, 2, . . . , k} (once). We study a generalization of these problems: Given

a graph G, a set K ™ V (G), a list-coloring L : K æ 2{1,2,...,kú} for some kú œ N and a parameter

k œ N, List K-Cycle asks if one can assign a color to each vertex in K so that G would have

a simple cycle (of arbitrary length) containing exactly k vertices from K with distinct colors.

We design a randomized algorithm for List K-Cycle running in time 2knO(1) on an n-vertex

graph, matching the best known running times of algorithms for both K-Cycle and Colorful

Cycle. Moreover, unless the Set Cover Conjecture is false, our algorithm is essentially optimal.

We also study a variant of List K-Cycle that generalizes the classic Hamiltonicity problem,

where one specifies the size of a solution. Our results integrate three related algebraic approaches,

introduced by Björklund, Husfeldt and Taslaman (SODA’12), Björklund, Kaski and Kowalik

(STACS’13), and Björklund (FOCS’10).
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1 Introduction

For a graph G, let V (G) and E(G) denote its vertex set and edge set respectively. The input

for the classic K-Cycle problem consists of an undirected graph G and a subset K ™ V (G)

of size k for some k œ N, and the objective is to decide whether G has a K-cycle, that is, a

simple cycle that contains all of the vertices in K. In terms of (partially) colored graphs,

it can be rephrased as follows. Given an undirected graph G, a set of vertices K ™ V (G)

of size k for some k œ N and an injective coloring c : K æ {1, 2, . . . , k}, it asks whether G

has a simple cycle that contains each color in {1, 2, . . . , k} (once). Another problem widely

known since the introduction of the color coding method [1] is Colorful Cycle. Given an
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undirected graph G and a coloring c : V æ {1, 2, . . . , k} for some k œ N, decide whether G

has a simple cycle of length k that contains each color in {1, 2, . . . , k} (once).

We study the parameterized complexity of a generalization of both K-Cycle and

Colorful Cycle, called List K-Cycle. In List K-Cycle, the input consists of an

undirected graph G, a set of vertices K ™ V (G), a list-coloring L : K æ 2{1,2,...,kú} for

some kú œ N and a parameter k œ N. We need to decide whether one can find a function

c : K æ {1, . . . , kú} so that c(v) œ L(v) for all v œ V (G) and G would have a simple cycle

containing exactly k vertices from K and these vertices have distinct colors. In case k = kú, it

is simply requested that the cycle contains each color in {1, 2, . . . , k} (once). If |K| = k = kú

and for all v œ K, |L(v)| = 1, we obtain K-Cycle, while if K = V , k = kú and for all v œ K,

|L(v)| = 1, we obtain Colorful Cycle. We also consider a variant of List K-Cycle,

called Exact List K-Cycle. Given an undirected graph G, a set of vertices K ™ V (G), a

list-coloring L : K æ 2{1,2,...,kú} for some kú œ N and parameters k, ¸ œ N, it asks whether

one can assign a color to each vertex in K so that G would have a simple cycle of length ¸

containing exactly k vertices from K and these vertices have distinct colors. Exact List

K-Cycle generalizes the classic ¸-Path and Hamiltonicity problems.

We study the problem List K-Cycle in the realm of parameterized complexity. In

parameterized complexity algorithms are measured in terms of input length and a parameter,

which is expected to be small. More precisely, a problem is fixed-parameter tractable (FPT)

with respect to a parameter k if an instance of size n can be solved in time Oú(f(k)) =

O(f(k) · poly(n)) for some function f . For more details we refer to monographs [14, 11]

Related Work. As noted by Björklund et al. [4], the K-Cycle problem has been a central

topic of graph theory since the 1960’s (see [20] for some references). The special cases

where k = 1 and k = 2 can be solved by breadth-first search and finding a flow of size 2

between two vertices, respectively. The special case where k = 3 has also long been known

to be solvable in linear time [15, 24]. By the work of Robertson and Seymour on Disjoint

Paths [28], for any constant k, K-Cycle is solvable in polynomial time. Kawarabayashi [20]

showed that K-Cycle is solvable in polynomial time also when k = O((log log n)1/10), where

n = |V (G)|. The best known randomized algorithm for K-Cycle was given by Björklund

et al. [4], and runs in time Oú(2k). Recently, Wahlström [31] gave an alternative algorithm

that solves K-Cycle in time Oú(2k) and showed that the problem admits a polynomial

compression. We note that for directed graphs, K-Cycle is NP-hard already when k = 2

[18], and that other variants of K-Cycle have also been considered in the literature. For

example, Kawarabayashi et al. [21] gave an algorithm for detecting a K-cycle whose length

has a given parity, and Kobayashi et al. [33] gave an algorithm for detecting an induced

K-cycle in a planar graph.

The Colorful Cycle problem was introduced in the breakthrough work on color coding

by Alon et al. [1]. In that paper, the authors proposed an Oú(2k)-time deterministic algorithm

for Colorful Cycle. Although the problem became widely known, faster algorithms have

not been obtained. Recently, Kowalik et al. [23] explained the source of difficulty: they

showed that unless the Set Cover Conjecture [10] is false, there does not exist a constant ‘ > 0

such that Colorful Cycle can be solved in time Oú((2 ≠ ‘)k). The conjecture states that

there does not exist a constant ‘ > 0 such that Set Cover can be solved in time Oú((2≠‘)n),

where n is the size of the universe. Finally, we note that the ¸-Path problem has been

extensively studied in the field of parameterized complexity, and there has been a race towards

obtaining the fastest algorithm that solves it [25, 8, 1, 13, 19, 9, 22, 32, 2, 3, 17, 16, 30, 35].

Currently, the fastest algorithm (randomized) for ¸-Path runs in time Oú(1.66¸) [2, 3].
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Our Contribution. Our main result is a randomized algorithm solving List K-Cycle in

time Oú(2k), matching the best known running time in which one can solve K-Cycle [4]

as well as Colorful Cycle [1]. We note that our algorithm can also be used to find

a shortest cycle among solutions. Moreover, since List K-Cycle generalizes Colorful

Cycle, we conclude that unless the Set Cover Conjecture is false, our algorithm is essentially

optimal. To complement our main result, we also show that Exact List K-Cycle is

solvable in time Oú(2k1.66¸≠k). Our results integrate three related algebraic approaches:

the “unlabel inessential elements” used to solve K-Cycle [4], the “double-labeling” used to

solve a problem called Graph Motif [6], and the “partitioned single-labeling” used to solve

¸-Path and Hamiltonicity [2, 3]. More precisely, our main result integrates the first two

approaches, while our Exact List K-Cycle algorithm integrates the latter two.

We remark that the algebraic technique developed in [2, 3] became a standard tool to

develop parameterized algorithms (see, e.g., [11, 5, 27, 26]), yet the other two techniques

not well known. To the best of our knowledge, the specific technique of [4] has no known

additional applications, and the only additional applications of [6] are given in [7, 34].

2 Preliminaries

For q œ N, let [q] = {1, 2, . . . , q} and [q]0 = {0, 1, . . . , q}. For a function g : A æ [q]0, let

count(g) = |{a œ A : g(a) ”= 0}|. For (i, j), (iÕ, jÕ) œ N ◊ N, we say that (i, j) is smaller

than (iÕ, jÕ), if either (a) i < iÕ or (b) i = iÕ and j < jÕ. A fixed-point-free involution is a

permutation that is its own inverse and has no fixed points. For a function f : A æ B and

S ™ A, let f |S : S æ B be the function such that for all s œ S, f |S(s) = f(s).

For a graph G, let V (G) and E(G) denote its vertex-set and edge-set, respectively. For

v œ V (G), let N(v) denote its neighbor-set. A walk in a graph G is a sequence of vertices

v1 . . . v¸ such that {vi, vi+1} œ E(G) for all i œ [¸ ≠ 1]. For a graph G and e œ E(G), we use

G ≠ e to denote the graph with vertex set V (G) and edge set E(G) \ {e}. For a graph G and

V Õ ™ V (G), we use E(V Õ) to denote the set {{u, v} œ E(G) | u, v œ V Õ}. For a walk W , we

use V (W ) and E(W ) to denote the set of vertices and edges, respectively, contained in W .

3 An Algorithm for List K-Cycle

In this section we show that albeit the “list” requirement, the time in which one can solve

List K-Cycle matches the best known time in which one can solve both K-Cycle and

Colorful Cycle . That is, we develop an algorithm solving List K-Cycle in time Oú(2k).

Our algorithm is based on the algebraic technique which underlies the algorithm for

K-Cycle by Björklund et al. [4], where one associates a polynomial over a finite field with

the structure that should be found. Yet, there are essential differences between our algorithm

and the one in [4]. To cancel potential solutions that “visit” vertices in V (G) \ K more

than once, Björklund et al. [4] rely on a pairing argument whose correctness is based on the

requirement that computations are performed over a field of characteristic 2 – our algorithm

also relies on this pairing argument. However, to ensure that each vertex in K is encountered

exactly once while attempting to construct a solution, Björklund et al. [4] explicitly store the

set of vertices from K that have been encountered so far. This approach cannot be taken by

our algorithm, since while constructing a solution, we would have stored each vertex in K

that has been encountered so far as well as its color. This could lead to an algorithm with

running time Oú(
!

|K|
k

"!

kú

k

"

). This solution does not even show that List K-Cycle is FPT

when parameterized by k (since |K| and kú could be significantly larger than k).

FSTTCS 2016
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An Oú(4k)-time algorithm for List K-Cycle can be obtained as follows. We mark each

color once it is visited to ensure that it is not visited again via the labeling-based approach

of Björklund et al. [2, 3] (since kú can be significantly larger than k) at the cost of a factor

of Oú(2k) in the running time. Here, we also use this labeling-based approach on top of the

algorithm for K-Cycle by Björklund et al. [4] to ensure that the vertices that marked colors

are not visited more than once (at the cost of a factor of Oú(2k) in the running time). The

remaining vertices in V (G) are treated in the same manner as the algorithm for K-Cycle

by Björklund et al. [4] does (at the cost of a polynomial factor). However, this is still not

sufficient, since our purpose is to match the best known running times in which one can solve

K-Cycle and Colorful Cycle. By using the double-labeling-based approach introduced

by Björklund et al. [6] to solve the Graph Motif problem, we are able to circumvent the

need to keep track of colors and vertices that mark these colors separately.

Initialization. Instead of solving List K-Cycle, we will solve the following problem: Given

an n-vertex undirected graph G, a subset K ™ V (G), a list-coloring L : K æ 2{1,2,...,kú} for

some kú œ N, a parameter k œ N and two vertices s, t œ V (G), List K-Path asks whether

one can assign a color to each vertex in K so that G would have a simple path between s

and t containing exactly k vertices from K and these vertices have distinct colors.

To solve List K-Cycle in time Oú(2k), it is sufficient to show that one can solve List

K-Path in time Oú(2k). Indeed, an instance (G, K, L, kú, k) is a Yes-instance of List

K-Cycle if and only if there is an edge e = {s, t} œ E(G) such that (G ≠ e, K, L, kú, k, s, t)

is a Yes-instance of List K-Path.

Structures. We define some notations which are essential for our algorithm. Let the input

instance of List K-Path be (G, K, L, kú, k, s, t). For q œ [n] \ {1} and u, v œ V (G), a

function f : [q] æ V (G) is called a (q, u, v)-function if f satisfies the following properties:

(i) f(1) = s, f(q ≠ 1) = u and f(q) = v, (ii) for all i œ [q ≠ 1], {f(i), f(i + 1)} œ E(G), and

(iii) for all i œ [q ≠ 2] such that f(i) = f(i + 2) it holds that f(i + 1) /œ K. Observe that

the function f defines a walk in G, and that if f is injective, it defines a simple path in

G. We will use (q, u, v)-functions to construct a simple path that is a solution. We need

to consider walks rather than simple paths as during the construction, we do not want

to keep information regarding vertices that have already been visited – later we will use

pairing arguments (in Lemma 6) to cancel such incorrect constructions. To make the pairing

argument work, we will need property (iii) of f , which is also the reason why we explicitly

mention u, one vertex before the last vertex we have visited, in the definition of f .

In addition to f , to know whether we are constructing a solution, we need to know which

colors in [kú] have been visited. For this purpose, we need the following term. For kÕ œ [k]0,

a (q, u, v, kÕ)-structure is a pair (f, g) such that (a) f is a (q, u, v)-function, (b) g : [q] æ [kú]0
is a function such that count(g) = kÕ, and (c) for every i œ [q], if f(i) œ K then g(i) œ L(f(i))

and otherwise g(i) = 0. In other words, for each occurrence of a vertex in K which we have

visited, g specifies a color, and overall, it specifies exactly kÕ occurrences of colors. To simplify

the presentation, given a (q, u, v, kÕ)-structure (f, g), we define col(g) = {i œ [q] : g(i) ”= 0}.

That is, col(g) is the set of indices associated with vertices in K (which receive colors). When

v = t and kÕ = k, for any u œ V (G), a (q, u, v, kÕ)-structure is also called a q-structure.

I Definition 1. A q-structure (f, g) is called good q-structure if (i) f is injective, and (ii) for

all i, j œ col(g), g(i) ”= g(j) (i.e, g|col(g) is injective).

I Observation 2. The input instance of List K-Path is a Yes-instance if and only if there

exists a good q-structure.
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Labels. We are now going to assign labels to some of the occurrences of vertices of a

(q, u, v, kÕ)-structure. Later we will use these labels to ensure that potential structures that

are not good get cancelled when computations are performed over a field of characteristic 2.

More precisely, we will swap distinct labels assigned to occurrences of vertices that obtained

the same color, an ability that will be used by one of our pairing arguments (see Lemma 6).

We use labels for each position in a walk which corresponds to a vertex from K. For a

(q, u, v, kÕ)-structure (f, g) and h : col(g) æ [k], we say that a triple (f, g, h) is a (q, u, v, kÕ)-

labeling. When (f, g) is a q-structure or a good q-structure, we say that (f, g, h) is a q-labeling

or good q-labeling, respectively. Finally, if h is bijective, we say that the entire triple (f, g, h)

is bijective. We give special consideration to bijective functions h since such functions ensure

that all good q-labelings survive and all the q-labelings which are not good cancel each other

in the polynomial we construct later.

Next, we define two sets of q-labelings. First, we let Bq
1 denote the set of all bijective

q-labelings. Now, we let Bq
2 ™ Bq

1 denotes the set of all bijective good q-labelings. Given a

good q-structure (f, g), we can arbitrarily order the elements in col(g), and let h assign to

each element in col(g) its location in this order. This results in a bijection h, and overall, in

a bijective q-labeling (f, g, h). Thus, by Observation 2, we get the following observation.

I Observation 3. The input instance of List K-Path is a Yes-instance if and only if there

exists q œ [n] \ {1} such that Bq
2 ”= ÿ.

Monomials. We will now associate a monomial with each (q, u, v, kÕ)-labeling. Towards

this, we introduce the following variables. First, for each e œ E(G), we introduce a variable

xe. Now, for each v œ K and color a œ L(v), we introduce a variable yv,a. Finally, for each

color a œ [kú] and label i œ [k], we introduce a variable za,i. Let N be the total number of

variables created. Notice that N = nO(1). We are now ready to define monomial for each

(q, u, v, kÕ)-labeling.

I Definition 4. For a (q, u, v, kÕ)-labeling (f, g, h), the monomial of (f, g, h), denoted by

m(f, g, h), is defined as follows.

m(f, g, h) =

Q

a

Ÿ

iœ[q≠1]

x{f(i),f(i+1)}

R

b ·

Q

a

Ÿ

iœcol(g)

yf(i),g(i) · zg(i),h(i)

R

b.

On the one hand, observe that if (f, g, h) is a bijective good q-labeling, then it can be

uniquely recovered from its monomial. That is, we have the following observation.

I Observation 5. For any q œ [n] \ {1} and (f, g, h) œ Bq
2 , there does not exist (f Õ, gÕ, hÕ) œ

Bq
1 \ {(f, g, h)} such that m(f, g, h) = m(f Õ, gÕ, hÕ).

When the input instance (G, K, L, kú, k, s, t) is a No-instance of List K-Path , then we

can get a fixed-point free involution on Bq
1 with some properties:

I Lemma 6. Let (G, K, L, kú, k, s, t) be a No-instance of List K-Path and Bq
1 is the set

of all bijective q-labeling for any q œ [n] \ {1}. Then there exists a fixed-point-free involution

„ : Bq
1 æ Bq

1 such that for all (f, g, h) œ Bq
1 , m(f, g, h) = m(„(f, g, h)).

Proof. Since (G, K, L, kú, k, s, t) is a No-instance, by Observation 3, we have that Bq
2 = ÿ.

Let (f, g, h) œ Bq
1 . We choose a pair (i, j) œ [q] ◊ [q] and by carefully modifying f, g and h

between i and j we get a q-labeling that can be mapped to (f, g, h) by „. We will consider

several cases and in each case, we assume that the conditions of the previous cases are

FSTTCS 2016
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false, define „(f, g, h), and prove that „(f, g, h) ”= (f, g, h), m(f, g, h) = m(„(f, g, h)) and

„(„(f, g, h)) = (f, g, h). Since (f, g, h) /œ Bq
2 , we know that either (a) there exist i, j œ col(g),

i < j, such that g(i) = g(j) or (b) there exist i, j œ [q], i < j such that f(i) = f(j).

Case 1: There exist i, j ∈ col(g), i < j, such that g(i) = g(j). Among all such pairs,

that we call bad pairs of type 1, let (i, j) be the smallest one. We define (f Õ, gÕ, hÕ) = „(f, g, h)

as follows. First, we simply let f Õ = f and gÕ = g. Now, we let hÕ(i) = h(j) and hÕ(j) = h(i),

and for all r œ col(g) \ {i, j}, we let hÕ(r) = h(r). Since (f Õ, gÕ) = (f, g) is a q-structure and

hÕ is bijective, we have that (f, g, hÕ) œ Bq
1 . Since h is bijective, we have that hÕ ”= h, and

therefore „(f, g, h) ”= (f, g, h). Moreover, zg(i),h(i) = zgÕ(j),hÕ(j) and zg(j),h(j) = zgÕ(i),hÕ(i),

and therefore m(f, g, h) = m(„(f, g, h)). Finally, because (f, g) = (f Õ, gÕ), the sets of bad

pairs of type 1 of (f, g, h) and (f Õ, gÕ, hÕ) are same. Also, by swapping the values assigned to

i and j in hÕ, we obtain h, and so we have that „(„(f, g, h)) = (f, g, h).

Case 2: There exist two indices i, j ∈ col(g), i < j, such that f(i) = f(j). Among

all such pairs, that we call bad pairs of type 2, let (i, j) be the smallest one. Since i œ col(g),

f(i) œ K. We define (f Õ, gÕ, hÕ) = „(f, g, h) as follows. First, we simply let f Õ = f . Now, we

let gÕ(i) = g(j) and gÕ(j) = g(i), and for all r œ [q] \ {i, j}, we let gÕ(r) = g(r). Finally, we

let hÕ(i) = h(j), hÕ(j) = h(i), and for all r œ col(g) \ {i, j}, we let hÕ(r) = h(r). Again, it is

clear that „(f, g, h) œ Bq
1 . Because Case 1 is false, we have that g(i) ”= g(j), and therefore

„(f, g, h) ”= (f, g, h). Moreover, since f(i) = f(j), it holds that yf(i),g(i) = yf Õ(j),gÕ(j) and

yf(j),g(j) = yf Õ(i),gÕ(i), and it also holds that zg(i),h(i) = zgÕ(j),hÕ(j) and zg(j),h(j) = zgÕ(i),hÕ(i).

Therefore, m(f, g, h) = m(„(f, g, h)). By our definition of gÕ, we have that there are no bad

pairs of type 1. Moreover, our definitions of f Õ and gÕ ensures that the sets of bad pairs of

type 2 of (f, g, h) and (f Õ, gÕ, hÕ) are the same. Also, by swapping the values assigned to i and

j by gÕ as well as hÕ, we get g and h respectively, and so we have that „(„(f, g, h)) = (f, g, h).

Case 3: Cases 1 and 2 are false. Let I = [q]. If there exists a pair (iÕ, jÕ) œ I ◊ I, iÕ < jÕ,

such that f(iÕ) = f(jÕ), then we choose such a pair with the following inductive priorities

in the order: (1) iÕ is minimized and (2) jÕ is maximized. If f(iÕ)f(iÕ + 1) . . . f(jÕ) is not

a palindrome, then we set (i, j) = (iÕ, jÕ). Otherwise, we set I := I \ [jÕ] and continue the

process of choosing a pair as above from I ◊ I. Observe that since Cases 1 and 2 are false

and yet the input instance is a No-instance, at least one pair (iÕ, jÕ) will be chosen.

First we show that we succeed in finding a pair (i, j). Towards this we first show that

for any pair (iÕ, jÕ) considered by the above process but not considered as the pair (i, j),

we have that f(iÕ), f(iÕ + 1), . . . , f(jÕ) /œ K. Suppose there is a vertex w œ K appearing in

the sequence f(iÕ)f(iÕ + 1) . . . f(jÕ). We know that f(iÕ)f(iÕ + 1) . . . f(jÕ) is a palindrome

and Case 2 is not applicable. This implies that w appears only once and it is in the middle

of the palindrome f(iÕ)f(iÕ + 1) . . . f(jÕ). But then this will contradict property (iii) of the

(q, u, t)-function f (since (f, g) is a q-structure, f is a (q, u, t)-function for some u œ V (G)).

Let (i1, j1), . . . , (i¸, j¸) be the pairs considered in the above process in the given order.

Suppose (i¸, j¸) ”= (i, j) (that is, the process terminated before we set (i, j)). Then, f |I is

injective, where I = [q] \ (
t

rœ[¸]{ir, ir + 1, . . . , jr}). Also we know that for i, j œ col(g), i < j,

g(i) ”= g(j), because Case 1 is not applicable. Then this implies that (f |I , g) is a good

qÕ-structure for some qÕ < q, which is a contradiction because (G, K, L, kú, k, s, t) is a No-

instance. Thus we have shown that the above process succeeds in finding (i, j) such that

f(i) · · · f(j) is not a palindrome.

We define (f Õ, gÕ, hÕ) = „(f, g, h) as follows. For every index r œ [q] such that r < i or

r > j, we let f Õ(r) = f(r), gÕ(r) = g(r) and hÕ(r) = h(r). Next, we are going to redirect the
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subwalk from i to j to be from j to i, adjusting the values assigned by f, g and h accordingly.

Formally, for each index i Æ r Æ i+ Â(j ≠ i)/2Ê, define s(r) = j ≠ (r ≠ i) and s(j ≠ (r ≠ i)) = r.

Now, for each index i Æ r Æ j, let f Õ(r) = f(s(r)), gÕ(r) = g(s(r)) and hÕ(t) = h(s(t)).

Because f(i)f(i+1) · · · f(j) is not a palindrome, we have that „(f, g, h) ”= (f, g, h). Notice

that f and f Õ corresponds to two walks in the graph G. Observe that because f(i) = f(j),

redirecting the subwalk between i and j does not change the edges which the walk contains

(only the order in which we visit them changes), and since upon changing the location of an

occurrence of a vertex, we update all of the three functions f, g and h accordingly, we have

that m(f, g, h) = m(„(f, g, h)). We show that f Õ is a (q, uÕ, t)-function for some uÕ. Properties

(i) and (ii) of (q, uÕ, t)-function trivially hold. The only occurrences of vertices whose adjacent

occurrences of vertices might change are f Õ(i) and f Õ(j), and because f Õ(i) /œ K (since Case

2 not applicable), it is still true that for all r œ [q ≠ 2] such that f Õ(r) = f Õ(r + 2) it holds

that f Õ(r + 1) /œ K. Hence (f Õ, gÕ, hÕ) = „(f, g, h) œ Bq
1 .

Finally we prove that „(f Õ, gÕ, hÕ) = (f, g, h). Notice that for (f Õ, gÕ, hÕ), Cases 1 and 2

are not applicable. Looking at (f Õ, gÕ, hÕ) and applying the process above in Case 3 will

result in the same pair (i, j), since the updates that are performed with respect to I only

concern indices before i (which were not change), and the only occurrences of vertices whose

location has changed lie between i and j, and therefore they do not affect the minimality

of i and maximality of j relevant to the choice of (i, j). Thus, since by redirecting the

subwalk between i and j yet again we obtain the original walk, and hence we conclude that

„(„(f, g, h)) = (f, g, h). J

Now, for all q œ [n], we define a polynomial that is evaluated over the finite field Fp,

where p = 2Álog(3(n+2k))Ë.

I Definition 7. P q =
ÿ

(f,g,h)œBq

1

m(f, g, h).

I Lemma 8. (G, K, L, kú, k, s, t) is a Yes-instance of List K-Path if and only if there is

q œ [n] \ {1} such that P q is not identically 0.

Proof. Suppose (G, K, L, kú, k, s, t) is a Yes-instance and n = |V (G)|. Then Observation 3,

there is a q œ [n] \ {1} such that Bq
2 ”= ÿ. Then by Observation 5 P q contains a unique

monomial corresponding to (f, g, h) where (f, g, h) œ Bq
2 . This implies that P q ”© 0.

Suppose (G, K, L, kú, k, s, t) is a No-instance, then by Lemma 6 and the fact that Fp has

characteristic 2, we can conclude that for all q œ [n] \ {1}, P q © 0. J

Thus, it remains to determine whether at least one polynomial P q is not identically 0.

Evaluation. Given I ™ [k], a (q, u, v, kÕ, I)-labeling (f, g, h) is a (q, u, v, kÕ)-labeling whose

set of assigned labels belongs to I (i.e., the image of h is a subset of I). Now, we define

polynomials whose evaluations, which will be done below, can be considered as “intermediate”

steps towards evaluating P q. To this end, we let S(q, u, v, kÕ, I) denote the set of all

(q, u, v, kÕ, I)-labelings.

I Definition 9. P q(u, v, kÕ, I) =
ÿ

(f,g,h)œS(q,u,v,kÕ,I)

m(f, g, h).

By the inclusion-exclusion principle and because Fp, the field over which we evaluate

polynomials, has characteristic 2, we have the following observation.

I Observation 10. P q =
ÿ

I™[k]

ÿ

uúœN(t)

P q(uú, t, k, I).
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It is easier to compute polynomials of the form P q(uú, t, k, I) rather than the polynomial

P q since then we do not need to ensure that labels are not repeated, but only need to

ensure that certain labels are not used at all. We next show that a polynomial of the form

P q(uú, t, k, I) can be computed in polynomial time by using a procedure based on dynamic

programming.

I Lemma 11 (ı1). Let I ™ [k], uú œ N(t) and let {x1, . . . , xN } be the set of variables in

P q(uú, t, k, I). Let a1, a2, . . . , aN œ Fp denote the chosen values for the N variables. Then,

the polynomial P q(uú, t, k, I) can be evaluated at (a1, a2, . . . , aN ) in time NO(1).

Combining Observation 10 with Lemma 11, and since there are 2k subsets I of [k], we

have, the following result.

I Lemma 12. Given an assignment of values from Fp to the variables of P q, the polynomial

P q can be evaluated in time 2kNO(1) and in space NO(1).

The Algorithm. To calculate the number of evaluations we should perform, we rely on the

following well-known result, proved in [12, 29, 36].

I Lemma 13. Let p(x1, x2, . . . , xm) be a nonzero polynomial of n variables and total degree

at most d over the finite field F. Then, for a1, a2, . . . , an œ F selected independently and

uniformly at random: Pr(p(a1, a2, . . . , an) ”= 0) Ø 1 ≠ d/|F|.

We are now ready to conclude this section with our main result.

I Theorem 14. There is a polynomial space randomized algorithm for List K-Cycle

running in time Oú(2k) with one sided constant error probability.

Proof. As explained earlier, we actually solve List K-Path. Our algorithm is defined as

follows. Let (G, K, L, kú, k, s, t) be the input instance and n = |V (G)|. It examines every

length q œ [n]. Now, consider a specific length q. First, uniformly at random, it chooses N

values from Fp to be assigned to the variables of P q (recall that N is the number of variables

which is bounded by nO(1)). Then, it evaluates P q accordingly using the computation

presented in Lemma 12. Finally, if the result in not zero, it accepts. Eventually, if for every

length q the result is zero, it rejects.

By Lemma 8, if the input instance of List K-Path is a No -instance, for every length q

the result of evaluating P q is zero, and therefore the algorithm will reject. Now, suppose

that the input instance of List K-Path is a Yes-instance. By Lemma 8, there exists q œ [n]

such that P q is not identically zero. Observe that P q is a polynomial of total degree at most

n + 2k. Thus, by Lemma 13, the result of evaluating P q is not zero with probability at least

2/3. Therefore, the algorithm accepts with probability at least 2/3. Clearly, the probability

of success can be increased via multiple runs, or, in a more direct manner, by choosing a

larger field (choosing a field of size p = 2Álog(cÕ(n+2k))Ë for some constant cÕ will result in a

success probability of at least 1 ≠ 1/cÕ). J

4 An Algorithm for Exact List K-Cycle

In this section we show that Exact List K-Cycle can be solved in time Oú(2k1.66¸≠k). On

the one hand, Exact List K-Cycle generalizes Colorful Cycle – indeed, Colorful

1 Due to space constraints, proofs of results marked with ı are omitted.
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Cycle is the special case of Exact List K-Cycle where K = V (G), k = kú = ¸ and for all

v œ K it holds that |L(v)| = 1. Therefore, unless the Set Cover Conjecture is false, we cannot

obtain an algorithm that runs in time Oú((2 ≠ ‘)k) even if k = ¸. On the other hand, Exact

List K-Cycle generalizes ¸-Path and Hamiltonicity (which is a special case of ¸-Path

where ¸ = |V (G)|), and there are randomized algorithms for ¸-Path and Hamiltonicity

running in times Oú(1.66¸) and Oú(1.66|V (G)|), respectively [3, 2]. We present a multivariate

algorithm for Exact List K-Cycle that can be viewed as a compromise between the

dependency on k and the dependency on ¸. Our approach employes the double-labeling-based

approach of Björklund et al. [6], used to solve the Graph Motif problem, on top of the

technique underlying the ¸-Path algorithm of Björklund et al. [3].

Due to similarities between this algorithm and the one given in the previous section, we

present it in a more concise manner. Again, by the explanation given in Section 3, it is

sufficient to solve the following problem, called Exact List K-Path, in time Oú(2k1.66¸≠k).

Given an n-vertex undirected graph G, a set of vertices K ™ V (G), a list-coloring L : K æ

2{1,2,...,kú} for some kú œ N, parameters k, ¸ œ N and two vertices s, t œ V (G), and this

problem asks whether one can assign a color to each vertex in K so that G would have a

simple path of length ¸ between s and t containing exactly k vertices from K and these

vertices have distinct colors.

In most of this section, we will assume that we are given a partition (V1, V2) of V (G) \ K,

which will be computed later. Accordingly, we define the Partitioned Exact List K-

Path (K-PEL Path) problem as the Exact List K-Path problem where one is also given

parameters ¸1, ¸2 œ [¸], and the solution is also required to contain exactly ¸1 vertices from

V1 and ¸2 edges from E(V2).

Structures and Labels. Given q œ [¸] \ {1}, q1 œ [¸1]0, q2 œ [¸2]0, vertices u, v œ V (G) and

kÕ œ [k], a function f : [q] æ V (G) is called a (q, q1, q2, u, v, kÕ)-function if the following

properties hold:

(i) f(1) = s, f(q ≠ 1) = u and f(q) = v,

(ii) for all i œ [q ≠ 1], {f(i), f(i + 1)} œ E(G),

(iii) for all i œ [q ≠ 2] such that f(i) = f(i + 2) œ V2 it holds that f(i + 1) œ V2,

(iv) q1 = |V1(f)|, where V1(f) = {i œ [q] : f(i) œ V1},

(v) q2 = |E2(f)|, where E2(f) = {(i, i + 1) : i œ [q ≠ 1], {f(i), f(i + 1)} ™ V2},

(vi) kÕ = |{i œ [q] : f(i) œ K}|.

Observe that V1(f) and E2(f) are sets of indices. In addition to f , to know whether

we are constructing a solution, we need to know which colors in [kú] have been used. For

this purpose, we need the following term. For a (q, q1, q2, u, v, kÕ)-function f and a function

g : [q] æ [kú]0, the pair (f, g) is called (q, q1, q2, u, v, kÕ)-structure if the following condition

holds: for any i œ [q], if f(i) œ K then g(i) œ L(f(i)) and otherwise g(i) = 0. In other words,

for each occurrence of a vertex in K which we have visited, g specifies a color, and overall,

since f is a (q, q1, q2, u, v, kÕ)-function, g specifies exactly kÕ occurrences of colors. To simplify

the presentation, for a (q, q1, q2, u, v, kÕ)-structure (f, g), we define col(g) = {i œ [q] : g(i) ”= 0}.

That is, col(g) is the set of indices associated with vertices in K (which receive colors). For

any vertex u œ V (G), a (¸, ¸1, ¸2, u, t, k)-structure is also called a final structure (f-structure).

When both f and g|col(g) are also injective, we say that it is an excellent final structure

(ef-structure). By the definition of ef-structures, we have the following observation.

I Observation 15. The input instance of K-PEL Path is a Yes-instance if and only if

there exists an ef-structure.
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As before, the main idea is to use labels for specific elements in (q, q1, q2, u, v, kÕ)-structures.

Here we use labels on col(g) fi V1(f) fi E2(f). For a (q, q1, q2, u, v, kÕ)-structure (f, g) and

a function h : col(g) fi V1(f) fi E2(f) æ [k + ¸1 + ¸2], we say that the triple (f, g, h) is

a (q, q1, q2, u, v, kÕ)-labeling. When (f, g) is an f-structure or an ef-structure, we say that

(f, g, h) is an f-labeling or an ef-labeling, respectively. Moreover, if g is bijective, we say

that the triple (f, g, h) is bijective. Next, we define two sets of f-labelings. First, we let B1

denote the set of all bijective f-labelings. Now, we let B2 ™ B1 denote the set of all bijective

ef-labelings.

Observe that for any ef -structure (f, g) (which corresponds to a solution), | col(g) fi

V1(f) fi E2(f)| = k + ¸1 + ¸2, and therefore the sizes of the domain and codomain of the

function h are equal. Thus, given an ef-structure (f, g), we can arbitrarily order the elements

in col(g)fiV1(f)fiE2(f), and let h assign to each element in col(g)fiV1(f)fiE2(f) its location

in this order. This results in a bijective function h, and overall, in a bijective ef-labeling

(f, g, h). Thus, by Observation 15, we have the following observation.

I Observation 16. The input instance of K-PEL Path is a Yes-instance if and only if

B2 ”= ÿ.

Monomials. Now we explain how to assign monomial for each (q, q1, q2, u, v, kÕ)-labeling

and show that the polynomial which is sum of monomials corresponding to f -labeling will

give us the answer for K-PEL Path through Polynomial Identity Testing(PIT). First we

introduce the following variables. For each edge e œ E(G), introduce a variable xe. Now,

for each vertex v œ V1 and label i œ [k + ¸1 + ¸2], introduce a variable yv,i, and for each

edge e œ E(V2) and label i œ [k + ¸1 + ¸2], introduce a variable ye,i. For each vertex v œ K

and color a œ L(v), introduce the variable zv,a. Finally, for each color a œ [kú] and label

i œ [k + ¸1 + ¸2], introduce the variable za,i. Let N be the total number of variables created.

Now, we associate a monomial with each (q, q1, q2, u, v, kÕ)-labeling.

I Definition 17. Given a (q, q1, q2, u, v, w, kÕ)-labeling (f, g, h), the monomial of (f, g, h),

denoted by m(f, g, h), is defined as follows.

m(f, g, h) =

Q

a

Ÿ

iœ[q≠1]

x{f(i),f(i+1)}

R

b

Q

a

Ÿ

iœV1(f)

yf(i),h(i)

R

b

Q

a

Ÿ

(i,i+1)œE2(f)

y{f(i),f(i+1)},h((i,i+1))

R

b

·

Q

a

Ÿ

iœcol(g)

zf(i),g(i) · zg(i),h(i)

R

b.

If (f, g, h) is a bijective ef-labeling, then it can be uniquely recovered from its monomial.

That is, we have the following observation.

I Observation 18. For all (f, g, h) œ B2, there does not exist (f Õ, gÕ, hÕ) œ B1 \ {(f, g, h)}

such that m(f, g, h) = m(f Õ, gÕ, hÕ).

For bijective f-labelings that are not ef-labelings, we have the following lemma.

I Lemma 19. Let (G, K, L, kú, k, s, t, ¸, V1, V2, ¸1, ¸2) be a No-instance of K-PEL Path and

B1 is the set of all bijective f-labeling. Then there is a fixed-point-free involution „ : B1 æ B1

such that for all (f, g, h) œ B1, m(f, g, h) = m(„(f, g, h)).
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Proof. Since (G, K, L, kú, k, s, t, ¸, V1, V2, ¸1, ¸2) is aNo-instance of K-PEL Path , by Ob-

servation 16, B2 = ÿ. Let (f, g, h) œ B1. We will consider several cases, and in each case, we

assume that previous cases are false, define „(f, g, h), and prove that „(f, g, h) ”= (f, g, h),

m(f, g, h) = m(„(f, g, h)) and „(„(f, g, h)) = (f, g, h). Since B2 = ÿ and (f, g, h) œ B1, we

have that (f, g) is a f -structure but not an ef-structure. This implies that either f is not

injective or g|col(g) is not injective. This implies that there exist i, j œ [¸], i < j such that

either (a) f(i) = f(j) or (b) i, j œ col(g) and g(i) = g(j).

Case 1: There exists i, j ∈ [¸], i < j such that f(i) = f(j) ∈ V1. Among all such pairs,

called bad pairs of type 1, let (i, j) be the smallest one. We define (f Õ, gÕ, hÕ) = „(f, g, h)

as follows. First, let f Õ = f and gÕ = g. Now, let hÕ(i) = h(j) and hÕ(j) = h(i), and for

all r œ (col(g) fi V1(f) fi E2(f)) \ {i, j}, let hÕ(r) = h(r). Since h is bijective, we have that

hÕ ”= h, and therefore „(f, g, h) = (f Õ, gÕ, hÕ) ”= (f, g, h). Moreover, yf(i),h(i) = yf Õ(j),hÕ(j) and

yf(j),h(j) = yf Õ(i),hÕ(i), and therefore m(f, g, h) = m(„(f, g, h)). Notice that the smallest bad

pair of type 1 in (f Õ, gÕ, hÕ) is (i, j). So by swapping the values assigned to i and j in hÕ, we

obtain h, and hence we have that „(„(f, g, h)) = (f, g, h).

Case 2: There exists i, j ∈ [¸], i < j such that f(i) = f(j) ∈ K. Among all

such pairs, that we call bad pairs of type 2, let (i, j) be the smallest one. We define

(f Õ, gÕ, hÕ) = „(f, g, h) as follows. First, let f Õ = f . Now, let gÕ(i) = g(j) and gÕ(j) = g(i),

and for all r œ [q] \ {i, j}, let gÕ(r) = g(r). Finally, let hÕ(i) = h(j), hÕ(j) = h(i), and for

all r œ (col(g) fi V1(f) fi E2(f)) \ {i, j}, we let hÕ(r) = h(r). Since h is bijective, h ”= hÕ

and „(f, g, h) ”= (f, g, h). Moreover, since f(i) = f(j), it holds that zf(i),g(i) = zf Õ(j),gÕ(j)

and zf(j),g(j) = zf Õ(i),gÕ(i). It also holds that zg(i),h(i) = zgÕ(j),hÕ(j) and zg(j),h(j) = zgÕ(i),hÕ(i).

Therefore, m(f, g, h) = m(„(f, g, h)). Since there is no bad pair of type 1 in (f, g, h), there

is no bad pairs of type 1 in (f Õ, gÕ, hÕ). Notice that the is the smallest bad pair of type 2 in

(f Õ, gÕ, hÕ) is (i, j). By swapping the values assigned to i and j by gÕ and hÕ we get g and h,

and hence we have that „(„(f, g, h)) = (f, g, h).

Case 3: There exists i, j ∈ [¸], i < j such that f(i) = f(j) ∈ V2. Among all such

pairs, that we call bad pairs of type 3, let (i, j) be the smallest one. We have two sub-cases

based f(i) . . . f(j) is a palindrome or not.

Case 3(a): f(i) . . . f(j) is a palindrome. Since f(i) . . . f(j) is a walk in a simple graph

G and f(i) . . . f(j) is a palindrome, the length of the sequence f(i) . . . f(j) is odd and j ≠ i is

even. Let r = i + j≠i
2 . Notice that r is the middle index in the sequence i, i + 1, . . . j. Since

Cases 1 and 2 are not applicable, we have that for all rÕ œ {i, . . . , j} \ {r} f(rÕ) œ V2. Now

consider the sequence f(r ≠ 1)f(r)f(r + 1). We know that f(r ≠ 1) = f(r + 1) œ V2. Thus

by property (iii) of (q, q1, q2, u, v, kÕ)-function, we have that f(r) œ V2. Hence, we have that

f(i), . . . , f(j) œ V2.

Now, we define (f Õ, gÕ, hÕ) = „(f, g, h) as follows. First, let f Õ = f and gÕ = g. Now,

let hÕ((i, i + 1)) = h((j ≠ 1, j)), hÕ((j ≠ 1, j)) = h((i, i + 1)) and for all rÕ œ (col(g) fi

V1(f) fi E2(f)) \ {(i, i + 1), (j ≠ 1, j)}, let hÕ(r) = h(r). Since h is bijective, we have

that hÕ ”= h, and therefore „(f, g, h) ”= (f, g, h). Since {f(i), f(i + 1)} = {f(j ≠ 1), f(j)},

we have that y{f(i),f(i+1)},h((i,i+1)) = y{f Õ(j≠1),f Õ(j)},hÕ((j≠1,j)) and y{f(j≠1),f(j)},h((j≠1,j)) =

y{f Õ(i),f Õ(i+1)},hÕ((i,i+1)), and therefore m(f, g, h) = m(„(f, g, h)). Finally, because f = f Õ, it

still holds that there are no bad pairs of types 1 and 2 in (f Õ, gÕ, hÕ), and the sets of bad pairs
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of type 3 of (f, g, h) and (f Õ, gÕ, hÕ) are same. Since by swapping the values assigned to i and

j by hÕ, we obtain h, and hence we have that „(„(f, g, h)) = (f, g, h).

Case 3(b): f(i) . . . f(j) is not a palindrome. We define (f Õ, gÕ, hÕ) = „(f, g, h) as follows.

For any r œ [q] such that r < i or r > j, we let f Õ(r) = f(r), gÕ(r) = g(r). For any

r œ col(g) fi V1(f), r < i or r > j, hÕ(r) = h(r). (In this context, recall that the domain of

h is a set of indices.) For all (iÕ, iÕ + 1), iÕ < i or iÕ Ø j such that (iÕ, iÕ + 1) œ E2(f) , let

hÕ((iÕ, iÕ + 1)) = h((iÕ, iÕ + 1)). Next, we are going to redirect the subwalk from i to j to be

from j to i, adjusting f, g and h accordingly. Formally, for each index i Æ r Æ i+Â j≠i
2 Ê, define

s(r) = j ≠ (r ≠ i) and s(j ≠ (r ≠ i)) = r. Now, for each index i Æ r Æ j, let f Õ(r) = f(s(r)),

gÕ(r) = g(s(r)) and, if r œ col(g) fi V1(f), hÕ(r) = h(s(r)), and if (r, r + 1) œ E2(f) and

r + 1 Æ j hÕ((r, r + 1)) = h(s(r), s(r + 1)). Since f(i) . . . f(j) is not a palindrome, we have

that f ”= f Õ and hence, „(f, g, h) ”= (f, g, h). Notice that f and f Õ defines two walks in

the graph G. Observe that because f(i) = f(j), redirecting the subwalk between i and

j does not change the edges which the walk contains (but only the order between them

changes), and since upon changing the location of an occurrence of a vertex, we update f, g

and h accordingly to get f Õ, gÕ and hÕ, we have that m(f, g, h) = m(f Õ, gÕ, hÕ) = m(„(f, g, h)).

Finally, (f Õ, gÕ, hÕ) does not have bad pairs of types 1 and 2, and it has the same bad pairs

of type 3 as (f, g, h). Also, since by redirecting the subwalk between i and j yet again we

obtain the original walk, and so we conclude that „(„(f, g, h)) = (f, g, h).

We also need to show that (f Õ, gÕ, hÕ) œ B1. Towards that it is enough to show that f Õ is

a (¸, ¸1, ¸2, u, t, k)-function for some u œ V (G). Since f is such a function, all the properties

except the property (iii) of (¸, ¸1, ¸2, u, t, k)-function hold trivially. Now we show that in fact

property (iii) also true for f Õ. That is for all iÕ œ [q ≠ 2], f Õ(iÕ) = f Õ(iÕ + 2) œ V2 implies that

f Õ(iÕ + 1) œ V2. Since f satisfies property (iii), it holds that for all iÕ /œ {i ≠ 1, i, j ≠ 1, j},

if f Õ(iÕ) = f Õ(iÕ + 2) œ V2 implies that f Õ(iÕ + 1) œ V2. Now consider the case of i ≠ 1 and

f Õ(i ≠ 1), f Õ(i), f Õ(i + 1). Since f Õ(i) œ V2, statement mentioned in property (iii) holds for

i ≠ 1. Now consider the case i and f Õ(i), f Õ(i + 1), f Õ(i + 2). Notice that f Õ(i) = f(i) and

f Õ(i + 2) = f(j ≠ 2). Since (i, j) is a smallest pair with f(i) = f(j) œ V2, we have that

f(i) ”= f(j ≠ 2) and hence f Õ(i) ”= f Õ(i + 2). Hence statement mentioned in property (iii)

holds for i. Now consider the case of j ≠ 1 and f Õ(j ≠ 1), f Õ(j), f Õ(j + 1). Since f Õ(j) œ V2,

statement mentioned in property (iii) holds for j ≠ 1. Now consider the case of j and

f Õ(j), f Õ(j + 1), f Õ(j + 2). Since f Õ(j) = f(j), f Õ(j + 1) = f(j + 1), f Õ(j + 2) = f(j + 2) and

property (iii) holds for f , we have that property (iii) holds for j. Hence (f Õ, gÕ, hÕ) œ B1.

Case 4: i, j ∈ col(g) and g(i) = g(j). Among all such pairs, that we call bad pairs

of type 4, let (i, j) be the smallest one. We define (f Õ, gÕ, hÕ) = „(f, g, h) as follows. First,

let f Õ = f and gÕ = g. Now, let hÕ(i) = h(j) and hÕ(j) = h(i), and for all r œ (col(g) fi

V1(f) fi E2(f)) \ {i, j}, we let hÕ(r) = h(r). Since h is bijective, we have that hÕ ”= h, and

therefore „(f, g, h) ”= (f, g, h). Moreover, zg(i),h(i) = zgÕ(j),hÕ(j) and zg(j),h(j) = zgÕ(i),hÕ(i),

and therefore m(f, g, h) = m(„(f, g, h)). Finally, because (f, g) = (f Õ, gÕ), there are still no

bad pairs of types 1, 2 and 3, and the sets of bad pairs of type 4 of (f, g, h) and (f Õ, gÕ, hÕ)

are same. Also, by swapping the values assigned to i and j in hÕ, we obtain h, and so we

have that „(„(f, g, h)) = (f, g, h). J

Now, we define a polynomial Q =
ÿ

(f,g,h)œB1

m(f, g, h) which will be evaluated over the

finite field Fp, where p = 2Álog(3(¸+¸1+¸2+2k))Ë. Since Fp has characteristic 2, by Observa-
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tions 16 and 18, and Lemma 19, we get the following lemma (its proof is identical to the

proof of Lemma 8).

I Lemma 20. The input instance of K-PEL Path is a Yes-instance if and only if P ”© 0.

Evaluation For I ™ [k+¸1 +¸2], a (q, q1, q2, u, v, kÕ, I)-labeling (f, g, h) is a (q, q1, q2, u, v, kÕ)-

labeling such that the image of h is a subset of I. Let S(q, q1, q2, u, v, kÕ, I) denote the set of all

(q, q1, q2, u, v, kÕ, I)-labelings. Let P (q, q1, q2, u, v, kÕ, I) =
ÿ

(f,g,h)œS(q,q1,q2,u,v,kÕ,I)

m(f, g, h).

By the inclusion-exclusion principle and because Fp, the field over which we evaluate

polynomials, has characteristic 2, we have the following observation.

I Observation 21. Q =
ÿ

I™[¸1+¸2+k]

ÿ

uúœN(t)

P (¸, ¸1, ¸2, uú, t, k, I).

We next show that a polynomial of the form P (¸, ¸1, ¸2, uú, t, k, I) can be evaluated at

any point in time polynomial in N using dynamic programming, where N is an upper bound

on number of variables.

I Lemma 22 (ı). Let I ™ [k], uú œ N(t). Let x1, . . . , xN be the variables in P (¸, ¸1, ¸2, uú, t,

k, I). Let a1, a2, . . . , aN œ Fp denote the chosen values for the variables. Then, the polynomial

P (¸, ¸1, ¸2, uú, t, k, I) can be evaluated at (a1, a2, . . . , aN ) in time NO(1) using space NO(1).

Combining Observation 21 with Lemma 22, and since there are 2¸1+¸2+k subsets I of

[¸1 + ¸2 + k], we have the following result.

I Lemma 23. Given an assignment of values from Fp to the variables of P , the polynomial

P can be evaluated in time 2¸1+¸2+kNO(1) using space polynomial in N .

The Algorithm. By Lemmata 13, 20 and 23, we get the following lemma (its proof is

identical to Theorem 14).

I Lemma 24. There is a polynomial space randomized algorithm for K-PEL Path running

in time Oú(2¸1+¸2+k) with one sided constant error probability.

I Lemma 25 ([3]). Let W be a simple path of length ¸ in a graph G. Then, for a partition

(V1, V2) of V (G) chosen uniformly at random, let p(¸, ¸1, ¸2) be the probability that |V (W ) fl

V1| = ¸1 and |E(W ) fl E(V2)| = ¸2. Then for any ¸, we can find ¸Õ
1, ¸Õ

2 œ N such that

¸Õ
1 + ¸Õ

2 Æ ¸ and 2¸
Õ

1
+¸

Õ

2

p(¸,¸Õ

1
,¸Õ

2
) Æ 1.6569¸|V (G)|c for some constant c.

We use Lemma 25 to prove the main theorem of the section.

I Theorem 26. There is a polynomial space randomized algorithm for Exact List K-Cycle

running in time Oú(2k1.6569¸≠k) with one sided constant error probability.

Proof. Let (G, K, L, kú, k, ¸) be the input instance and n = |V (G)|. We describe an algorithm

A for Exact List K-Cycle . Let ¸Õ, ¸Õ
2 be the integers guaranteed by the Lemma 25 and

let p(¸, ¸Õ
1, ¸Õ

2) be the probability mentioned in Lemma 25. Now for each ¸1 Æ ¸Õ
1 and ¸2 Æ ¸Õ

2,

we randomly choose a partition (V1, V2) of V (G) \ K and run algorithm B mentioned in

Lemma 24 for K-PEL Path. Algorithm A repeats algorithm B 1
p(¸,¸Õ

1
,¸Õ

2
) many times. If at

least once algorithm B outputs Yes, then A outputs Yes and otherwise outputs No.

Clearly if (G, K, L, kú, k, ¸) is a No instance, then our algorithm will output No . Now

suppose (G, K, L, kú, k, ¸) is a Yes instance. Then there is a simple path W of length ¸

FSTTCS 2016
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with required property. We know that for a partition (V Õ
1 , V Õ

2) of V (G) chosen uniformly at

random, the probability that |V (W ) fl V1| = ¸Õ
1 and |E(W ) fl E(V2)| = ¸Õ

2 is p(¸, ¸Õ
1, ¸Õ

2). This

implies that there exist ¸1 Æ ¸Õ
1 and ¸2 Æ ¸Õ

2 such that for a partition (V1, V2) of V (G) \ K

chosen uniformly at random, the probability that |V (W ) fl V1| = ¸1 and |E(W ) fl E(V2)| = ¸2

is p(¸, ¸Õ
1, ¸Õ

2). For that choice of ¸1 and ¸2 the probability that algorithm B outputs Yes is

p(¸, ¸Õ
1, ¸Õ

2). Since algorithm B runs 1
p(¸,¸Õ

1
,¸Õ

2
) many times with parameters ¸1 and ¸2, algorithm

A outputs Yes with constant probability.

The running time of algorithm A is upper bounded by 2¸
Õ

1
+¸

Õ

2
+kncÕ

p(¸,¸Õ

1
,¸Õ

2
) for some constant cÕ.

By Lemma 25, we have that 2¸
Õ

1
+¸

Õ

2

p(¸,¸Õ

1
,¸Õ

2
) Æ 1.6569¸nc, where c is some constant. This implies

that the running time of algorithm A is upper bounded by Oú(2k1.6569¸≠k). Since algorithm

B uses only polynomial space, A is a polynomial space algorithm. This completes the proof

of the theorem. J
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