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Abstract: Dynamic models of physical systems often contain parameters that must be estimated from
experimental data. In this work, we consider the identification of parameters in nonlinear mechanical
systems given noisy measurements of only some states. The resulting nonlinear optimization problem
can be solved efficiently with a gradient-based optimizer, but convergence to a local optimum
rather than the global optimum is common. We augment the dynamic equations with a morphing
parameter and a proportional–integral–derivative (PID) controller to transform the objective function
into a convex function; the global optimum can then be found using a gradient-based optimizer.
The morphing parameter is used to gradually remove the PID controller in a sequence of steps,
ultimately returning the model to its original form. An optimization problem is solved at each
step, using the solution from the previous step as the initial guess. This strategy enables use of
a gradient-based optimizer while avoiding convergence to a local optimum. The efficacy of the
proposed approach is demonstrated by identifying parameters in the van der Pol–Duffing oscillator, a
hydraulic engine mount system, and a magnetorheological damper system. Our method outperforms
genetic algorithm and particle swarm optimization strategies, and demonstrates robustness to
measurement noise.

Keywords: engine mount; genetic algorithm; homotopy optimization; magnetorheological damper;
modelling; parameter estimation; particle swarm optimization; van der Pol–Duffing oscillator

1. Introduction

To generate a simulation of a mechanical system, one first requires a mathematical model of the
system’s dynamics. The parameters for dynamic system models are often estimated from experimental
measurements, a process called parameter estimation or parameter identification. This task is difficult
in general, particularly when the mathematical model is nonlinear. Additional challenges are presented
when only some of the system’s states are measured and when experimental data are corrupted by
measurement noise. Parameter identification with partial state measurement is highly relevant in
many areas of the biological and physical sciences [1].

Parameter identification is typically approached as a least-squares optimization problem, wherein
the model parameters must be determined so as to minimize the difference between the measured
response of the physical system and the simulated response of the analogous mathematical model [2,3].
Classical optimization techniques include the Gauss–Newton and Levenberg–Marquardt algorithms.
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These gradient-based methods are very effective provided the objective function is convex; if it is not,
they often converge to a local optimum rather than the global optimum [4]. In many mathematical
models, the parameters appear nonlinearly with respect to the system states and the objective function
is non-convex (i.e., it contains many local optima). Stochastic optimization techniques such as simulated
annealing, the genetic algorithm (GA), and particle swarm optimization (PSO) are capable of finding
the globally optimal solution to a non-convex problem; however, if a large number of parameters must
be identified, these methods tend to become computationally expensive [5,6]. In general, parameter
identification problems can be solved more efficiently if a gradient-based algorithm can be used even
for non-convex optimization problems.

Homotopy methods have led to effective global optimization algorithms [7]. Vyasarayani et al.
explored the application of homotopy optimization to identifying parameters in nonlinear systems,
including those governed by differential algebraic equations [8]. In the homotopy optimization method,
a high-gain observer and a morphing parameter are introduced into the dynamic equations (and, thus,
into the objective function implicitly). This transformation makes the objective function convex [9] and
enables use of a gradient-based optimization method. The dynamic equations are gradually morphed
back to the original system by reducing the value of the morphing parameter in a sequence of steps.
A new optimization problem is solved at each step, using the solution from the previous step as the
initial guess. Provided the morphing parameter is reduced in sufficiently small steps, convergence to a
local optimum is avoided despite using a simple gradient-based optimizer. This process is continued
until the morphing parameter reaches zero, thereby recovering the original optimization problem, but
now it is solved starting from a good initial guess.

In the present work, we use a proportional–integral–derivative (PID) controller to implement a
homotopy optimization strategy and study the effectiveness of this approach at identifying parameters
in the van der Pol–Duffing oscillator, a hydraulic engine mount system, and a magnetorheological
(MR) damper system. Accurate mathematical models for engine mount and MR damper systems
are important tools for engineering analysis, design, and control applications; thus, fast and accurate
parameter identification methods are critical. The PID controller used in this work is a natural extension
of the Luenberger observer [10]. We consider partial state measurement, wherein experimental
measurements for only some of the system states are available, as well as the effect of measurement
noise. We also compare the performance of the proposed approach to the performance of popular
GA [11–13] and PSO [14–16] methods.

The remainder of the paper is organized as follows. The proposed parameter identification
strategy is presented in Section 2. Numerical examples are presented and discussed in Section 3.
Finally, conclusions are provided in Section 4.

2. Methodology

We assume the dynamics of the experimental system are governed by a system of ordinary
differential equations, written here in first-order form:

ẋ1e(t) = x2e(t), (1a)

ẋ2e(t) = f (x1e(t), x2e(t), p, t) , (1b)

where x1e(t) , [x1e(t), x2e(t), . . . , xne(t)]
T contains the time series of the n position-level states and

p , [p1, p2, . . . , pk] is a vector of the k parameters in the experimental system. In the following,
we assume that only one state variable (x1e(t)) is measured; the other states in the experimental system
are unobserved. The mathematical model representing the experimental system (Equation (1a), (1b)) is
written in an analogous form:

ẋ1(t) = x2(t), (2a)

ẋ2(t) = f (x1(t), x2(t), p̂, t) , (2b)
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where x1(t) , [x1(p̂, t), x2(p̂, t), . . . , xn(p̂, t)]T. Our notation here emphasizes that the trajectory of the
mathematical model is a function of the unknown parameters p̂ , [ p̂1, p̂2, . . . , p̂k]. The objective is to
identify the parameters in the mathematical model (p̂ in (Equation (2a), (2b)) to minimize the error
between the experimental measurement (x1e(t)) and the corresponding predicted response (x1(p̂, t)).

2.1. Optimization Strategy

We identify model parameters p̂ by minimizing the following objective function:

J(p̂) =
1
2

∫ t f

0

(

x1e(t)− x1(p̂, t)
)2

dt. (3)

In general, this objective function surface will contain many local minima; a naive optimization
strategy may lead to any one of them. To avoid convergence to a local minimum, we introduce a
morphing parameter (λ) and a proportional–integral–derivative (PID) controller into the mathematical
model (Equation (2a), (2b)):

ẋ1(t) = x2(t) + λkd (x1e(t)− x1(p̂, t)) , (4a)

ẋ2(t) = f (x1(t), x2(t), p̂, t) + λkp (x1e(t)− x1(p̂, t)) + λki

∫ t

0

(

x1e(τ)− x1(p̂, τ)
)2

dτ, (4b)

where kp, ki and kd are the proportional, integral and derivative gains, respectively, and x1e(t)− x1(p̂, t)

is the error we wish to minimize. The controller used here (with ki = 0) resembles the Luenberger
observer [10] used in the state estimation of linear systems. The predicted response and objective
function are now implicit functions of morphing parameter λ:

J(p̂, λ) =
1
2

∫ t f

0

(

x1e(t)− x1(p̂, λ, t)
)2

dt. (5)

The optimization process begins by providing an arbitrary initial guess for the parameters and
setting morphing parameter λ = 1. Provided the proportional gain (kp) is sufficiently high, the PID
controller in Equation (4a), (4b) will make the objective function surface convex [9], thereby enabling
use of any gradient-based optimizer. The optimizer uses the objective function J(p̂, 1) to seek values
for the model parameters (p̂) such that the predicted response (x1(p̂, 1, t)) matches the measured
response (x1e(t)). We denote the solution from this step 1p̂∗. We then reduce λ by a small amount δ

and minimize J(p̂, 1 − δ), using 1p̂∗ as the initial guess. The solution from this step (1−δp̂∗) is then
used as the initial guess for the subsequent step, where λ = 1 − 2δ. This process is repeated until
λ = 0, whereupon the PID controller vanishes from the mathematical model (Equation (4)). In the
final step, λ = 0 and the global minimum to the original problem (0p̂∗) is obtained.

The proposed approach closely resembles the penalty function method. Any constrained
optimization problem can be transformed into an unconstrained optimization problem by treating each
constraint violation as a penalty. Each penalty i contributes a new term to the objective function, scaled
by a weighting parameter ri. Values are selected for each ri and the optimization problem is solved.
If the violation of a constraint from the original problem is too large, the corresponding weighting
parameter is increased and the optimization problem is solved again, using the previous solution as
the initial guess. This process is continued until all constraint violations are acceptably low. Penalty
functions and weighting parameters ri are analogous to the PID controller and morphing parameter λ

in Equation (4). However, note that the proposed approach is able to find the global optimum, whereas
the penalty function method arrives at only a near-optimal solution in general.
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2.2. Error Convergence

To gain insight into the error dynamics of the proposed approach, we subtract Equation (4a), (4b)
from Equation (1a), (1b) to obtain the following error equation:

ë1(t) + λkdė1(t) + λkpe1(t) = f (x1e(t), x2e(t), p, t)− f (x1(t), x2(t), p̂, t)− λki

∫ t

0
e1(τ)

2 dτ. (6)

Equation (6) represents a damped second-order system with stiffness kp, damping kd, and an
equilibrium point at e1 = 0. The kp, ki, and kd terms affect the error dynamics as seen in a typical
PID controller: the proportional gain determines sensitivity to position-level error, the integral gain
determines sensitivity to steady-state error, and the derivative gain determines sensitivity to the rate at
which the error is changing. (We note that, for the systems presented in this work, the integral term
was found to provide only marginal benefit.) For sufficiently high values of kp, the proportional term
dominates and will drive the error to zero regardless of discrepancies between the forcing functions on
the right-hand side of Equation (6). A proportional gain should be selected at the outset (i.e., when
λ = 1) so that the synchronization error [17] is small when the initial guess for the parameter vector is
used in the mathematical model (Equation (4a), (4b)).

3. Results

In this section, we identify parameters in the van der Pol–Duffing oscillator, a hydraulic engine
mount system, and a magnetorheological damper system. We explore the effect of measurement noise
and provide comparisons with two popular stochastic optimizers: the genetic algorithm and particle
swarm optimization strategies.

3.1. Van der Pol–Duffing Oscillator

The van der Pol–Duffing (VDPD) oscillator represents a family of classical nonlinear systems
with rich dynamical properties, and they appear in many fields of science and engineering [18–21].
The experimental system we consider in this section is an externally-excited VDPD oscillator [22],
given here in first-order form:

ẋ1e(t) = x2e(t), (7a)

ẋ2e(t) = µ
(

1 − x2
1e(t)

)

x2e(t)− αx1e(t)− βx3
1e(t) + f (t), (7b)

where f (t) = g cos(ωt) is the external excitation, with amplitude g = 0.50 and frequency ω = 0.79.
The behavior of the VDPD oscillator depends on three important variables: α, β, and µ. Parameter
α determines the stiffness of the system, β determines the amount of nonlinearity, and µ > 0 is the
damping coefficient. VDPD oscillators are typically classified into three categories: single-well (α and
β both positive), double-well (α negative and β positive), and double-hump (α positive and β negative).
In this example, we seek to identify the system parameters α, β, and µ given the trajectory of x1e(t).
We assume the initial conditions and the external excitation ( f (t)) are known.

As stated in Section 2, we identify parameters for the mathematical model by minimizing
Equation (5). In this example, the parameters are p̂ ,

[

α̂, β̂, µ̂
]

. We assume bounds are known
for each parameter; thus, pl ≤ p̂ ≤ pu where pl and pu are vectors of the lower and upper bounds,
respectively. We solve a constrained optimization problem because the VDPD oscillator loses stability
beyond particular ranges of parameter values. We consider one experimental system of each category
(single-well, double-well, and double-hump); the system parameters and bounds are provided in
Table 1.
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Table 1. Experimental parameters and bounds for the van der Pol–Duffing oscillator [22].

Parameter
Single-Well Double-Well Double-Hump

Experimental
Bounds

Experimental
Bounds

Experimental
Bounds

Value Value Value

α 0.5 [0.1, 10] −0.5 [−5, 5] 1.5 [1, 5]
β 0.5 [0.1, 10] 0.5 [0.1, 10] −0.5 [−0.9,−0.1]
µ 0.1 [0.01, 2] 0.1 [0.01, 2] 0.1 [0.01, 1]

We first consider the single-well case, where the true parameters are [α, β, µ] = [0.5, 0.5, 0.1].
The initial conditions for the experimental system and mathematical model are assumed to be
[x1e(0), x2e(0)] = [x1(0), x2(0)] = [1, 0]. We generate synthetic experimental data by numerically
integrating Equation (7a), (7b) for 20 s [22] using a fourth-order Runge–Kutta method and storing only
x1e(t), as shown in Figure 1a. The shape of the objective function is shown in Figure 1b as a function
of β, for four values of α and with µ = 0.1. There are clearly many peaks and valleys in J(β) and,
thus, there are many local minima in the objective function J(p̂). We show the basins of attraction
in Figure 1c and confirm that a simple gradient-based optimizer is very likely to converge to a local
minimum.

Figure 1. Parameter identification problem description for three van der Pol–Duffing oscillators:
(a–c) single-well, (d–f) double-well, and (g–i) double-hump. (a,d,g): experimental data used for
parameter identification (x1e(t)); (b,e,h): shape of objective function over β (J(β)) for four values of α

and with µ = 0.1; (c,f,i): basins of attraction with µ = 0.1. In panels (c,f,i), initial parameter guesses in
the dark-red regions lead to local minima when a simple gradient-based optimizer is used; points in
the light-green regions lead to the global minimum, indicated with a “target” symbol.
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To avoid converging to a local minimum, we use the strategy described in Section 2 with a
high-gain PD controller. We use initial parameter guesses at the upper bounds, as listed in Table 1
(i.e.,

[

α̂, β̂, µ̂
]

= [10, 10, 2]) and set δ = 0.2. The objective function is given by Equation (5) and is solved
using the “fmincon” constrained optimization solver in MATLAB R©; we use the sequential quadratic
programming (SQP) algorithm with a first-order optimality tolerance of 10−6 as the termination
criterion. The mathematical model is as follows:

ẋ1(t) = x2(t) + λkd (x1e(t)− x1(t)) , (8a)

ẋ2(t) = µ̂
(

1 − x2
1(t)

)

x2(t)− α̂x1(t)− β̂x3
1(t) + f (t) + λkp (x1e(t)− x1(t)) . (8b)

Proportional and derivative gains are set to kp = kd = 10, and these values are confirmed to
achieve synchronization between the experimental and predicted responses when λ = 1. As shown in
Figure 2a, all parameters are successfully identified. The performance of GA and PSO strategies
is shown in Figure 2b,c for comparison. We used the “ga” and “pso” functions in MATLAB R©

with a population size of 30 in each case (i.e., 10np where np is the number of parameters to be
identified [23]). Note that the GA and PSO strategies are also successful at identifying the parameters
in the single-well case.

Figure 2. Evolution of parameter estimates (normalized relative to experimental values) for three
van der Pol–Duffing oscillators: (a–c) single-well, (d–f) double-well, and (g–i) double-hump. (a,d,g):
parameter identification using proportional–derivative controller; (b,e,h): parameter identification
using genetic algorithm; (c,f,i): parameter identification using particle swarm optimization.
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We now repeat the process for double-well and double-hump VDPD oscillators; the experimental
data, objective function shape, and basins of attraction for these systems are shown in Figure 1d–i.
The double-hump oscillator has a highly unstable response, so we use a simulation duration of
2.5 s in this case. The performance of the PD controller, GA, and PSO strategies is shown in
Figure 2d–f for the double-well case and in Figure 2g–i for the double-hump case. All three methods
are again successful at identifying the parameters in the double-well case. However, notice that
the GA and PSO both fail to find the global optimum in the double-hump case, converging to
[

α̂, β̂, µ̂
]

= [1.3818,−0.3617, 0.1581] (maximum relative error of 58%) and [1.4754,−0.4767, 0.0975]
(maximum relative error of 5%), respectively. Notice the relatively small basin of attraction in
Figure 1i, which suggests that the parameter identification problem is relatively challenging in the
double-hump case. Even when the GA and PSO strategies are successful, they are substantially more
computationally expensive than the proposed PD controller approach. As shown in Figures 3 and 4,
the GA and PSO strategies require more iterations and more function evaluations (i.e., they must
consider more candidate solutions) than the proposed approach. Table 2 summarizes the performance
of the three strategies.

Figure 3. Error convergence of objective function J(α, β, µ) during parameter identification for three
van der Pol–Duffing oscillators: (a) single-well, (b) double-well, and (c) double-hump.

Figure 4. Computational effort (cumulative number of function evaluations) required to
identify parameters for three van der Pol–Duffing oscillators: (a) single-well, (b) double-well,
and (c) double-hump.

Table 2. Performance of optimization strategies for the van der Pol–Duffing oscillator using
proportional–derivative controller (PD), genetic algorithm (GA), and particle swarm optimization
(PSO) approaches.

Strategy
Single-Well Double-Well Double-Hump

Iter- Function
Error (J)

Iter- Function
Error (J)

Iter- Function
Error (J)

ations Evals ations Evals ations Evals

PD 30 165 1.8 × 10−14 33 291 2.1 × 10−12 28 383 1.5 × 10−10

GA 152 7650 8.1 × 10−8 201 10,100 3.8 × 10−8 300 15,050 0.84
PSO 135 4080 2.7 × 10−12 165 4980 7.0 × 10−10 140 4230 0.014
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Finally, we consider the robustness of the proposed approach to uncertainty in the measured
data, since experimental measurements are typically corrupted by some amount of noise. We apply
Gaussian noise to each data point in the experimental response as follows:

x̃1e = (1 + NSR · r) x1e, (9)

where x̃1e is the noise-corrupted measurement, NSR is the noise-to-signal ratio, and r is a zero-mean,
normally-distributed random number. As shown in Table 3, the identified parameters are not
substantially affected by zero-mean noise, as would be expected. As shown in Figure 5, the predicted
response reliably tracks the experimental measurement with NSR = 5%, suggesting that the proposed
approach is robust to measurement noise.

Table 3. Performance of proportional–derivative controller optimization strategy for the van der
Pol–Duffing oscillator with measurement noise (experimental parameter values shown in parentheses).

Noise-to-Signal Single-Well Double-Well Double-Hump

Ratio α̂ (0.5) β̂ (0.5) µ̂ (0.1) α̂ (−0.5) β̂ (0.5) µ̂ (0.1) α̂ (1.5) β̂ (−0.5) µ̂ (0.1)

1% 0.5009 0.4994 0.1000 −0.5008 0.5001 0.0999 1.5024 −0.5025 0.0999
2% 0.5007 0.5005 0.0998 −0.5034 0.4999 0.0994 1.4990 −0.4999 0.0985
5% 0.5004 0.4974 0.1005 −0.5066 0.5009 0.0976 1.4923 −0.4898 0.1040

Figure 5. Noisy experimental data (noise-to-signal ratio of 5%) and estimated response using
identified parameters for three van der Pol–Duffing oscillators: (a) single-well, (b) double-well, and
(c) double-hump.

3.2. Hydraulic Engine Mount System

Engine mount systems are designed to isolate passengers in a vehicle from the mechanical
vibration of the engine. Designers of these systems must consider two sources of excitation: the
low-amplitude, high-frequency vibrations caused by the engine as well as the high-amplitude,
low-frequency vibrations induced by the uneven road surface. The response of the engine mount
system is critical in the development of engines, and an accurate mathematical model is essential.
The mechanical details and operating principles of passive engine mount systems are described in the
literature [24–26].

The dynamics of this system are governed by a set of differential algebraic equations [27]:

M(q, p)q̈ + CT
q(q) L = Q(q, q̇, p, t), (10a)

C(q) = 0, (10b)

where M(q, p) , diag(mL, 0, mM, mH) is the mass matrix, q , [x1e, x2e, x3e, x4e]
T is the vector of

generalized coordinates, p , [dH2, cE1, cE2, dE] is the vector of parameters to be identified, CT
q(q) is

the constraint Jacobian, and L is the Lagrange multiplier. (For clarity of notation, we have not shown
functional dependence of each state variable on time.) The generalized force vector is given as follows:
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Q(q, q̇, p, t) =



















F(t) + mLg − FE(x1e, ẋ1e)− cH(x1e − x2e)

cH(x1e − x2e)

−FM(x3e, ẋ3e)

−FH(ẋ4e)



















. (11)

In this example, the engine mount is subjected to a frequency-sweep excitation force of F(t) =

100 sin(4π · 25tt). The elastomer force (FE), membrane force (FM), and hydro-damping force (FH)
depend on the stiffness and damping of linear and nonlinear components:

FE(x1e, ẋ1e) = cE1x1e + cE2x3
1e + dE ẋ1e, (12)

FM(x3e, ẋ3e) = cMx3e + dM ẋ3e, (13)

FH(ẋ4e) = dH1 ẋ4e + dH2 ẋ3
4e. (14)

The algebraic constraint equation that relates the generalized coordinates is as follows:

C(q) = x2e (a + b)− x3eb − x4ea, (15)

which has the following Jacobian:

Cq(q) = [0, a + b,−b,−a] . (16)

Our objective is to identify the parameters p = [dH2, cE1, cE2, dE] from the experimental response.
Once again, we assume that only x1e(t) is measured and the other states are unobserved. In this
example, we use 5-second simulations. The system parameters that are assumed to be known are
provided in Table 4; the experimental values of the parameters to be identified are provided in Table 5
along with their bounds and initial guesses.

Table 4. Experimental parameters for the hydraulic engine mount system model [27].

Parameter Value

mL 20 kg
mH 0.0019 kg
mM 0.002 kg
cH 375 N·mm−1

dH1 0.8 × 10−4 N·s·mm−1

cM 9 N·mm−1

dM 0.01 N·s·mm−1

a 95 mm
b 3.6 mm
g 9.81 m·s−2

Table 5. Parameters to be identified in the hydraulic engine mount system model [27].

Parameter Units Experimental Value Initial Guess Bounds

dH2 N3s3mm−3 2 × 10−9 1 × 10−13 [

1 × 10−13, 5
]

cE1 N·mm−1 123 1 [1, 200]
cE2 N·mm−1 2.5 0.1 [0.1, 20]
dE N·s·mm−1 5 × 10−3 1 × 10−6 [

1 × 10−6, 5
]
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To identify parameters p, we first express the dynamic (Equation (10a), (10b)) in first-order form
and augment the system with a PD controller:

ẋ1 = x2 + λk1 (x1e − x1) , (17a)

ẋ2 =
1

mL

(

F(t) + mLg − ĉE1x1 − ĉE2x3
1 − d̂Ex2 − cH (x1 − x3)

)

+ λk1 (x1e − x1) , (17b)

ẋ3 = x4 + λk1 (x1e − x1) , (17c)

ẋ4 =
1

(a + b)

(

1
mM

(Lb − cMx5 − dMx6) b +
1

mH

(

La − dH1x8 − d̂H2x3
8

)

a

)

+ λk1 (x1e − x1) , (17d)

ẋ5 = x6 + λk1 (x1e − x1) , (17e)

ẋ6 =
1

mM
(Lb − cMx5 − dMx6) + λk1 (x1e − x1) , (17f)

ẋ7 = x8 + λk1 (x1e − x1) , (17g)

ẋ8 =
1

mH

(

La − dH1x8 − d̂H2x3
8

)

+ λk1 (x1e − x1) , (17h)

where L = [cH (x1e − x2e)] / (a + b) is the Lagrange multiplier and we set gain k1 = 10. We use the
same methods as described in Section 3.1 and solve the optimization problem using the “fmincon”
constrained optimization solver in MATLAB R©, with a first-order optimality tolerance of 10−10 as
the termination criterion. We first attempt to identify the parameters without the PD controller by
setting λ = 0; as shown in Figure 6a, the initial guess (i.e., all parameters at their lower bounds)
leads to a local minimum. However, the parameters are correctly identified when the PD controller is
used, as illustrated in Figure 6b. In this example, we observe a slight improvement in performance
when a PID controller is used (i.e., when the integral term is included as shown in Equation (4a),
(4b); we use integral gain ki = 0.02. As shown in Figure 6c and summarized in Table 6, the PID
controller successfully identifies the unknown parameters and requires less computational effort
than the PD controller. We also observe reasonable robustness of the proposed method to Gaussian
measurement noise, as demonstrated by the results shown in Table 7. Note that parameters d̂H2 and d̂E

are relatively small compared to the others and thus we observe greater sensitivity of these parameters
to measurement noise. In practice, a low-pass filter or nondimensionalization may be used to reduce
this relative sensitivity.

Table 6. Performance of optimization strategies for the hydraulic engine mount system using
proportional–derivative controller (PD), proportional–integral–derivative controller (PID), genetic
algorithm (GA), and particle swarm optimization (PSO) approaches.

Strategy
Parameter Estimates Performance

d̂H2 ĉE1 ĉE2 d̂E Iterations Function Evaluations Error (J)

PD 3.563 × 10−8 123.0 2.500 5.000 × 10−3 58 1076 1.21 × 10−10

PID 3.118 × 10−8 123.0 2.500 5.000 × 10−3 39 572 1.17 × 10−10

GA 1.598 × 10−2 114.4 3.484 4.005 × 10−3 174 8750 124
PSO 3.678 × 10−5 123.0 2.500 4.503 × 10−3 135 5440 8.38 × 10−8

Table 7. Performance of proportional–derivative controller optimization strategy for the hydraulic
engine mount system with measurement noise (experimental parameter values shown in parentheses).

Noise-to-Signal Ratio d̂H2 (2 × 10−9) ĉE1 (123) ĉE2 (2.5) d̂E (5 × 10−3)

1% 3.75 × 10−4 123.00 2.4993 4.04 × 10−4

2% 3.80 × 10−4 122.97 2.5036 1.96 × 10−5

5% 5.86 × 10−5 122.94 2.5095 4.75 × 10−4
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Figure 6. Evolution of parameter estimates (normalized relative to experimental values) for
hydraulic engine mount system using five parameter identification strategies: (a) no controller,
(b) proportional–derivative controller, (c) proportional–integral–derivative controller, (d) genetic
algorithm, and (e) particle swarm optimization.

Finally, we compare the performance of the proposed approach to that of the GA and PSO
strategies. As before, we used the “ga” and “pso” functions in MATLAB R© with a population size of
10np in each case (where np = 4 in this example). As shown in Figure 6d,e, the stochastic optimizers
fail to correctly identify the parameters. Furthermore, as shown in Figure 7, they require more function
evaluations than the PD and PID controller strategies. A summary of these comparisons can be found
in Table 6. Thus, the PD and PID controllers demonstrate superior performance in terms of accuracy as
well as computational expense.

Figure 7. Performance of four strategies to identify parameters for hydraulic engine mount system:
(a) error convergence of objective function J(dH2, cE1, cE2, dE); (b) computational effort required
(cumulative number of function evaluations).

3.3. Magnetorheological Damper System

Magnetorheological (MR) dampers are semi-active devices that use MR fluids to control vibration
in structural and mechanical systems [28–30]. Adjusting the current delivered to an electromagnet
changes its magnetic field, thereby changing the viscosity of the MR fluid. This simple control scheme
makes MR dampers ideal for vibration control in vehicle systems [31,32]. MR dampers are also
very reliable in practice as they simply act as passive dampers in the event of control system failure.
However, for design and implementation in practical applications, one requires a precise mathematical
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model of the force–displacement behavior of the system. A suitable mathematical model must capture
the nonlinear behavior of the system caused by hysteresis.

The Bouc–Wen model is widely used to model the hysteresis behavior of structural and mechanical
components [33,34], and is often used to model MR damper systems. In this example, we consider an
MR damper system that comprises three parallel force-generating components:

Fe(t) = c0 ẋe(t) + k0xe(t) + αze(t), (18)

where Fe(t) is the total force applied by the MR damper system, xe(t) is the displacement of one end
relative to the other (e.g., the relative vertical motion of the sprung and unsprung masses in a vehicle),
c0 and k0 are damping and stiffness coefficients, and α represents the ratio between post-elastic stiffness
to elastic stiffness of the damper. We do not consider the influence of the applied electrical current on
the damping characteristics. The dynamics of the hysteresis component (ze(t)) are governed by the
following differential equation:

że(t) = −γ |ẋe(t)| ze(t) |ze(t)|
n−1 − βẋe(t) |ze(t)|

n + Aẋe(t). (19)

The parameters α, β, γ, A, and n determine the hysteresis behavior of the system.
In this example, we identify the system parameters p , [c0, k0, α, β, γ, A, n] assuming the total

force (Fe(t)) is measured. The system parameters and bounds are provided in Table 8. The system
is excited by a sinusoidal input displacement of xe(t) = 1.5 sin(5πt), as shown in Figure 8. We use
1-second simulations in this example. To identify the system parameters, we rewrite Equations (18)
and (19) in first-order form and add a PD controller:

F(t) = ĉ0x2(t) + k̂0x1(t) + α̂x3(t), (20a)

ẋ3(t) = −γ̂ |x2(t)| x3(t) |x3(t)|
n̂−1 − β̂x2(t) |x3(t)|

n̂ + Âx2(t) + λk1 (Fe(t)− F(t)) , (20b)

where x1(t) = 1.5 sin(5πt) and x2(t) is its time derivative. In this case, we set gain k1 = 400 to achieve
synchronization when λ = 1 and use the following objective function:

J(p̂, λ, t) =
∫ 1

0

(

Fe(t)− F(p̂, λ, t)
)2

dt. (21)

The initial guess for each parameter (equal to its lower bound) is listed in Table 8.

Table 8. Parameters in the magnetorheological damper system model [35].

Parameter Units Experimental Value Initial Guess Bounds Identified Value

c0 N·s·cm−1 50 1 [1, 400] 50.00
k0 N·cm−1 25 1 [1, 400] 25.00
α N·cm−1 880 1 [1, 1000] 532.6
β cm−2 100 1 [1, 400] 60.52
γ cm−2 100 1 [1, 400] 60.52
A — 120 1 [1, 400] 198.3
n — 2 1 [1, 2.5] 2.000
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Figure 8. Input displacement used to identify parameters for the magnetorheological damper system.

The evolution of the optimization process using the PD controller is shown in Figure 9; the final
identified parameters are listed in the last column of Table 8. Several of the identified parameters differ
somewhat from the corresponding experimental values. However, when the identified parameters are
used in the original mathematical model (Equations (18) and (19)), the response is in close agreement
with the “experimental” response (Figure 10). Thus, the identified parameter values nevertheless
produce an accurate overall mathematical model. We again compare the performance of the PD
controller with that of GA and PSO strategies [36–38], and we again observe that the PD controller
obtains a lower objective function value in fewer function evaluations (Figure 11). The comparison
between the PD controller and stochastic optimization strategies is summarized in Table 9.

Table 9. Performance of optimization strategies for the magnetorheological damper system using
proportional–derivative controller (PD), genetic algorithm (GA), and particle swarm optimization
(PSO) approaches.

Strategy Number of Iterations Number of Function Evaluations Error (J)

PD 177 2716 1.17 × 10−16

GA 500 100,200 0.804
PSO 500 35,070 2.73 × 10−5

Figure 9. Evolution of parameter estimates (normalized relative to experimental values) for
magnetorheological damper system using proportional–derivative controller.
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Figure 10. Experimental data and estimated response using identified parameters for
magnetorheological damper system: (a) damping force over time, (b) displacement-level hysteretic
response, and (c) velocity-level hysteretic response.

Figure 11. Performance of three strategies to identify parameters for magnetorheological damper
system: (a) error convergence of objective function J(c0, k0, α, β, γ, A, n); (b) computational effort
required (cumulative number of function evaluations).

4. Conclusions

In this paper, we have presented a homotopy optimization strategy that uses a
proportional–integral–derivative (PID) controller as a penalty function. We have applied this strategy
to identify parameters in the van der Pol–Duffing oscillator and two systems of practical importance
in engineering applications: a hydraulic engine mount system and a magnetorheological damper
system. Through detailed numerical examples, we have demonstrated the utility of the proposed
approach to identify model parameters given noisy measurements of only a subset of the system
states. We have also compared its performance to that of two popular stochastic optimizers, namely
the genetic algorithm and particle swarm optimization strategies. In general, we found the proposed
approach to be superior in terms of the solutions that were found as well as the computational effort
required. For the hydraulic engine mount system presented in this work, the integral term was found
to provide a marginal benefit over a proportional–derivative (PD) controller. We, therefore, recommend
considering the PID controller optimization strategy for parameter identification tasks: it is robust,
easy to implement, and efficient thanks to its use of a gradient-based optimizer. Future work includes
investigating application of the proposed approach to more practical scenarios, such as with data
obtained experimentally and approximate mathematical models.
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