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Abstract

For a graph G, a set D ⊆ V (G) is called a [1, j]-dominating set if every vertex in V (G) \D has

at least one and at most j neighbors in D. A set D ⊆ V (G) is called a [1, j]-total dominating

set if every vertex in V (G) has at least one and at most j neighbors in D. In the [1, j]-(Total)

Dominating Set problem we are given a graph G and a positive integer k. The objective is to

test whether there exists a [1, j]-(total) dominating set of size at most k. The [1, j]-Dominating

Set problem is known to be NP-complete, even for restricted classes of graphs such as chordal and

planar graphs, but polynomial-time solvable on split graphs. The [1, 2]-Total Dominating Set

problem is known to be NP-complete, even for bipartite graphs. As both problems generalize

the Dominating Set problem, both are W[1]-hard when parameterized by solution size. In

this work, we study [1, j]-Dominating Set on sparse graph classes from the perspective of

parameterized complexity and prove the following results when the problem is parameterized by

solution size:

[1, j]-Dominating Set is W[1]-hard on d-degenerate graphs for d = j + 1;

[1, j]-Dominating Set is FPT on nowhere dense graphs.

We also prove that the known algorithm for [1, j]-Dominating Set on split graphs is optimal

under the Strong Exponential Time Hypothesis (SETH). Finally, assuming SETH, we provide a

lower bound for the running time of any algorithm solving the [1, 2]-Total Dominating Set

problem parameterized by pathwidth.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of

computation → Design and analysis of algorithms

Keywords and phrases [1, j]-dominating set, parameterized complexity, sparse graphs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.34

1 Introduction

A dominating set of a graph G is a subset D of vertices such that each vertex in V (G) \D is

adjacent to at least one vertex in D. Various extensions of domination, such as independent,

total, efficient, and perfect domination, have been introduced and widely studied both

combinatorially and algorithmically. A discussion of these extensions can be found in [14]. A
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[1, j]-dominating set, as first defined in [3], is a set that dominates the vertices of the graph

but every vertex outside of the set must have at most j neighbors in it. In [3], it was shown

that a minimum [1, 2]-dominating set and a minimum dominating set are of the same size in

several classes of graphs such as claw-free graphs, P4-free graphs, and caterpillars. It was also

shown that the problem is NP-complete, even for bipartite graphs. In the [1, j]-Dominating

Set problem the input is a graph G and a positive integer k. The objective is to test whether

there is a [1, j]-dominating set of size at most k. The authors in [3] raised several open

problems, including whether restricting to specific classes of graphs leads to strictly better

upper bounds for the size of [1, j]-dominating sets and whether [1, j]-Dominating Set

is efficiently solvable on trees. In [29] the first question was answered negatively for the

classes of planar, bipartite, and triangle-free graphs in which the smallest [1, 2]-dominating

set is the entire set of vertices. In [12] the second question was answered positively via a

linear-time algorithm. In [2], the [1, j]-Dominating Set problem was shown to be NP-hard

even for chordal and planar graphs. However, for a constant j, a polynomial-time algorithm

running in time O(njp(lgn)) where p is a polynomial function, was obtained for n-vertex split

graphs [2]. This is in contrast to the classic Dominating Set problem which is NP-hard for

this class of graphs.

The Dominating Set problem has been widely studied in the realm of parameterized

complexity. In general, finding a dominating set of size k is a canonical W[2]-complete

problem and therefore unlikely to admit FPT algorithms [7]. Moreover, the problem remains

W[2]-complete for split and bipartite graphs [23]. Nevertheless, there are interesting classes

of sparse graphs for which the Dominating Set problem admits FPT algorithms. For

example, there is an O∗(3tw)-time algorithm for graphs of treewidth at most tw [28, 15], and

FPT algorithms for nowhere dense graphs [6] and d-degenarate graphs [1]. Also, an FPT

algorithm was reported in [27] for t-biclique-free graphs, i.e., graphs that do not contain Kt,t

as a subgraph. To the best of our knowledge, this is the largest class of graphs for which

the Dominating Set problem is known to be fixed-parameter tractable; d-degenerate and

nowhere dense graphs are subclasses of t-biclique-free graphs.

Another variant of dominating sets and [1, j]-dominating sets is [1, j]-total dominating sets.

For a graph G, a subset D ⊆ V (G) is called a [1, j]-total dominating set if 1 ≤ |N(v)∩D| ≤ j

for all v ∈ V (G), where N(v) denotes the open neighbourhood of v in G. In the [1, j]-Total

Dominating Set problem we are given a graph G and a positive integer k. The objective

is to check whether G admits a [1, j]-total dominating set of size at most k. [1, 2]-Total

Dominating Set is NP-complete even for bipartite graphs [24]. Sharp upper bounds on the

[1, 2]-total domination number of a graph are investigated in [16, 29]. Using a result of Rooij

et al. [28], we can show that [1, j]-Dominating Set and [1, j]-Total Dominating Set are

solvable in time O∗((j + 2)tw) and O∗((2j + 2)tw), respectively, on graphs of treewidth at

most tw.

Our Contribution. In this paper, we study [1, j]-Dominating Set and [1, j]-Total Dom-

inating Set from the parameterized complexity perspective. We prove the following results.

1. For any ǫ > 0, there is no algorithm with running time O(nj−ǫ) for [1, j]-Dominating

Set on split graphs assuming the Strong Exponential Time Hypothesis (SETH).

2. For the case of d-degenerate graphs, we tighten the complexity results and show that the

[1, j]-Dominating Set problem is W[1]-hard for d = j + 1.

3. [1, j]-Dominating Set is FPT on classes of nowhere dense graphs.

4. There is no algorithm for [1, 2]-Total Dominating Set running in time O∗((4 − ǫ)pw)

assuming SETH, where pw is the pathwidth of the input graph.
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We begin by some basic terminology and notation in Section 2. Then the next sections

each address one of the results mentioned above.

2 Preliminaries

Graphs. We assume G is a simple graph with vertex set V (G) and edge set E(G). For

brevity, we often denote these sets by V and E. We let n = |V (G)| denote the order of G. For

a vertex v ∈ V , the open neighborhood of v, denoted by N(v), is defined as {u : {u, v} ∈ E}
and the closed neighborhood N [v] is defined as N(v)∪{v}. For a set S ⊆ V , we use N(S) and

N [S] to denote the open and closed neighborhood S, respectively. That is, N [S] =
⋃

v∈S N [v]

and N(S) = N [S] \ S. For a set U ⊆ V , we use G[U ] to denote the subgraph of G induced

on U . A tree decomposition of a graph G is a tree T in which each vertex x ∈ T has an

assigned set of vertices Bx ⊆ V (G) (called a bag) which satisfies the following properties: (i)
⋃

x∈T Bx = V (G); (ii) For any {u, v} ∈ E, there exists x ∈ V (T ) such that u, v ∈ Bx; (iii)

For any v ∈ V (G), the subtree of T induced on {x ∈ V (T ) : v ∈ Bx} is connected. The width

of a tree decomposition T is maxx∈V (T )(|Bx| − 1). The treewidth of G, denoted by tw(G),

is the minimum width over all tree decompositions of G. The pathwidth of G, denoted by

pw(G), is the minimum width over all tree decompositions T of G, where T is a path.

Parameterized complexity. We now review some necessary concepts from parameterized

complexity. For more details we refer the reader to [4, 8]. Given a finite alphabet Σ, a

parameterization of Σ∗ is a function p : Σ∗ → N. A parameterized language L is a subset

of {(x, k) | x ∈ Σ∗ ∧ k = p(x)}. Here k is called the parameter. A parameterized language

L ⊆ Σ∗ × N is called fixed-parameter tractable (FPT) if there exist an algorithm A (called a

FPT algorithm) and a computable function f : N → N such that given (x, k) ∈ Σ∗ × N, the

algorithm A correctly decides whether (x, k) ∈ L in time f(k) · |(x, k)|O(1). The class of all

fixed-parameter tractable problems is denoted by FPT.

◮ Definition 1. Let L and L′ be two parameterized languages with parameterization functions

p and p′. An FPT reduction from L to L′ is a mapping ρ : Σ∗ → Σ∗ such that the following

holds.

For all x ∈ Σ∗, (x, p(x)) ∈ L if and only if (ρ(x), p′(ρ(x))) ∈ L′

There exists a computable function g : N → N such that for all x ∈ Σ∗, p′(ρ(x)) ≤ g(p(x)).

ρ is computable in FPT time, i.e., there exists a computable function f such that ρ(x) is

computable in time O(f(p(x)) · |x|O(1)).

To classify problems that are not FPT, Downey and Fellows [8] introduced the W-

hierarchy. The hierarchy consists of complexity class W[t] for every integer t ∈ N such that

W [t] ⊆ W [t + 1], for all t. More generally, FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[t]. For our

purposes, it is sufficient to note that these classes are closed under FPT reduction.

ETH and SETH. For q ≥ 3, let δq be the infimum of the set of constants c for which there

exists an algorithm solving q-SAT with n variables and m clauses in time 2cn ·mO(1). The

Exponential-Time Hypothesis (ETH) and Strong Exponential-Time Hypothesis (SETH) are

then formally defined as follows. ETH conjectures that δ3 > 0 and SETH that limq→∞ δq = 1.

In other words, SETH conjectures that for all 0 < ǫ < 1, there exist a (large) q = q(ǫ) such

that q-SAT cannot be solved in time O(2(1−ǫ)n), where n is the number of variables in the

input formula.

FSTTCS 2018
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Figure 1 Constructed Split Graph.

3 Split Graphs

A graph G is called a split graph if its vertices can be partitioned into V1 ⊎ V2 such that

G[V1] is a complete graph and G[V2] is an empty graph (i.e., V2 is an independent set in

G). Several domination-like problems such as domination, total domination, and k-tuple

domination are known to be NP-complete even on split graphs. On the other hand, there is

a nj · (lgn)O(1) time algorithm for [1, j]-Dominating Set on split graphs [2]. In this section,

we prove that this is optimal, in the sense that one cannot obtain an O(nj−ǫ) algorithm for

[1, j]-Dominating Set on split graphs unless SETH fails.

Reduction. Given an instance I = C1∧C2∧. . .∧Cm of q-SAT over the set X = {x1, . . . , xn}
of variables, we construct a graph GI as follows.

We partition the set X into j subsets X1, . . . , Xj of size at most ⌈n/j⌉.

For each Xi we add a set Si of 2|Xi| vertices to the graph, each corresponding to one

possible valuation of the variables in Xi. We also add two distinguished vertices ui and

vi and connect them to all of Si.

We connect all the vertices in
⋃j

i=1 Si. That is
⋃j

i=1 Si forms a clique in GI .

For every clause Ci, we add a vertex ci and connect it to every vertex w of any Sj where

the valuation corresponding to w satisfies Ci.

This completes the construction of GI . See Figure 1 for an illustration. Our reduction

algorithm will output an instance (GI , j) of [1, j]-Dominating Set. We now proceed to

proving the correctness of the reduction.

◮ Lemma 2. If I is satisfiable then GI has a [1, j]-dominating set of size j.

Proof. Take one satisfying valuation of I and let s1 ∈ S1, s2 ∈ S2, . . . , sj ∈ Sj be the

vertices of GI that correspond to this valuation. We claim that S = {s1, s2, . . . , sj} is a

[1, j]-dominating set. Every vertex in any of the Si’s is dominated by all of S, every {ui, vi}
pair is dominated only by the corresponding si and every ci is dominated by a non-empty

subset of S, i.e., the vertices whose corresponding valuation forces satisfaction of Ci. Given

that |S| = j, there can be at most j such vertices. ◭

◮ Lemma 3. If GI has a [1, j]-dominating set of size j then I is satisfiable.

Proof. First note that any dominating set of GI of size j is also a [1, j]-dominating set. Let

S be a dominating set of size at most j (and hence a [1, j]-dominating set) in GI . Since

{N [ui] : i ∈ {1, . . . , j}} are pairwise vertex disjoint we have that |S| = j and |S ∩N [ui]| = 1
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for all i ∈ {1, . . . , j}. Moreover, since N(ui) = N(vi), we conclude that S ⊆ (
⋃j

i=1 Si).

Consider the valuation of variables in X that corresponds to the vertices in S. This valuation

satisfies every Ci, because S dominates every ci. ◭

◮ Theorem 4. For any ε < 1 and constant j, there is no O(nj−ε) time algorithm for

[1, j]-Dominating Set on split graphs unless SETH fails.

Proof. For the sake of contradiction assume that there is an O(nj−ε) time algorithm A for

[1, j]-Dominating Set on split graphs. Then we claim that SETH is false. Let ǫ = (1 − ε
j ).

Let q = q(ǫ) be the constant defined in the SETH conjecture. Given a q-SAT instance

I we construct an instance (GI , j) as mentioned in the reduction. By Lemmas 2 and 3

we know that I is satisfiable if and only if (GI , j) is a yes-instance. Therefore, we use

algorithm A to solve q-SAT. Now consider the running time for solving q-SAT using A.

The construction of (GI , j) takes time 2⌈n/j⌉ · nO(1) and the number of vertices in GI is at

most 2j +m+ j2⌈n/j⌉ = 2⌈n/j⌉ · nO(1). Thus the algorithm A on instance (GI , j) takes time

2⌈n/j⌉(j−ε) ·nO(1) = 2(n/j+(j−1))(j−ǫ) ·nO(1) = 2(n/j)(j−ε) ·nO(1) = 2n(1−ǫ/j) ·nO(1) = 2ǫn ·nO(1).

This refutes SETH and the proof of the theorem is complete. ◭

4 Degenerate Graphs

A graph G is d-degenerate if every subgraph of G contains a vertex of degree at most d.

Equivalently, a graph G is d-degenerate if and only if there exists an elimination ordering on

its vertices such that every vertex has at most d neighbors appearing later in the ordering.

In this section we prove the following result.

◮ Theorem 5. [1, j]-Dominating Set parameterized by solution size is W[1]-hard on graphs

of degeneracy j + 1.

The following parameterized problem, proved to be W[1]-hard in [11], is used in our proof.

In the Multicolored Independent Set problem, we are given a graph G and a proper

vertex coloring of V (G) with k colors. The parameter k is equal to the number of colors

and the goal is to find a k-sized independent set in G containing exactly one vertex from

each color class (such independents sets are called k-colored independent sets). We shall

reduce the Multicolored Independent Set problem (with parameter k) to the problem

of finding a [1, j]-dominating set of size at most 2k + j − 1 in a graph of degeneracy j + 1.

The reduction. Let k be an integer and G be a proper k-vertex colored graph such that

its vertices are partitioned into k groups V1, V2, . . . , Vk, where each group corresponds to

an independent set of the same color. Now we construct an instance (G′, 2k + j − 1) of

[1, j]-Dominating Set as follows. For every edge e = {u, v} ∈ E(G), we replace it by a path

uvev, where ve is a new vertex corresponding to the edge e. Let SE = {ve : e ∈ E(G)}. For

each group Vi, 1 ≤ i ≤ k, we build a K1,2k+j graph centered at a new vertex ui. We also add

new vertices xi
1 and xi

2 and connect the vertices ui, x
i
1 and xi

2 to the vertices of Vi. Moreover,

we build j − 1 star graphs K1,2k+j centered at vertices r1, . . . , rj−1 and make r1, . . . , rj−1

adjacent to the vertices in SE . This concludes the construction of G′. See Figure 2 for

an illustration. Now we output (G′, 2k + j − 1) as an instance of [1, j]-Dominating Set.

Clearly our reduction takes time polynomial in |V (G)| and k.

◮ Lemma 6. The constructed graph G′ has degeneracy j + 1.

FSTTCS 2018
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r1 r2 rj−1

V1 V2 Vk

u1 u2 uk

Figure 2 Reducing the Multicolored Independent Set problem to the [1, j]-Dominating

Set problem.

Proof. The proof is by constructing a degeneracy ordering, which is an ordering on the

vertices that we get from repeatedly removing a vertex of minimum degree in the remaining

subgraph. First, we put all of the degree-one vertices in the degeneracy ordering and delete

them. In the remaining subgraph, we select all the vertices in SE and put them in ordering,

because every vertex in SE has degree j+ 1 in G′. After removing all vertices of SE from the

graph, each vertex in any block Vi, for 1 ≤ i ≤ k, has degree three because after removing SE

such vertices are only connected to xi
1, x

i
2, and ui. So, next we can put the vertices

⋃k
i=1 Vi

in the ordering. Finally we add all the remaining vertices. ◭

Lemmas 6, 7, and 8 below, imply Theorem 5.

◮ Lemma 7. If there exists a k-colored independent set in G then there exists a [1, j]-

dominating set of size 2k + j − 1 in G′.

Proof. Suppose that S is a k-colored independent set in G. We claim that D = S∪{ui : i ∈
{1, . . . , k}} ∪ {ri : i ∈ {1, . . . , j − 1}} is a [1, j]-dominating set of G′. Clearly, the size of D

is 2k+ j− 1. Each vertex vj ∈ Vi is dominated only by ui in D. Moreover, each pair of xi
1, x

i
2

vertices is dominated by the single vertex in Vi ∩ S. All the vertices in SE are dominated by

{ri : i ∈ {1, . . . , j − 1} and by at most one vertex from S (since S is an independent set).

Moreover all the degree one vertices in G′ are dominated exactly once by D. ◭

◮ Lemma 8. If there exists a [1, j]-dominating set of size 2k + j − 1 in G′ then there exists

a k-colored independent set in G.

Proof. Let D be a [1, j]-dominating set of size at most 2k + j − 1. First, note that since

|D| ≤ 2k + j − 1, we have that {r1, . . . , rj−1} ∪ {ui, . . . , uk} ⊆ D (because each ui and ri is

connected to 2k+j degree one vertices). We claim that S = D\({r1, . . . , rj−1}∪{ui, . . . , uk})

is a k-colored independent set in G. Clearly |S| ≤ k. Also, to dominate all the vertices xi
1, x

2
i

for 1 ≤ i ≤ k, we should have exactly one vertex from each Vi. Therefore S ⊆ V (G) and

|S ∩ Vi| = 1 for all 1 ≤ i ≤ k. Suppose u, v ∈ S is adjacent in G. Then the vertex ve, where

e = {u, v} is dominated j+1 times by D (because ve is adjacent to {u, v} and {r1, . . . , rj−1}).

Therefore since D is a [1, j]-dominating set in G′, S is a k-colored independent set in G This

completes the proof of the lemma. ◭
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5 Nowhere Dense Graphs

The notion of nowhere denseness was introduced by Nešetřil and Ossona de Mendez [20, 21]

as a general model of uniform sparseness of graphs. Many familiar classes of sparse graphs,

like planar graphs, graphs of bounded tree-width, graphs of bounded degree, and all classes

that exclude a fixed (topological) minor, are nowhere dense. An important and related

concept is the notion of a graph class of bounded expansion, which was also introduced by

Nešetřil and Ossona de Mendez [17, 18, 19].

◮ Definition 9. Let H be a graph and let r ∈ N. An r-subdivision of H is obtained by

replacing all edges of H by internally vertex disjoint paths of length at most r.

◮ Definition 10. A class C of graphs is nowhere dense if there exists a function t : N → N

such that for all q ∈ N and for all G ∈ C we do not find an q-subdivision of the complete

graph Kt(q) as a subgraph of G. Otherwise, C is called somewhere dense.

◮ Definition 11. A class C of graphs has bounded expansion if there exists a function

d : N → N such that for all r ∈ N and all graphs H, such that an r-subdivision of H is a

subgraph of G for some G ∈ C, satisfy |E(H)|/|V (H)| ≤ d(r).

Every class of bounded expansion is nowhere dense, which in turn excludes some biclique as

a subgraph and hence is biclique-free. For extensive background on bounded expansion and

nowhere dense graphs we refer to the textbook of Nešetřil and Ossona de Mendez [22].

Before we state our result, we quickly recall the necessary definitions from logic. For our

purpose, it suffices to consider first-order logic over the vocabulary of graphs. We refer to

the textbook [9] for extensive background on logic. A (relational) vocabulary is a finite set

of relation symbols, each with a prescribed arity. We let σ be a vocabulary. A σ-structure A

consist of a (not necessarily finite) set V (A), called the universe or vertex set of A, and for

each k-ary relation symbol R ∈ σ a k-ary relation R(A) ⊆ V (A)k. A structure A is finite if

its universe is. For example, graphs may be viewed as {E}-structures, where E is a binary

relation symbol. First-order formulas of vocabulary σ are formed from atomic formulas

x = y and R(x1, . . . , xk), where R ∈ σ is a k-ary relation symbol and x, y, x1, . . . , xk are

variables (we assume that we have an infinite supply of variables) by the usual Boolean

connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction), and existential and universal

quantifications ∃x and ∀x, respectively. The set of all first-order formulas of vocabulary σ is

denoted by FO[σ], and the set of all first-order formulas by FO. The free variables of a formula

are those not in the scope of a quantifier, and we write φ(x1, . . . , xk) to indicate that the free

variables of the formula φ are among x1, . . . , xk. A sentence is a formula without free variables.

To define the semantics, we inductively define a satisfaction relation |=, where for a σ-structure

A, a formula φ(x1, . . . , xk), and elements a1, . . . , ak ∈ V (A), A |= φ(a1, . . . , ak) means that

A satisfies φ if the free variables x1, . . . , xk are interpreted by a1, . . . , ak, respectively. If

φ(x1, . . . , xk) = R(x1, . . . , xk) is atomic, then A |= φ(a1, . . . , ak) if (a1, . . . , ak) ∈ R(A). The

meaning of the equality symbol, the Boolean connectives, and the quantifiers is the usual

one. For example, consider the formula φ(x1, x2) = ∀y(x1 = y ∨ x2 = y ∨E(x1, y) ∨E(x2, y))

in the vocabulary {E} of graphs. For every graph G and vertices v1, v2 ∈ V (G) we have

G |= φ(v1, v2) if any only if {v1, v2} is a dominating set of G. Thus G satisfies the sentence

∃x1∃x2φ(x1, x2) if and only if it has a (nonempty) dominating set of size at most 2.

◮ Theorem 12. The [1, j]-Dominating Set problem parameterized by solution size k is

fixed-parameter tractable on nowhere dense classes of graphs.

FSTTCS 2018
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Proof. Our proof is based on a result of Grohe, Kreutzer, and Siebertz [13], which states

that for every first-order sentence ψ (or formula without free variables), every nowhere dense

class C of graphs and every real ǫ > 0, there exists a constant f(|ψ|, ǫ), such that given an

n-vertex graph G ∈ C, one can decide in time f(|ψ|, ǫ) · n1+ǫ whether ψ holds in G.

It is easy to verify that the [1, j]-Dominating Set problem is expressible in FO. We let

ψ be the following sentence.

∃v1, v2, . . . , vk∀u
(

(u = v1∨u = v2, . . . , u = vk)∨((φ1(u, v1, v2, . . . , vk)∨φ2(u, v1, v2, . . . , vk)

· · · ∨ φj(u, v1, v2, . . . , vk))

)

,

where the function φi(u, v1, v2, . . . , vk) is true where the vertex u is adjacent to exactly i

vertices of v1, v2, . . . , vk, which can be represented using a formula of length bounded by a

function of i and k. Note that the length of ψ is bounded by a function depending only on k

(and on j, though only as a fixed constant). Then, by fixing any ǫ > 0 and using the result

of [13], we conclude that [1, j]-Dominating Set is fixed-parameter tractable parameterized

by solution size k on every nowhere dense class C. ◭

6 Bounded Treewidth Graphs

It is well-known [4] that the Dominating Set problem can be solved in O∗(3t) time on graphs

of treewidth at most t. Lokshtanov et al. [15] showed that this is essentialy optimal, i.e.,

they showed that the problem cannot be solved in O∗((3 − ǫ)t) time unless SETH fails. The

situation is almost identical for the Connected Dominating Set problem. The problem

can be solved in O∗(4t) time, but cannot be solved in time O∗(4 − ǫ)t unless SETH fails [5].

The [1, j]-Dominating Set problem is a special case of the (σ, ρ)-domination problem. The

concept of (σ, ρ)-domination was introduced by Telle [26]. Let σ, ρ be a pair of non-empty

sets of non-negative integers. A set S of vertices of a graph G is called (σ, ρ)-dominating if for

every vertex v ∈ S, |S ∩N(v)| ∈ σ, and for every v /∈ S, |S ∩N(v)| ∈ ρ. [1, j]-Dominating

Set and [1, 2]-Total Dominating Set are special cases of the (σ, ρ)-Dominating Set

problem. For [1, j]-Dominating Set, we set σ = {0, 1, . . .} and ρ = {1, . . . , j}. On the other

hand for [1, 2]-Total Dominating Set we set σ = ρ = {1, . . . , j}. The following result is

due to Rooij et al. [28].

◮ Proposition 13. Let σ, ρ ⊆ N be finite or cofinite. There exists an algorithm with running

time O∗(st) for finding a (σ, ρ)-dominating set in graphs of treewidth at most t where s is

the number of states per vertex used in the representations of the solution.

◮ Corollary 14. [1, j]-Dominating Set and [1, j]-Total Dominating Set are solvable in

time O∗((j + 2)tw) and O∗((2j + 2)tw), respectively, on graphs of treewidth at most tw.

Proof. As mentioned before, [1, j]-Dominating Set is a special case of (σ, ρ)-Dominating

Set, where σ = {0, 1, . . .} and ρ = {1, . . . , j}. The states needed in the representation of the

solution in this special case are {ρ0, ρ1, . . . , ρj} and ∗, where ρi, 0 ≤ i ≤ j means the vertex

in the bag is not in the dominating set and dominated i times and ∗ means that the vertex

is in the dominating set. Then by Proposition 13, [1, j]-Dominating Set is solvable in time

O∗((j + 2)tw).

[1, j]-Total Dominating Set is the special case of (σ, ρ)-Dominating Set, with

σ = ρ = {1, . . . , j}. In this case the states needed in the representation of the solution

are {σ0, ρ0, σ1, ρ1, . . . , σj , ρj}, where ρi, 0 ≤ i ≤ j means the vertex in the bag is not in



M. Alambardar Meybodi, F. Fomin, A. E. Mouawad, and F. Panolan 34:9

v1

1,0

h1

1,0

v2

1,0

h2

1,0

v1

1,1
v2

1,1

h1

1,1
h2

1,1

v1

1,2
v1

1,a−1

h1

1,a−1

v2

1,a−1

h2

1,a−1

Figure 3 Parts of the construction.

the dominating set and dominated i times and σi, 0 ≤ i ≤ j means the vertex in the bag

is in the dominating set and i of its neighbours are also in the dominating set. Then by

Proposition 13, [1, j]-Total Dominating Set is solvable in time O∗((2j + 2)tw). ◭

In what follows, we prove that the [1, 2]-Total Dominating Set problem cannot be

solved in time O∗(4 − ǫ)pw (unless SETH fails) and which is also a lower bound in terms

of the treewidth of the input graph. It remains open whether a similar result holds for

[1, 2]-Dominating Set. Our proof closely follow the work of Cygan et al. [5] and we use

the notions of path decompositions, pathwidth, tree decompositions, treewidth, and mixed

search games. We give a reduction from CNF-SAT to the [1, 2]-Total Dominating Set

problem and prove that the reduced graph has pathwidth at most n
2 +O(1), where n is the

number of variables in the input CNF-SAT formula.

The reduction. Given ǫ > 0 and an instance Φ of CNF-SAT with n variable and m

clauses, we construct a graph G as follows. We assume that the number of variables n is

even, otherwise we add a single dummy variable. We partition the variables of Φ into groups

F1, F2, . . . , Fn′ , each of size two, where n′ = n/2. We let a = m(n+ 1).

For each 1 ≤ t ≤ n′ we create a path Pt of length 4a = 4m(n+ 1) consisting of vertices

vα
t,q and hα

t,q, where 1 ≤ α ≤ 2 and 0 ≤ q < a. The vertices are arranged on the path in the

following order: v1
t,0, h

1
t,0, v

2
t,0, h

2
t,0, v

1
t,1, h

1
t,1, v

2
t,1, h

2
t,1, . . . , v

1
t,a−1, h

1
t,a−1, v

2
t,a−1, h

2
t,a−1. We let

V and H denote the sets of all vα
t,q vertices and hα

t,q vertices, respectively.

For each vertex vα
t,q, we add a forcing gadget consisting of a 4-cycle with one additional

pendant vertex connected to a vertex which we denote as the root vertex rα
t,q. We add an edge

between vα
t,q and the root of the cycle rα

t,q. Similarly, for each vertex hα
t,q, we add a forcing

gadget consisting of a 4-cycle rooted at vertex sα
t,q (i.e. the pendant vertex is connected

to sα
t,q). We add an edge between hα

t,q and sα
t,q (see Figure 3). Note that any dominating

set in the graph will contain at least two vertex from a forcing gadget and if a [1, 2]-total

dominating set contains only two vertex from a forcing gadget, then it include the root vertex

and one of its neighbours on the 4-cycle (by the definition of [1, 2]-total dominating set).

Next, we add three pairs of guard vertices p1
t,q, p2

t,q, and p3
t,q, for each 1 ≤ t ≤ n′ and

0 ≤ q < a. Each of the vertices in these pairs are of degree two and are connected to

other vertices as follows: (i) vertices in p1
t,q are adjacent to v1

t,q and v2
t,q; (ii) vertices in p2

t,q

are adjacent to v2
t,q and v2

t,q+1; and (iii) vertices in p3
t,q are adjacent to h1

t,q and h2
t,q. This

structure forces a dominating set to either contain the vertices from the guard sets or one

of their two neighbors. For instance, to dominate the pair p1
t,q, either both vertices in p1

t,q

must be in the dominating set or one of v1
t,q or v2

t,q. We use G to denote the set of all guard

vertices.
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The intuition of the construction made so far is as follows. For each two-variable block

Ft we encode any assignment of the variables in Ft as a choice of whether to take v1
t,q or v2

t,q

and h1
t,q or h2

t,q into the dominating set. This concludes the construction of the “variable

gadgets” which are required for encoding an assignment. The forcing gadgets attached to

vertices in V and H will guarantee that those vertices are all dominated at least once.

We now add “clause gadgets” required for checking the satisfiability of Φ. For each clause

Ci, we build (n+ 1) vertices ci,j , one for each 0 ≤ j ≤ n. Consider a clause Ci and a group of

variables Ft = {x1
t , x

2
t }. If x1

t occurs positively as the ℓth literal in Ci, then connect v1
t,mj+i

to ci,j via a path of length five by adding four vertices wℓ
i,j , xℓ

i,j , yℓ
i,j and zℓ

i,j and edges

{ci,j , w
ℓ
i,j}, {wℓ

i,j , x
ℓ
i,j}, {xℓ

i,j , y
ℓ
i,j}, {yℓ

i,j , z
ℓ
i,j}, and {zℓ

i,j , v
1
t,mj+i}. If x1

t occurs negatively as

the ℓth literal in Ci, we connect v2
t,mj+i to ci,j again via a path of length five by adding four

vertices wℓ
i,j , xℓ

i,j , yℓ
i,j and zℓ

i,j and edges {ci,j , w
ℓ
i,j}, {wℓ

i,j , x
ℓ
i,j}, {xℓ

i,j , y
ℓ
i,j}, {yℓ

i,j , z
ℓ
i,j}, and

{zℓ
i,j , v

2
t,mj+i}. Similarly, if x2

t occurs positively as the ℓth literal in Ci, we connect h1
t,mj+i to

ci,j via a path of length five and if it occurs negatively, we connect h2
t,mj+i to ci,j via a path

of length five. We let W, X , Y, and Z denote the sets of all w, x, y, and z vertices added

between clause vertices and vertices in V ∪ H, respectively. This concludes the construction

of the graph G.

◮ Lemma 15. If Φ is satisfiable then G has a [1, 2]-total dominating set D of size k =

10an′ + 2(n+ 1)Σm
i=1|Ci|.

Proof. Consider a satisfying assignment φ for Φ. We construct a [1, 2]-total dominating set

D of size k in G as follows. We first add the root vertex and one of its neighbors on the

4-cycle of each forcing gadget to D. Then, for each block Ft = {x1
t , x

2
t } and each 0 ≤ q < a,

we add the vertex v1
t,q to D if the value of x1

t is true, otherwise we add v2
t,q to D. Similarly,

if the value of x2
t is true, we add h1

t,q to D, otherwise we add h2
t,q. Since the clause Ci is

satisfied, at least one of the vertices vα
t,q or hα

t,q (for some t, α) will be in the dominating

set D. Hence, the corresponding zℓ
i,j vertex will be dominated, for some 1 ≤ ℓ ≤ |Ci|. We

can therefore add vertices xℓ
i,j and wℓ

i,j to D as to dominate ci,j and yℓ
i,j (and maintain the

[1, 2]-total dominating set property). To dominate the remaining vertices in the clause gadget

for ci,j , we add all yℓ′

i,j and xℓ′

i,j vertices, where 1 ≤ ℓ′ ≤ |Ci| and ℓ′ 6= ℓ.

It is clear that for each clause Ci, we add 2(n + 1)|Ci| vertices to D, for a total of

2(n+ 1)Σm
i=1|Ci| vertices. Moreover, for each path Pt, we add 10a vertices to D. Therefore,

accounting for the fact that we have n′ paths in total, the total number of vertices in D is

10an′ + 2(n+ 1)Σm
i=1|Ci| = k. It remains to show that D is in fact a [1, 2]-total dominating

set. Every vertex in V ∪ H is dominated at most twice; once by a vertex in its corresponding

forcing gadget and possibly once by a neighbor in V ∪ H. Each vertex in the guard sets is

dominated exactly once and each vertex in W, X , Y, and Z is dominated at most twice (as

they have degree two). Finally, each vertex ci,j is dominated exactly once (by a vertex in

W), as needed. This concludes the proof of the lemma. ◭

◮ Lemma 16. If G has a [1, 2]-total dominating set of size at most k = 10an′+2(n+1)Σm
i=1|Ci|

then Φ is satisfiable.

Proof. Consider a [1, 2]-total dominating set D of size at most k. The set D must contain

at least 2 vertex from each forcing gadget. This constitute at least 8an′ vertices from forcing

gadgets. Since 2(n+ 1)|Ci| vertices are required to total dominate the vertices in the clause

gadget for Ci, we know that |D ∩ (W ∪ X ∪ Y ∪ Z)| ≥ 2(n + 1)Σm
i=1|Ci| and, therefore,

|D ∩ (V ∪ H ∪ G)| ≤ 2an′. Moreover, G contains n′ paths each of length 4a and the guard

vertices in G ensure that at least 2a vertices are required to dominate the vertices of each path.
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Finally, since we have 2an′ pairs of guards with disjoint neighbors, exactly one vertex from

{v1
t,q, v

2
t,q} and one vertex from {h1

t,q, h
2
t,q} must be in D, for each 1 ≤ t ≤ n′ and 0 ≤ q < a.

This implies that each forcing gadget will contribute two vertices to D– the root vertex and

one of its neighbour in the 4-cycle. Moreover |D ∩ (W ∪ X ∪ Y ∪ Z)| = 2(n + 1)Σm
i=1|Ci|.

This implies that exactly two vertex from a path from ci,j to a vertex in V ∪ H is included in

D. Moreover, this in turn implies that ci,j /∈ D for any i, j.

Now, for each 0 ≤ q < a, we construct an assignment φq as follows. For each block

Ft = {x1
t , x

2
t }, we define φq(x1

t ) as true if v1
t,q ∈ D and we define φq(x1

t ) to be false if v2
t,q ∈ D.

Similarly, for x2
t , we define φq(x2

t ) to be true if h1
t,q ∈ D and we define φq(x2

t ) to be false if

h2
t,q ∈ D. Note that for each block Ft = {x1

t , x
2
t } and each 0 ≤ q < a, we have:

If φq(x1
t ) is true then φq+1(x1

t ) is true. Otherwise, both v2
t,q and v1

t,q+1 are not in the

dominating set and vertices in p2
t,q is not dominated by D.

If φq(x2
t ) is false then φq+1(x2

t ) is false. Otherwise, both h2
t,q and h1

t,q+1 are in the

dominating set and vertex v1
t,q+1 is dominated three times in D; by h2

t,q, h1
t,q+1, and the

root of the forcing gadget corresponding to v1
t,q+1.

For each variable x, we define a sequence φ̂x = φ0(x)φ1(x) . . . φa−1(x). By the discussion

above we infer that for each variable x, the sequence φ̂x can change its value at most once.

Hence, as a = m(n + 1), we conclude that there exists 0 ≤ j < n + 1 such that for all

0 ≤ i < m, the assignment φmj+i(x) are equal. We claim that the assignment φ = φmj(x)

satisfies φ. Consider a clause Ci and focus on the vertex ci,j . We know that ci,j /∈ D. Thus

one of its neighbors from W (say wℓ′

i,j) is contained in D. Therefore, by the definition of a

[1, 2]-total dominating set, xℓ′

i,j is in D. We have already argued that any path from ci,j to

any vertex in V ∪ H can contain at most 2 vertices in D. This implies that zℓ′

i,j is dominated

by a vertex in V ∪ H and the literal corresponding to it will be set to true by φ. This

completes the proof of the lemma. ◭

◮ Lemma 17. pw(G) ≤ n′ +O(1).

Proof. Let us first recall the definition of a mixed search game. In a mixed search game,

the graph G represents a “system of tunnels”. Initially, all edges are contaminated by a gas.

An edge is cleared by placing searchers at both its endpoints simultaneously or by sliding

a searcher along the edge. A cleared edge is re-contaminated if there is a path from an

uncleared edge to the cleared edge without any searchers on its vertices or edges. A search is

a sequence of operations that can be of the following types: (i) placement of a new searcher

on a vertex; (ii) removal of a searcher from a vertex; (iii) sliding a searcher on a vertex along

an incident edge and placing the searcher on the other end. A search strategy is winning if

after its termination all edges are cleared. The mixed search number of a graph G, denoted

by ms(G), is the minimum number of searchers required for a winning strategy of mixed

searching on G. Takahashi et al. [25] obtained the following relationship between pw(G) and

ms(G): pw(G) ≤ ms(G) ≤ pw(G) + 1.

We give a mixed strategy to clean the graph with n′ + O(1) searchers. The cleaning

process will be done in a rounds. At each round 0 ≤ q < a, we put a searcher on clause

variable ci,j and keep this searcher there until the cleaning round is completed. It is clear we

could clean each forcing gadget by four searcher and keep searcher on the root vertex after

cleaning the edges in the force gadget. For each 1 ≤ t ≤ n′ and 0 ≤ q < a, after cleaning

four connected forcing gadgets we slide the searchers from the root of forcing gadgets to

the vertices v1
t,q, h1

t,q, v2
t,q, h2

t,q. Then we put searchers on the the (at most two) z vertices

connected to them and the guard vertices in sets p1
t,q, p2

t,q and p3
t,q. As we have a searcher

FSTTCS 2018
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Figure 4 Parts of the construction. Dashed edges are connecting vertices with a forcing gadget.

on ci,j unil the end of this round we could clean the paths between vertex ci,j and those z

vertices using one more searcher. The last step of the round is removing the searchers from

vertices v1
t,q, h

1
t,q, v

2
t,q, h

2
t,q and searchers on the gaurd sets p1

t,q, p
2
t,q and p3

t,q. We just keep

the searcher on v1
t,q+1. Also, we remove searchers in path between ci,j and V ∪ H except for

the one standing on the ci,j . To commence the next round, the searcher in ci,j is deleted and

a new searcher is put on ci,j+1. After the last round the whole graph G is cleaned. Since at

any point in time we need at most 14 searchers (they are on ci,j , two z vertices, v1
t,q, h1

t,q,

v2
t,q, h2

t,q, guard vertices in sets p1
t,q, p2

t,q and p3
t,q, one searcher to clean the paths between

two z vertices and ci,j) and we reuse 14 searchers in the cleaning process, n′ + 14 searchers

suffice to clean the graph. ◭

◮ Theorem 18. Assuming SETH, for any ǫ > 0 there is no algorithm running in time

(4 − ǫ)pw|V (G)|O(1) for [1, 2]-Total Dominating Set on a graph G with pathwidth pw.

Proof. Suppose that [1, 2]-Total Dominating Set can be solved in time (4−ǫ)pw|V (G)|O(1).

Given an instance of CNF-SAT, we can construct an instance of [1, 2]-Total Dominating

Set using the above construction and solve it with a (4− ǫ)pw|V (G)|O(1) time algorithm. The

correctness of the algorithm follows from Lemmata 15 and 16. Lemma 17 implies that the

running time of the algorithm is (4 − ǫ)
n

2 |V (G)|O(1). However, we have (4 − ǫ)
n

2 = (
√

4 − ǫ)n

and
√

4 − ǫ < 2 which refutes SETH. This concludes the proof. ◭
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7 Conclusion

We have shown that the [1, j]-Dominating Set problem parameterized by solution size is

W[1]-hard on graphs of degeneracy (j + 1). It is thus natural to ask whether the problem

becomes fixed-parameter tractable when the degeneracy of the graph is smaller or equal

to j. In particular, is the [1, j]-Dominating Set problem fixed-parameter tractable on

j-degenerate graphs? There is a very rich literature [6, 1, 10] on kernelization for the

Dominating Set problem on sparse graphs and it would be interesteing to see where (if

anywhere) the known techniques for the Dominating Set problem become applicable to the

[1, j]-Dominating Set problem. Finally, we have shown a lower bound of O∗((4 − ǫ)tw) for

[1, 2]-Total Dominating Set assuming SETH, while the known upper bound is O∗(6tw).

Closing this gap is an interesting open problem. On the other hand [1, 2]-Dominating Set

can be solved in time O∗(4tw) and getting a matching lower bound is another open problem.

Moreover, can we get lower bounds for more general problems such as [1, j]-Dominating

Set and [1, j]-Total Dominating Set?
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