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Nanomechanical behavior of Pb(Fe0.5-xScxNb0.5)O3 multiferroic ceramics 

Abstract: 

Nanomechanical behavior of Pb(Fe0.5-xScxNb0.5)O3 [(PFSN) (0 ≤ x ≤0.4)] was investigated with 

systematic variation in Sc content to capture the effect of doping induced structural phase 

transition on mechanical properties.  Reduced modulus initially decreased with increase in 

doping concentration up to 0.2% of Sc content and then showed increment with further addition 

of Sc.  In situ nanoindentation has been carried out from room temperature to 140 °C to measure 

the variation in reduced modulus and hardness values with temperature in Pb(Fe0.5Nb0.5)O3 

without Sc addition.  Hardness and reduced modulus values of Pb(Fe0.5Nb0.5)O3 were found 

increase from 60 to 100 °C indicating the role of phase transition.  
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1. Introduction 

Perovskite materials showing coexistence of both magnetic and electric ordering have gained 

extensive attention worldwide due to their complementary properties [1,2]. In particular many 

perovskites, classified as multiferroics materials, have applications in sensors, actuators and 

memory and electromechanical devices [3–6]. The coupling phenomenon, especially between 

magnetic and electric ordering, makes these multiferroics suitable for broad range of 

applications. The flexibility in perovskite structure allows the synthesis of a wide range of 

interesting and useful materials. Multiferroic relaxors exhibit complex perovskite structure 

[General formula: A(B’B”)O3 , B’- low valence cation (Fe 3p ), and B” high valence cation (Nb 

5p , Ta 5p , W 6p )]. One of the widely studied multiferroic pervoskite material is lead iron 

niobate Pb(Fe0.5Nb0.5)O3 (PFN) that shows antiferromagnetic, ferroelectric and structural 

transitions[7,8]. PFN belongs to a special class of multiferroic relaxors whose properties are 

found to be modified by cationic substitution  [8,9]. It is also considered to be a potential 

candidate for understanding the basic science involved in the magneto-electric coupling in multi-

ferroic relaxors [10]. PFN exhibits  electrical and magnetic orders  simultaneously that makes it a 

potential candidate  for various magnetic sensors and piezoelectric transducers applications [11–

13]. The device realization from piezoelectric ceramics is difficult as they are susceptible to 

cracking at all scales ranging from electrical domains to devices. Hence investigation of 

mechanical behavior is important and can provide major insights into failure mechanism of 

piezoelectric ceramics especially with foreign ion substitution and temperature variation.  In 

addition, the role of phase transition and/or direct application of external pressure on the 

mechanical behavior are important for developing piezoelectric ceramics based devices. 

Recently,  temperature and doping induced structural transitions have been reported in PFN 
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ceramics by detailed structural investigations[11,12]. However, the thermomechanical response 

of PFN to applied loading has not been explored so far. Nanohardness and reduced modulus of 

Sc doped PFN (PFSN) is measured using nanoindentation. We investigated how systematic 

variation in Sc doping influences the nanomechanical behavior.  In addition, we also performed 

in situ nanoindentation tests on polycrystalline samples of PFN at various temperatures between 

30 °C to 140 °C to capture the role of thermally driven phase transition on nanomechanical 

properties. The outcome of this work leads to, understanding the mechanical behavior of PFN 

and PFSN for nano-electromechanical devices and applications design, and will add to the 

general body of knowledge of the mechanical properties of oxide perovskites.  

2. Experimental Procedure 

Pb(Fe(0.5-x)ScxNb0.5)O3 [x = 0, 0.15, 0.2, , 0.3, 0.4] powders were synthesized through solid state 

reaction route using Wolframite precursor method. Wolframite precursor method is a two-step 

solid state reaction route, in which initially appropriate precursor is synthesized and PbO added 

to precursor to achieve the desired compound. For this purpose, initially appropriate Wolframite 

precursors such as FeNbO4, ScNbO4 are prepared using high pure precursor oxides Fe2O3, Nb2O5 

and Sc2O3 (99.9%, make: Sigma Aldrich). To obtain the phase pure Wolframite precursor 

respective oxides are stoichiometrically taken, homogeneously mixed in an agate mortar using 

acetone as wetting media. These homogeneous oxide mixtures are calcined at three different 

temperatures 1000 °C, 1100 °C and 1200 °C for 6 hrs with intermediate grinding to obtain single 

phase precursors. The obtained phase pure precursors and lead oxide (PbO) were homogeneously 

mixed using acetone as wetting media to synthesize Pb(Fe0.5-xScxNb0.5)O3 compounds. Excess 

lead oxide (PbO) of 3 wt% is added to maintain the stoichiometry due to volatilization of PbO 
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during sintering. Homogeneously mixed powders were calcined at two different temperatures 

800 °C, 850 °C for 4 hrs to get the single phase compounds with intermediate grinding. Calcined 

phase powders were ball milled for 6 hrs using agate balls and vials to obtain ultrafine particles. 

Thus, obtained ultrafine powders were utilized for sintering to achieve high dense pellets.  

Homogeneously mixed ultra-fine powders were used to prepare circular pellets of 6 mm 

diameter. Green pellets were prepared using uniaxial hydraulic press with 6 mm die by applying 

2 Ton load. Prior to prepare green pellets, binder polyvinyl alcohol (PVA) added to increase the 

adhesion between particles. Green pellets were sintered at 1050 °C in muffle furnace by keeping 

them in a closed alumina crucible. Structural analysis of calcined and sintered powders carried 

out using X-ray diffractometer [Make: PANalytical: Model: X-pert Pro]. Surface morphology 

and elemental analysis was done with FEI Nova NANO SEM interfaced with energy dispersive x 

ray spectroscopy (EDS). In situ nanoindentation tests were performed using Hysitron 

Triboindentor TI 950.  

3. Results and Discussion 

Figure 1a shows x-ray diffraction patterns of sintered powders at 1050 C for 4 hrs. Diffraction 

patterns clearly reveal that apart from reflections of perovskite phase, a small Bragg reflection 

(222) around 29.15 is observed corresponding to pyrochlore phase [Pb3Nb4O13]. However, 

pyrochlore is present in only with compositions with x = 0.1 0.15, 0.2, 0.25. The volume fraction 

of pyrochlore phase in these compositions is ≤ 2% calculated using a well-known relation[12].  

             𝑉𝑜𝑙. 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑦𝑟𝑜𝑐ℎ𝑜𝑙𝑟𝑒(%) = 𝐼𝑝𝑦𝑟𝑜(222)𝐼𝑝𝑦𝑟𝑜(222)+ 𝐼𝑝𝑒𝑟𝑜(110) × 100%                   … (1) 
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With increasing at% of Sc, position of all reflections shifts towards lower Bragg angle due to 

high ionic radius of Sc3+ (74 pm) compare to Fe3+ (55 pm).  Inset shows an enlarged profile of 

pseudo cubic (200) reflection, and it shows the gradual peak shift to lower Bragg angles with 

increasing Sc content from x = 0 - 0.4.  Scandium substitution leads to an expansion of unit cell 

volume due to larger ionic radius of Sc3+ (74.5 pm) compared to Fe3+ (64.5 pm and 55 pm in 

high spin and low spin state respectively). The changes in unit cell dimensions are evidenced 

from the shift of various peak positions towards lower Bragg angle with increasing scandium 

content. Moreover, our structural analysis in earlier report reveals that structure transforms from 

monoclinic (space group – Cm) to Rhombohedral (space group – R3m) crystal symmetry [12].  

Surface morphology of PFN samples were studied using FESEM and the all samples with and 

without doping showed similar surface morphology.  Figure 1b shows morphology of PFN00 

sample having very smooth surface suitable for further nanoindentation studies. Nanoindentation 

tests were performed on pure PFN and Scandium substituted PFN (PFSN) samples at room 

temperature. Figure 2a shows a comparison between typical nanoindentation curves obtained 

from different samples. These applied load versus penetration depth plots were obtained by 

thrusting the diamond indenter into the surface of sample at a loading rate of 200 µN/s, holding 

at peak load for 2 seconds and unloading at similar rate. Here we observe that for the same 

applied load, as we increase the Sc content from x = 0 to 0.2 (code named PFN00 to PFN02) the 

penetration depth is increasing. However, for samples having Sc content of x = 0.3, 0.4 (code 

named PFN03 to PFN04) the penetration depth is very low. This suggests that the samples 

having higher Sc content are more resistant to deformation caused by externally applied load. 

Inset shows a typical indent impression taken using in situ SPM imaging capability of 

nanoindenter. Further multiple indents at various applied maximum loads were performed and 
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nanohardness, H and reduced (or combined) modulus, Er was calculated using Oliver and Pharr 

method[14]. The standard area function required to calculate these properties was obtained 

empirically by making several indents on standard fused quartz sample.  Figure 2b compares the 

nanohardness of pure PFN with doped samples. Here nanohardness is within the error limits for 

all samples and found to be increasing above (x = 0.25) Sc content. This shows that 

rhombohedral PFN04 has more resistance to plastic deformation. Overall mechanical strength of 

PFN increases as it undergoes phase transition from monoclinic to rhombohedral, as evident 

from Figure 2c. Reduced modulus, Er indicates combined modulus of material and diamond 

nanoindentor is well defined in contact mechanics [15,16]. In Figure 2c Er decreases as Sc 

content is increased from x = 0 to 0.2. This is due to the expansion in unit cell structure of pure 

PFN as ionic radii of Sc is more than Fe [17]. Further addition of Sc completely distorts 

monoclinic unit cell, structural phase transition occurs from monoclinic to rhombohedral and we 

observe that rhombohedral phase of PFN has increased modulus as compared to monoclinic 

phase. 

Further, we studied the mechanical behavior of pure PFN with respect to increase in temperature. 

This kind of multiferrioc relaxor undergoes diffused dielectric phase transition with increase in 

temperature [18]. During this diffused transition, volume of the multiferroic ceramics was found 

to decrease with increase in temperature. Figure 3a shows different applied load vs penetration 

depth curves at different temperatures. As expected, plastic deformation is increasing with 

increase in temperature, however at temperature above 60°C and below 120 °C we observe non 

monotonous trend in nanohardeness and reduced modulus. This trend is different than the trend 

observed for similar class of piezoelectric ceramics like PZT [19]. Figure 3b shows variation of 

nanohardness of pure PFN with respect to temperature. Typically, hardness decreases with 
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increase in temperature and the observed decreasing trend is consistent with the expectation up to 

60°C. Nevertheless, nanohardness of pure PFN starts to increase above 60oC, which may be due 

to diffused phase transition. Also, similar trend is observed during temperature dependent Raman 

study of pure PFN indicating a correlation between hardness and B-localized rotational modes. 

B-localized mode, which is related to structural distortion softens with temperature upto 100 °C 

explaining the observed hardness trend[11]. Variation of reduced modulus with increase in 

temperature is plotted in Figure 3c and we observed a jump in modulus values at around 120°C.  

Interestingly, two ferroelectric phase transitions in single crystal PFN has also been shown 

around 100 °C [20] and further studies are needed to achieve direct correlation between the 

observed mechanical behavior trend with respect to thermally driven phase transition. 

4. Conclusions 

Solid state synthesis technique was employed to make high purity PFN multiferroic ceramics 

with varying degree of doping content of Sc. Phase transition in PFN was confirmed with X ray 

diffraction and Raman studies. Effect of Sc doping was found to increase the reduced modulus 

and hardness of the pure PFN due to involved structural phase transition from monoclinic to 

rhombohedral. Furthermore, the effect of temperature on mechanical behavior of pure PFN 

across the reported phase transition is also confirmed the abrupt variation in nanomechanical 

properties. 
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Figure 1 a) X-ray diffraction patterns of Pb (Fe0.5-xScxNb0.5)O3 [0 ≤ x ≤ 0.5] sintered at 1050 °C 

for 4hrs [In figure pattern covered by blue oval stabilized in monoclinic symmetry, patterns 

covered by red oval stabilized in rhombohedral symmetry]. b) FESEM image of PFN00 sample 

with elongated grains.  
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Figure 2a compares the loading unloading nanoindentation curves obtained from doped and undoped 

PFN samples at constant load of 500 µN. Inset shows a typical indent impression on to the surface of 

PFN00 sample. b) compares the average nanohardness and c) reduced modulus of pure PFN with 

doped samples.   
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Figure 3a compares the loading-unloading nanoindentation curves obtained from PFN00 sample 

with increasing temperature from room temperature to 140 °C. b) average nanohardness and c) 

reduced modulus of pure PFN with increasing temperature. 
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