Contents lists available at ScienceDirect

Theoretical & Applied Mechanics Letters

journal homepage: www.elsevier.com/locate/taml

On time independent Schrödinger equations in quantum mechanics by the homotopy analysis method

Jyotirmoy Rana^a, Shijun Liao^{a,b,c,*}

^a School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, China

^b State Key Laboratory of Ocean Engineering, Shanghai 200240, China

^c School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

ARTICLE INFO

Article history: Received 20 July 2019 Received in revised form 2 August 2019 Accepted 9 August 2019 Available online 11 August 2019 This article belongs to the Dynamic and Control.

Keywords: Schrödinger equations Homotopy analysis method Convergent eigenvalues and eigenfunctions

ABSTRACT

A general analytic approach, namely the homotopy analysis method (HAM), is applied to solve the time independent Schrödinger equations. Unlike perturbation method, the HAM-based approach does not depend on any small physical parameters, corresponding to small disturbances. Especially, it provides a convenient way to gain the convergent series solution of quantum mechanics. This study illustrates the advantages of this HAM-based approach over the traditional perturbative approach, and its general validity for the Schrödinger equations. Note that perturbation methods are widely used in quantum mechanics, but perturbation results are hardly convergent. This study suggests that the HAM might provide us a new, powerful alternative to gain convergent series solution for some complicated problems in quantum mechanics, including many-body problems, which can be directly compared with the experiment data to improve the accuracy of the experimental findings and/or physical theories.

©2019 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

In quantum mechanics, the Schrödinger equations [1-7] govern the most interesting problems, such as harmonic and anharmonic oscillators, Morse and Pöschl-Teller potentials, etc. The perturbation methods have been developed and broadly applied to solve many problems in quantum mechanics and quantum chromodynamics (QCD) [1-9]. However, in most cases, accurate approximations can be gained only for physical quantities in a rather small range. The perturbation methods depend on a small physical parameter, i.e. perturbed parameter related to disturbances. In general, perturbation methods fail to give a accurate enough solution for large disturbances far from a known status. So do other traditional analytic approximation methods. In practices, a perturbation result is often used to check experimental data without verifying the convergence of the perturbation series solution. So, it is important to provide convergent results for large enough disturbances, which can be directly used to verify experimental data.

To overcome the limitations of perturbation methods and

other traditional analytic methods, a general analytical approach, namely the homotopy analysis method (HAM), was proposed by Liao [10-12] using homotopy, a basic concept in topology. Unlike the perturbation methods, the HAM can solve a nonlinear equation without considering any small/large physical variables/parameters. Especially, the HAM gives a straightforward way to guarantee the convergence of solution series, and due to this, accurate approximations are always obtained even for strongly nonlinear equations. Besides, unlike all other analytical approximation methods, the HAM has a great freedom to choose the auxiliary linear operator and the initial guess of unknowns. The HAM has been widely applied to solve many strongly non-linear equations in different areas [13-18]. Note that the HAM has been used to gain new solutions of some highly nonlinear problems, which can not be obtained by other analytic methods even as well as numerical methods [12]. All of these illustrate the validity, novelty value and superiority of the HAM over all other analytic approximation methods.

Recently, a HAM-based approach was proposed by Liao [18] to solve the time independent Schrödinger equation in quantum mechanics, i.e.

http://dx.doi.org/10.1016/j.taml.2019.05.006

Letter

CrossMark

^{*} Corresponding author.

E-mail address: sjliao@sjtu.edu.cn (S.J. Liao).

^{2095-0349/© 2019} The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

$$H\psi_n(x) = E_n \psi_n(x), \ n = 0, 1, ...,$$
(1)

where *H* is a Hamiltonian operator, E_n and $\psi_n(x)$ are the unknown eigenvalue and the eigenfunction of *H*, respectively. Here, we assume that each eigenvalue E_n corresponds to an unique eigenfunction $\psi_n(x)$. The anharmonic oscillator was used by Liao [18] as an example to illustrate the validity of this approach.

In this manuscript, two examples in quantum mechanics are further used to illustrate the general validity of the HAM-based approach proposed by Liao [18]. The mathematical formulas of this HAM-based approach are briefly described, then we show two examples to verify the validity of this approach.

Liao [18] assumed that the eigenfunction $\psi_n(x)$ can be expressed by the set of known eigenfunction $\psi_k^b(x)$, satisfying

$$H_0 \psi_k^b(x) = E_k^b \psi_k^b(x),$$
 (2)

where H_0 is a known Hamiltonian operator, E_k^b and $\psi_k^b(x)$ are the corresponding known eigenvalue and the eigenfunction of H_0 , respectively. Assume that each eigenvalue E_k^b corresponds to an unique eigenfunction $\psi_k^b(x)$, and besides $\psi_k^b(x)$ is orthonormal, i.e.

$$\left(\psi_{m}^{b},\psi_{n}^{b^{*}}\right) = \begin{cases} 1, & \text{when } m = n, \\ 0, & \text{otherwise,} \end{cases}$$
(3)

where $\psi_{\mu}^{b^*}$ is a complex conjugate of ψ_{μ}^{b} .

The homotopy series solution of the time independent Schrödinger equation read

$$\psi_n(x) = \psi_n^{(0)}(x) + \sum_{m=1}^{+\infty} \psi_n^{(m)}(x),$$
(4)

$$E_n = E_n^{(0)} + \sum_{m=1}^{+\infty} E_n^{(m)},$$
(5)

where

$$E_n^{(k-1)} = \frac{\left(H\psi_n^{(k-1)} - \sum_{i=0}^{k-2} E_n^{(i)}\psi_n^{(k-1-i)}, \psi_n^{b^*}\right)}{\left(\psi_n^{(0)}, \psi_n^{b^*}\right)},$$
(6)

$$\psi_n^{(k)} = \chi_k \, \psi_n^{(k-1)} + \sum_{m=0}^N a_{n,m}^{(k)} \, \psi_m^b \tag{7}$$

with N being a large enough truncation number and

$$a_{n,m}^{(k)} = c_0 \left(\frac{\Delta_{k-1}^{n,m}}{E_m^b - E_n^b} \right), \text{ when } m \neq n,$$
 (8)

$$a_{n,n}^{(k)} = -\frac{\left(\left(H - \sum_{j=0}^{k-1} E_n^{(j)}\right)\hat{\psi}_n^{(k)}, \left(H - \sum_{j=0}^{k-1} E_n^{(j)}\right)\psi_n^{b*}\right)}{\left(\left(H - \sum_{j=0}^{k-1} E_n^{(j)}\right)\psi_n^{b}, \left(H - \sum_{j=0}^{k-1} E_n^{(j)}\right)\psi_n^{b*}\right)},$$
(9)

in which

$$\Delta_{i}^{n,m} = \left(H \, \psi_{n}^{(i)} - \sum_{j=0}^{i} E_{n}^{(j)} \, \psi_{n}^{(i-j)}, \psi_{m}^{b^{*}} \right), \tag{10}$$

$$\hat{\psi}_{n}^{(k)} = \sum_{i=0}^{k-1} \psi_{n}^{(i)} + \chi_{k} \psi_{n}^{(k-1)} + \sum_{m=0, m \neq n}^{N} a_{n,m}^{(k)} \psi_{m}^{b}(x), k \ge 1,$$
(11)

and

$$\chi_k = \begin{cases} 0, & \text{when } k \le 1, \\ 1, & \text{otherwise.} \end{cases}$$
(12)

Especially, c_0 is the so-called "convergence-control parameter" in the frame of the HAM, which can guarantee the convergence of solution series. The optimal value of the c_0 is determined by means of the minimum of the residual error square of the governing Eq. (1). This is quite different from all other analytic approximation methods. In fact, it is the so-called "convergencecontrol parameter" c_0 that distinguishes the HAM from all of others. For details, please refer to Liao [18].

At the Mth-order of approximation, we have

$$\psi_n(x) \approx \psi_n^{(0)}(x) + \sum_{m=1}^M \psi_n^{(m)}(x),$$
(13)

$$E_n \approx E_n^{(0)} + \sum_{m=1}^M E_n^{(m)}.$$
 (14)

Unlike perturbation methods, the HAM provides us the great flexibility to choose the initial guess $\psi_n^0(x)$. Using this freedom, we can first choose $\psi_n^{(0)} = \psi_n^b$ and then gain a *M*th-order approximation of ψ_n and E_n by means of the above-mentioned formulas. Then, the *M*th-order approximation of ψ_n can be further used as an initial guess $\psi_n^{(0)}$ to gain a better *M*th-order approximation of ψ_n and E_n in a similar way. In fact, this provides us a iteration HAM-based approach for the considered problem, which can accelerate the convergence greatly, as illustrated by Liao [18].

In this study, we further consider two examples in the quantum mechanics, the complex cubic anharmonic oscillator and the perturbed Pöschl-Teller potential, to show the general

Fig. 1. The analytic approximations of the eigenvalue E_0 of Eq. (15) versus λ . Solid line: convergent results given by the HAM-based approach; long dashed line: 2nd-order perturbative approach; dashed dotted line: 4th-order perturbative approach; dashed line: 50th-order perturbative approach.

377

Table 1 The analytic approximations of the eigenvalue E_0 and residual error square of Eq. (15) using 6th-order HAM-based iteration approach at different times of iteration (*i*) in case of $\lambda = 0.15$ with $c_0 = -0.15$, N = 45 and $\lambda = 0.2$ with $c_0 = -0.1$, N = 50, compared by the perturbation approach at different order of approximation (*M*).

λ	<i>i</i> or <i>M</i>	E_0 (HAM)	error (HAM)	E_0 (perturbation)	error (perturbation)
0.15	5	0.5257485061	$1.7 imes 10^{-7}$	0.5236	$1.3 imes 10^{-2}$
0.15	15	0.5257681087	$5.7 imes10^{-15}$	0.5272	$1.5 imes10^1$
0.15	30	0.525768111101989	$7.1 imes10^{-21}$	0.7950	2.2×10^{10}
0.15	50	0.52576811110199309605	$7.1 imes10^{-21}$	$5.5 imes10^4$	$5.1 imes10^{31}$
0.20	5	0.5412382156	$5.2 imes10^{-6}$	0.5318	$4.2 imes10^{-1}$
0.20	20	0.5414194864	$4.4 imes10^{-13}$	-1.47	$1.1 imes10^9$
0.20	40	0.54141951461230	$6.9 imes10^{-20}$	$-7.3 imes10^{6}$	$9.7 imes10^{37}$
0.20	80	0.54141951461272812011	$6.9 imes10^{-20}$	$-6.5 imes10^{25}$	$1.9 imes10^{120}$

validity of the HAM-based approach developed by Liao [18]. These two examples are widely used in textbooks of quantum mechanics. Unlike the perturbative approach [1-7], the HAM-based approach successfully provides the accurate convergent results for eigenvalues and eigenfunctions, as shown below.

The non-dimensional form of the time independent Schrödinger equation for a complex cubic anharmonic oscillator is given by [19]

$$H\psi_n(x) = \left(-\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}x^2 + i\lambda x^3\right)\psi_n(x) = E_n\psi_n(x),$$

 $n = 0, 1, \dots, \text{ and } -\infty < x < \infty,$ (15)

with an orthonormal basis

$$\psi_k^b(x) = \frac{1}{\pi^{1/4} (2^k \, k!)^{1/2}} \, \hat{H}_k(x) \, \exp\left(-\frac{x^2}{2}\right), \ k = 0, 1, \dots, N,$$
 (16)

Table 2 The convergent results of the eigenvalue E_0 of Eq. (15) given by the HAM-based approach for different values of λ by means of the appropriate values of c_0 and N.

λ	E_0	\mathcal{C}_0	N
0.01	0.5001373550	-1	40
0.05	0.5033511914	-0.50	40
0.1	0.5125381459	-0.33	40
0.15	0.5257681111	-0.15	45
0.2	0.5414195146	-0.10	50
0.25	0.5583721242	-0.08	50
0.3	0.5759252021	-0.06	50
0.5	0.6458770810	-0.02	55
0.75	0.7260238685	-0.005	60
1	0.7973426075	-0.002	60
1.25	0.8614046687	-0.002	60
1.5	0.9196784830	-0.002	60

$$E_k^b = k + \frac{1}{2}, \quad k = 0, 1, \dots, N,$$
 (17)

satisfying Eq. (2), where $\hat{H}_k(x)$ is the *k*th Hermite polynomial in *x*, *N* is sufficiently large positive integer and

$$H_0 = -\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}x^2.$$
 (18)

Even in case of small disturbances, such as $\lambda = 0.15$ and 0.2, the residual error square of perturbation series increases quite significantly (see Table 1) and the perturbation series are divergent. It is found that the perturbation series is divergent for $\lambda \ge 0.1$, as shown in Fig. 1. However, by means of 6th-order HAM based iteration approach for $\lambda = 0.15$ and 0.2, the residual error square decreases sharply as the times of iteration increases, results and convergent of E_0 are obtained as 0.52576811110199309605 and 0.54141951461272812011, respectively, in accuracy of 20 digits. These HAM results agree with the results obtained by means of the homotopy-Padé technique [10, 12, 18]. The convergent HAM based results of E_0 are shown in Fig. 1 and Table 2. This shows the validity as well as superiority of the HAM-based approach over the perturbation approach for

Fig. 2. Comparison of analytic approximations of the eigenvalue E_0 of Eq. (19) for different values of λ when a = 0. Solid line: convergent results given by the HAM-based approach; solid circle: numerical results; long dashed line: the 5th-order perturbative result; dashed line: the 15th-order perturbative result; dashed dot dotted line: the 25th-order perturbative result.

the time independent Schrödinger equations.

Note that as the disturbance becomes larger, we should use a larger truncation number N and a convergence-control parameter c_0 closer to zero. This has general meaning.

The non-dimensional time-independent Schrödinger equation for perturbed Pöschl-Teller potential is given by Ciftci et al. [8]

$$H\psi_{n}(x) = \left[-\frac{d^{2}}{dx^{2}} + \frac{a(a+1)}{\sin^{2}x} + \lambda \cos^{2}x \right] \psi_{n}(x) = E_{n}\psi_{n}(x),$$

 $n = 0, 1, \dots \text{ and } 0 \le x \le \pi,$ (19)

with an orthonormal basis

$$\psi_k^b(x) = \sqrt{\frac{k! (k+l) [\Gamma(l)]^2}{\pi 2^{(1-2l)} \Gamma(k+2l)}} C_k^l(\cos x) \sin^l x, \ k = 0, 1, \dots, N,$$
(20)

$$E_k^b = (k+l)^2, \ k = 0, 1, \dots, N,$$
 (21)

Table 3 The eigenvalue E_0 and residual error square of Eq. (19) in case of a = 0 and $\lambda = 18$ or 20 at different orders of approximation (M) given by the HAM-based approach using N = 40 and $c_0 = -0.5$ or -0.47, respectively, compared with perturbation results.

λ	Μ	E_0 (HAM)	error (HAM)	E_0 (perturbation)	error (perturbation)
18	10	3.9816208070	$2.7 imes10^{-7}$	3.983	7.6×10^{-1}
18	20	3.9814816093	$1.5 imes10^{-13}$	3.142	6.2
18	50	3.981481527702446	$1.0 imes10^{-31}$	-29.80	$2.9 imes10^5$
18	100	3.98148152770244655541	$7.7 imes10^{-61}$	$-3.4 imes10^5$	$4.6 imes10^{19}$
20	5	4.2221579776	$9.5 imes10^{-4}$	3.49	2.8
20	20	4.2099195833	$1.9 imes10^{-12}$	-0.99	$4.2 imes10^2$
20	50	4.20991940136222	$3.9 imes10^{-29}$	$-3.7 imes10^3$	$5.5 imes10^{13}$
20	100	4.20991940136222895618	$1.4 imes10^{-54}$	$-3.5 imes10^9$	$3.7 imes10^{35}$

Table 4 The convergent results of eigenvalues E_n (n = 0, 1, 2 and 3) of Eq. (19) at a = 0 for different values of λ by means of the HAM-based approach using N = 40 and the appropriate values of c_0 .

λ	E ₀	E_1	<i>E</i> ₂	E ₃
0.01	1.00249921899411516457	4.00499947916668079517	9.00500039038088420031	16.00500020833331900138
1	1.24242882598662974340	4.49479307863211894594	9.50366486704623913463	16.50208190103817298727
5	2.08298529320468367184	6.37066112500890732042	11.56933915693888693018	18.55120139840321147229
10	2.92366849417120532278	8.49247436673895637525	14.18570997013965417227	21.19483734691592869546
20	4.20991940136222895618	12.09946044548666536396	19.23632771369370141140	26.64821993716977690578
30	5.21474307442113992046	15.07251969901294834268	23.84564881697482335472	32.10850374889149650666
40	6.06344752074991164568	17.61784176404304428467	27.98606914468166043667	37.38138067862304300495
50	6.81116377466168925674	19.86700121109626252435	31.71794930664684257168	42.36733519814194107109
60	7.48699650257653336648	21.90065320110410358091	35.11661512331434779109	47.03734214335180575504
70	8.10835898359915907552	23.76993147941929539960	38.24731024045546251627	51.40299733081728707321
80	8.68661383308707315321	25.50893674401927591479	41.16070567916522741976	55.49397757698929289364
90	9.22965323133511648360	27.14153650448121471753	43.89500117963749620380	59.34443997266785447293
100	9.74322101531584071670	28.68513937775014914569	46.47905847337863056224	62.98648995274245978696
110	10.23165128933749180477	30.15288307322615558064	48.93500790252637350844	66.44790034914871858347
120	10.69830978643046275722	31.55496398422165438870	51.28013727513466046278	69.75186886811971957681
130	11.14587211465002765276	32.89948148670902614038	53.52820691765106416373	72.91754531708167755381
140	11.57650697021742532964	34.19299538242719427068	55.69036142948364037099	75.96073838144756045244
150	11.99200119612263392576	35.44090662990756309879	57.77576859706616873171	78.89457469325834971279

379

Table 5 The convergent results of eigenvalues E_n (n = 0, 1, 2 and 3) of Eq. (19) at a = 0.5 for different values of λ by means of the HAM-based approach using N = 40 and the appropriate values of c_0 .

λ	E ₀	E_1	E ₂	E ₃
0.01	2.25199954297902658333	6.25428532557322463209	12.25466680302430739769	20.25480531381620911537
1	2.44554835541300395688	6.67469914377513472003	12.71791533039148730248	20.73169601305318091164
10	3.89389516880636419593	10.16620698489916480350	16.95629281567062397924	25.15631107380003495610
20	5.09414152740260350534	13.44338561468865863132	21.49663709190960663392	30.17091977566938310490
30	6.06362951752211741274	16.24087585650160522208	25.71066300676564320340	35.14728812065663659491
40	6.89384226882383707178	18.68943904688555403738	29.57764139776662527919	39.97540868634094803006
50	7.63017086323070120030	20.88084019195437405215	33.12805195325638730014	44.59388664039104362680
60	8.29820329564283579917	22.87698136560856723121	36.40605612593252098921	48.97929835147204614354
70	8.91382799523018675300	24.72006560902076615594	39.45433993918468776706	53.13231798154013344513
80	9.48764697411110775465	26.43969471838910190076	42.30928726676566424711	57.06657284447990498955
90	10.02713053251774216626	28.05730930465453244185	45.00045973314515870510	60.80117914461348443451
100	10.53776876739146817076	29.58891804161448147006	47.55151547659262516662	64.35639010512952539021
110	11.02373329542138675393	31.04680084615842519672	49.98139290480738611252	67.75140207925826343057
120	11.48828052205791492245	32.44060034510909407721	52.30536522061672134918	71.00345655360695673647
130	11.93400951180738726648	33.77804222517246892707	54.53587921100956465616	74.12763015868968544322
140	12.36303359661252832422	35.06542452520877615690	56.68319442813740575346	77.13694557705468701056
150	12.77709847357523410779	36.30795898004409138129	58.75586340205722377092	80.04260532216713975480

Table 6 The convergent results of eigenvalues E_n (n = 0, 1, 2 and 3) of Eq. (19) at a = 2 for different values of λ by means of the HAM-based approach using N = 40 and the appropriate values of c_0 .

λ	E ₀	E_1	E_2	E ₃
0.01	9.00124986330260921988	16.00299982501000008779	25.00374995813061262731	36.00414286130792181624
1	9.12365386959924016184	16.29826000777325693714	25.37456507849376416314	36.41431976372089656883
10	10.13187717670525692434	18.83499500360023909489	28.69431857380382659413	40.13941719090031751365
20	11.08425083698881516799	21.37874211769935584982	32.24040624850979415264	44.24321080409936506253
30	11.91432691518066124580	23.68408009040436704398	35.61203192009893769307	48.27469239115520320977
40	12.65629104026673191548	25.79480279979125937026	38.80618887068827779804	52.20760652946543395948
50	13.33174722263974848022	27.74570824844273458783	41.83109607064401944030	56.02574064216296777262
60	13.95508633660077936139	29.56399033259895926757	44.69974478059163010312	59.72102674537994466348
70	14.53634231949131640868	31.27086008637038891080	47.42650612348663801927	63.29136442152006178721
80	15.08278625079349909093	32.88296377147356359454	50.02543314504176105484	66.73869796967359298389
90	15.59986027045680047380	34.41349875526199809995	52.50949305166753183827	70.06750765539271396783
100	16.09174985076518123850	35.87305308878263409069	54.89029516626871650095	73.28370915170124297225
110	16.56174881675609514972	37.27022640324955805272	57.17806959362392525592	76.39389416164737602473
120	17.01250055641843471367	38.61208760741546477376	59.38176184528163563299	79.40483226693979835942
130	17.44616244630942662315	39.90451370622586760389	61.50917196478582591142	82.32316139592697182264
140	17.86452103843868204021	41.15244266856619709231	63.56710211325608157525	85.15520847621524630729
150	18.26907471873954711457	42.36006406667422857037	65.56149581319387130664	87.90689652399476512088

satisfying Eq. (2), where $C_k^l(\cos x)$ is the Gegenbauer polynomial, N is a sufficiently large positive integer, l = a + 1 and

$$H_0 = -\frac{d^2}{dx^2} + \frac{a(a+1)}{\sin^2 x}.$$
 (22)

The eigenvalue E_n and its corresponding eigenfunctions $\psi_n(x)$ for different values of *a* and *n* = 0, 1, 2 and 3 are evaluated using the HAM-based approach given by Liao [18] at small as well as very large disturbances. First, let us consider the eigenvalue E_0 at a = 0. It is very clear from Table 3 that for high disturbances such as $\lambda = 18$ and 20, the residual error square of perturbation series enlarges significantly as the order of approximation increases so that the perturbative results become invalid due to the divergence. The same is reported for higher disturbances. However, even with very high disturbances, the HAMbased approach successfully provides the convergent and accurate results for E_0 which agree well with the numerical results obtained by a constant reference potential perturbation method (CPM) [20] (see Fig. 2 and Table 4). The same is also noticed for E_n and $\psi_n(x)$ with different values of *a*. The convergent results of ground state and excited energies E_n (n = 0, 1, 2 and 3) in accuracy of 20 digits are listed in Tables 4, 5, and 6 for a = 0, 0.5 and 2, respectively. These results also agree well with its homotopy-Padé approximation [10, 12, 18]. This further indicates the general validity of HAM-based approach for the Schrödinger equation in quantum mechanics, and its superiority over the traditional perturbative approaches.

In this article, two examples, i.e. the complex cubic anharmonic oscillator and the perturbed Pöschl-Teller potential, are successfully solved by means of the HAM-based approach first proposed by Liao [18] for the time-independent Schrödinger equations in guantum mechanics. Note that perturbation approach becomes invalid when the disturbance enlarges. However, convergent results of eigenvalue and eigenfunction are always obtained by means of the HAM-based approach, even when the disturbances are quite large, which can be directly compared with the experiment data to improve the accuracy of the experimental findings and/or physical theories. This further illustrates the general validity of the HAM-based approach proposed in Ref. [18] for the time-independent Schrödinger equations in quantum mechanics, and its superiority over the traditional perturbative approaches. This study suggests that the HAM might provide us a new, powerful alternative to solve some complicated problems in quantum mechanics, including manybody problems which we will consider in future.

Acknowledgement

Thanks to the anonymous referees for their valuable comments and discussions. This work is partly supported by the National Natural Science Foundation of China (No. 11432009).

References

- [1] P.A.M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, Oxford, 1958.
- [2] S. Flügge, Practical Quantum Mechanics, Springer, Berlin, 1974.
- [3] W. Greiner, Quantum Mechanics An Introduction, Springer-Verlag, Berlin, 2000.
- [4] F.M. Fernández, Introduction to Perturbation Theory in Quantum Mechanics, CRC press, 2000.
- [5] A.F.J. Levi, Applied Quantum Mechanics, Cambridge University Press, 2006.
- [6] H.F. Hameka, Quantum Mechanics A Conceptual Approach, Wiley - Interscience, A John Wiley & Sons, Inc. Publication, Hoboken, 2004.
- [7] D.A. Miller, Quantum Mechanics for Scientists and Engineers, Cambridge University Press, 2008.
- [8] H. Ciftci, R.L. Hall, N. Saad, Perturbation theory in a framework of iteration methods, Physics Letters A 340 (2005) 388–396.
- [9] A.H. Nayfeh, Perturbation Methods, John Wiley & Sons, New York, 2000.
- [10] S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Boca Raton: Chapman & Hall/CRC Press, 2003.
- [11] S.J. Liao, Notes on the homotopy analysis method: some definitions and theorems, Communications in Nonlinear Science and Numerical Simulation 14 (2009) 983–997.
- [12] S.J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Springer & Higher Education Press, Heidelberg, 2012.
- [13] D. Xu, Z. Lin, S.J. Liao, et al., On the steady-state fully resonant progressive waves in water of finite depth, Journal of Fluid Mechanics 710 (2012) 379–418.
- [14] X.X. Zhong, S.J. Liao, Analytic solutions of Von Kármán plate under arbitrary uniform pressure-equations in differential form, Studies in Applied Mathematics 138 (2017) 371–400.
- [15] X.X. Zhong, S.J. Liao, Analytic approximations of Von Kármán plate under arbitrary uniform pressure-equations in integral form, Science China - Physics, Mechanics & Astronomy 61 (2018) 014611.
- [16] X.Y. Yang, F. Dias, S.J. Liao, On the steady-state resonant acoustic-gravity waves, Journal of Fluid Mechanics 849 (2018) 111–135.
- [17] X.X. Zhong, S.J. Liao, On the limiting Stokes wave of extreme height in arbitrary water depth, Journal of Fluid Mechanics 843 (2018) 653–679.
- [18] S.J. Liao, A new non-perturbative approach in quantum mechanics for time-independent Schrödinger equations, Science China - Physics, Mechanics & Astronomy (arXiv: 1806.05103, published online, doi: 10.1007/s11433-019-9430-4).
- [19] C.M. Bender, P.N. Meisinger, Q. Wang, Calculation of the hidden symmetry operator in *PI*-symmetric quantum mechanics, Journal of Physics A: Mathematical and General 36 (2003) 1973.
- [20] V. Ledoux, M.V. Daele, G.V. Berghe, CP methods of higher order for Sturm-Liouville and Schrödinger equations, Computer physics communications 162 (2004) 151–165.