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Abstract: One of the challenges in rainfall-runoff modeling is the identification of an appropriate

model spatial resolution that allows streamflow estimation at customized locations of the river basin.

In lumped modeling, spatial resolution is not an issue as spatial variability is not accounted for,

whereas in distributed modeling grid or cell resolution can be related to spatial resolution but its

application is limited because of its large data requirements. Streamflow estimation at the data-poor

customized locations is not possible in lumped modeling, whereas it is challenging in distributed

modeling. In this context, semi-distributed modeling offers a solution including model resolution

and estimation of streamflow at customized locations of a river basins with less data requirements.

In this study, the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model is

employed in semi-distribution mode on river basins of six different spatial resolutions. The model

was calibrated and validated for fifteen and three selected flood events, respectively, of three types,

i.e., single peak (SP), double peak (DP)- and multiple peaks (MP) at six different spatial resolution

of the Sabari River Basin (SRB), a sub-basin of the Godavari basin, India. Calibrated parameters

were analyzed to understand hydrologic parameter variability in the context of spatial resolution

and flood event aspects. Streamflow hydrographs were developed, and various verification metrics

and model scores were calculated for reference- and calibration- scenarios. During the calibration

phase, the median of correlation coefficient and NSE for all 15 events of all six configurations was

0.90 and 0.69, respectively. The estimated streamflow hydrographs from six configurations suggest

the model’s ability to simulate the processes efficiently. Parameters obtained from the calibration

phase were used to generate an ensemble of streamflow at multiple locations including basin outlet

as part of the validation. The estimated ensemble of streamflows appeared to be realistic, and both

single-valued and ensemble verification metrics indicated the model’s good performance. The results

suggested better performance of lumped modeling followed by the semi-distributed modeling with

a finer spatial resolution. Thus, the study demonstrates a method that can be applied for real-time

streamflow forecast at interior locations of a basin, which are not necessarily data rich.

Keywords: rainfall-runoff modeling; spatial resolution; HEC-HMS; DEM; Sabari river basin

1. Introduction

Hydrologic science, including rainfall-runoff modeling, has been an important dis-
cipline for several decades because of intriguing science questions and associated socio-
economic issues [1–3]. Increased data access over a wider area for longer periods, and
availability of high computing power in combination with various advanced techniques
has allowed hydrologic sciences to evolve over different paradigms, i.e., empiricism, theory,
and computational simulation, and now data-intensive sciences [4–6]. It enhanced the
understanding of rainfall-runoff processes as well as assisted in developing solutions of
various aspects ranging from engineering to policy. However, heterogeneity of hydrologic
processes in space and time, and unavailability of data either due to a lack of monitoring
networks or absence of measurements during extremes make rainfall-runoff modeling
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still an age-old problem for certain regions and periods of time. In this context, the three
decades old effort “Predictions in Ungauged Basins” (PUB) appears to be much very
relevant even now [7].

Numerous hydrologic models of different types, e.g., conceptual, physically based
and statistical models, have been developed over the years mainly driven by particular
study objectives [8,9]. However, a few of them have been widely used and are popular
among researchers. Although a model is chosen based on the problem that needs to be
solved, i.e., water balance accounting vs. flood modeling, simplicity in model structure,
data requirements, informative user manuals and ease of handling dominate the model
selection process. When a model is applied in a region, the model structure is typically not
disturbed. However, the parameters are modified on the hypothesis that the new values of
parameters reflect the heterogeneity of the hydrological processes. Yet, only a few studies
explored the model structure approximation of regional hydrology by running multiple
hydrological models of different structures [10].

Moreover, the modeling is intricate for the interior basin, which will typically have
no or limited data, resulting in a poorer understanding of the processes operating there.
Parameter estimation and runoff simulation of basin interior are possible via employing
scaling or regionalization or a combination of both techniques. The transfer of parameters
from other similar basins is done through the above techniques, and then a model is
executed either in lumped- or semi-distributed mode for runoff estimation [11–19]. Aside
from regionalization technique, another important question is the appropriate spatial
resolution for the modeling context. Understanding the role of spatial resolution in the
modeling context and insights on parameters of a model helps the transfer of parameters
for data-poor regions, including interior locations of a basin.

Several studies have employed different hydrologic models in the semi-distributed
mode for different sizes of the basin in urban and rural settings, and then analyzed stream-
flow for different space- and time-scales; see references in Table 1 of [20]. Contradictory
results from several studies, i.e., no significant or both increased and decreased flood peaks
were observed for different spatial resolutions [21–28]. Although no conclusive remarks
are drawn, the results suggest that the model performance is basin sensitive. Note that
the performance is also influenced by several factors, including the type of model and the
spatial and temporal resolution of input [10,29]. In this context, modeling becomes more
challenging for a real-time forecast system, and both input- and hydrologic uncertainties
need to be studied in association with the above mentioned factors including spatial resolu-
tion [30–34]. Input uncertainty dominated by rainfall plays a key role in runoff estimation,
and significant research has been done on various rainfall aspects including rainfall data
resolution [35–37]. Apart from it, parametric uncertainty combined (lack) of availability of
streamflow at a basin’s interior versus the basin outlet raises concerns on the reliability of
parameters [38].

In this context, we pose two questions, i.) Do values of parameters vary with respect
to the basin and event aspects? and ii.) Does model performance vary with respect to the
spatial resolution? As part of this study, calibrated parameters with respect to the basin
area were analyzed. For this, the role of different dominant processes was assumed to vary
with basin area. Insights based on the analysis of spatial resolution, parameters and flood
event aspects assists in the scientific understanding of regional hydrology as well as in
developing a reliable real-time forecast system to issue forecasts at interior locations of
the basin.

The Godavari River Basin (GRB) has approximately 140 flow measurement stations, of
which 52- and 88-stations measure only the gauge or the gauge and discharge, respectively.
Most of the stations are along the main tributary, and stations in the interior of the basins
on sub-tributaries are relatively few and they do not have a long period of the record
as compared to the main tributary stations. Only a few studies explored the basin in a
hydrologic context. Reference [39] showed the application of a hydrologic model for daily
streamflow estimation for one flood event each year for three years. While, [40] estimated
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flood aspects for a location near Nasik, in the upper Godavari. Reference [41] showed
the sensitivity of initial hydrologic conditions (IHC) on streamflow estimation at four
locations along the main tributary, Godavari River. In the current settings, the Central
Water Commission (CWC) of India issues flood forecasts at 21 flood forecasting stations in
the Godavari River Basin, of which 17 are level, and seven are inflow forecasts [42]. The
forecasts are primarily based on gauge-to-gauge correlations. With the current framework,
it is challenging to simulate daily streamflow including flood peak in the basin′s interior
as there is no existing modeling or forecasting framework. Additionally, climate change
implications in various Indian river basins including the Godavari River Basin are evident
(e.g., [41,43,44]). Thus, a limited number of studies, lack of a reliable modeling framework
to estimate streamflow in the basin’s interior and climate change influences serve as
motivations for studying the Sabari River Basin (SRB).

This study performed rainfall-runoff modeling of flood events of different types with
multiple spatial resolutions of the SRB. The paper is organized as follows: Sections 2 and 3
describe the study area and data used in this work, respectively; Section 4 describes the
methodology and it consists of a selection of flood events, model setup including the basin
configuration for six different spatial resolutions, model calibration at the basin’s outlet and
model validation at the outlet and three interior locations; Section 5 presents the association
between basin resolution, flood event aspects and model parameter, and analyzes and
discusses the results, followed by the conclusions.

2. Study Area

The Sabari River is one of the major tributaries of the Godavari River. It originates
in the Eastern Ghats of Odisha state, where it is known as the Kolab River. The river
confluences with the Godavari River near a village, Kunavaram, Telangana, India. The
drainage area of the SRB is approximately 21,121 km2 and extends between 81◦5’23.147”E,
17◦31’28.603”N and 83◦2’43.912”E, 19◦6′23.357”N (Figure 1). Elevation of the SRB ranges
from 19 m to 1675 m, and most of the upstream of the basin is at or higher than 1000 m. The
major land use and land cover (LULC) in the SRB is agriculture and forest (85%), followed
by water bodies (10%) and built-up area (5%) [45]. Sandy clay loam, clay loam and clay are
the three major types of soil, and C and D hydrologic soil groups are predominant in the
SRB [46].
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Figure 1. Map of the Sabari River Basin detailing major river streams, reservoirs, gauge-discharge

(GD) and flood forecasting (FF) stations. Elevation of the basin shown from blue to red colour.

Godavari River Basin is shown in a blue filled polygon on the India map.
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The SRB receives an average seasonal rainfall (June to September) of 1077 mm (cal-
culated for 1966–2017). The SRB has four gauge-discharge (GD) stations and two-level
flood forecasting (FF) stations. While GD stations record streamflow and gauge values, FF
stations provide the flood warning issued as water level. Konta is the most downstream
station among all the four GD stations, and it is in close proximity to the outlet of the basin.
Therefore, Konta is treated as an outlet of the basin. The other three GD stations, Injaram,
Potteru and Saradaput are the three stations in the interior of the basin. Average daily
rainfall and average daily streamflow at Konta for the south-west monsoon period (June to
September) are 8 mm/day and 944 m3/s, respectively, and these values are relatively high
as compared to the annual averages (3.8 mm/day and 460 m3/s).

3. Data

Daily streamflow data at Konta, Injaram, Saradaput, and Potteru GD stations are
available for the period of record 1966 to 2017, 1966 to 2006, 1997 to 2005 and 1970 to
2015, respectively. The streamflow data was obtained from the Krishna Godavari Board
Organization (KGBO), CWC, India. Among all GD stations, Konta has the longest period
of the record from 1966 to 2017, and consideration of the common period of the record for
all stations decreased the length of available data, and consequently, the number of major
flood events available for calibration were reduced. Therefore, streamflow data from Konta
was considered to define the flood events for model calibration. However, data of all four
GD stations was considered to define flood events for model validation.

Daily gridded rainfall data of 0.25◦ × 0.25◦ spatial resolution was obtained from
the India Meteorological Department (IMD) [47]. The gridded data was used to extract
the weighted average rainfall for each sub-basin from six configurations for all the flood
events. Sub-basin specific rainfall amounts for the selected events were given as input to
the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The
Shuttle Radar Topography Mission (SRTM) based digital elevation model (DEM) of 30 m
× 30 m [48] spatial resolution was used to extract the river streams and basin’s physical
characteristics. Land use and land cover (LULC) data of 100 m spatial resolution for the
years 1985, 1995, and 2005 is available for the Indian region [45] from which the values
corresponding to the SRB were obtained. Soil data for the SRB of approximately 2.5 km spa-
tial resolution were obtained from Harmonized World Soil Database Version 3.0 [46]. The
LULC and soil data were used in obtaining the excess rainfall related parameters. Similar
to rainfall, sub-basin specific LULC and soil data were extracted from the corresponding
gridded data.

4. Methodology

4.1. Selection of Flood Events

An event is defined as when the daily streamflow is greater than the 90th percentile
threshold at least for five consecutive time steps and continues until the streamflow is
less than the given threshold for four consecutive time steps [49]. Note that the events
defined by the algorithm were plotted, analyzed and then revised with respect to start
and endpoints. The final set of 70 events consist of 21 single peak (SP), 13 double peak
(DP) and 36 multiple peak (MP) events. The top five events of higher magnitude in each
category were selected and used to calibrate the model. Table 1 details the characteristics
of the events including peak flow, duration, time to peak and accumulated rainfall of the
event. Three events, viz., 2003SP, 1997DP and 2004MP of duration 10, 15 and 30 days were
selected for model validation. Event characteristics for three interior locations, i.e., Injaram,
Saradaput, Potteru, along with the basin outlet Konta are mentioned in Table 2.



Water 2021, 13, 1224 5 of 26

Table 1. Flood aspects at Konta GD station, i.e., peak flows (Qp), flood duration (t), time to peak (Tp) and accumulated

rainfall (Rsum) for the selected 15 events used in the model’s calibration. The letters in the event name, i.e., SP, DP and MP,

correspond to single-, double- and multiple-peak, respectively.

Event Peak Flows (Qp, m3/s) Flood Duration (t, Days) Time to Peak (Tp, Days)
Accumulated Rainfall

(Rsum, mm)

1986SP 20,187 42 26 206.13
1966SP 14,416.3 22 15 546.67
1968SP 10,414.4 23 10 262.97
2015SP 7468 21 12 359.88
1972SP 6889.1 16 6 230.29
2005DP 8853.8 16 9 395.46
1969DP 8415.5 27 19 190.39
1966DP 7591.2 28 6 362.73
1988DP 6494 37 20 467.6
1975DP 6166.5 28 4 355.59
2006MP 12181.5 78 9 1698.99
1969MP 9787.7 37 15 429.76
2014MP 9768.3 41 16 446.64
1984MP 8037.1 52 21 660.95
1978MP 7991.9 58 37 692.35

Table 2. Similar to Table 1, but for three interior locations of the Sabari River Basin (SRB) along with the outlet, Konta.

GD Station
Peak Flows (Qp, m3/s) Time to Peak (Tp, Days) Accumulated Rainfall (Rsum, mm)

2003SP 1997DP 2004MP 2003SP 1997DP 2004MP 2003SP 1997DP 2004MP

Konta 3355 1896 5804 5 10 11 127.67 114.41 338.62
Injaram 3763 1832 4269 4 10 11 127.94 114.48 338.52

Saradaput 3187 880 1380 4 3 28 146.86 143.26 382.44
Potteru 119 543 941 7 9 10 173.25 86.3 313.95

4.2. Model Setup

The HEC-HMS model is a physically-based, semi-distributed hydrological model
developed by the U.S. Army Corps of Engineers [50]. The model can be run in lumped and
semi-distributed modes at different time intervals ranging from minute to daily time steps,
and parameters can be estimated in both event and continuous modes [51]. The HEC-
HMS grouped key rainfall-runoff processes into four components and wrapped multiple
methods as one method to model each of these components. In the present study, the HEC-
HMS model was applied on a daily time scale in the event mode. The Soil Conservation
Service-Curve Number (SCS-CN) method [52] was used to compute the excess rainfall.
The Clark’s unit hydrograph (UH) method [53] was adopted to compute the direct runoff.
An exponential recession model was employed to estimate baseflow, and the Muskingum
method [54] was used for the channel flow routing.

In this study, the SRB was delineated according to the stream network with five
different area thresholds. The resulting set of sub-basins represents the spatial resolution,
and each spatial resolution was treated as a configuration in the modeling context as per
the number of sub-basins. The model was run in the semi-distributed mode for these
configurations. Moreover, the entire basin was considered as a single unit, and the model
was run in the lumped mode for the configuration. Thus, a total of six configurations, i.e.,
a lumped model and five semi-distributed models were considered in this study. Basin
delineation and calculation of physical characteristics of river and sub-basin such as length,
width, area, basin lag and slope for all configurations were performed using the HEC-
GeoHMS tool [55]. The above physical characteristics were used to estimate the initial
values of parameters using empirical equations [50]. All six configurations were exported
to the HEC-HMS model environment to perform the event-based rainfall-runoff modeling.
The model calibration procedure is mentioned below.
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4.3. Model Calibration

The model calibration consists of the following two components, i.e., (1) estimation
of initial model parameter values using well-established empirical relationships, and (2)
estimation of optimal values of model parameters using only the HEC-HMS model’s
Neldar-Mead simplex algorithm and in combination with trial-and-error.

4.3.1. Model Initial Parameter Estimation

The set of parameters consist of initial abstractions (Ia), curve number (CN) and
percentage of impervious area (imp%) of SCS-CN method, time of concentration (Tc) and
storage coefficient (R) of Clark’s UH method, initial baseflow (Q0), recession constant (k),
and ratio to peak (Rp) of recession baseflow method, and travel time (K) for flood wave
and dimensionless weight (X) of the Muskingum method. The percentage of impervious
area was calculated from satellite maps. Therefore, this parameter was not included in the
model calibration. The equations to estimate the initial values of parameters are shown in
Table 3. Additional information related to rainfall-runoff methods of the HEC-HMS model
can be found in the Supplementary Material (Section SI1).

Table 3. List of the HEC-HMS model parameters and empirical equations used to estimate the initial values of parameters

along with range of the values used in the calibration.

Serial Number Parameter Equation/Initial Value Calibration Range

1 Curve Number (CN) CNcomposite =
∑ AiCNi

∑ Ai
30–100

2 Initial abstraction (Ia) in mm S = 25400
CN − 254; Ia = 0.3S 0–500

3
Percentage of impervious area

(imp%) in percentage imp% =
(

ABuilt−up

A

)

× 100 not applicable

4 Time of concentration (Tc) in hr a
TC = 1.08

(

A0.09 L0.16

s0.12

)

0.1–500

5 Storage coefficient (R) in hr a
R = 1.625

(

A0.0710 L0.118

s0.1085

)

0.1–150

6 Initial baseflow (Q0) in m3/s/km2 0.035 0.01–1

7 Recession constant (k) b Qt = Q0kt 0.3–0.95 c

8 Ratio to peak (Rp) 0.1 0.1–1

9 Travel time (K) in hr K = l
VW

; VW = 1
B

dQ
dy

0.1–150

10 Weighting factor (X) X = 1
2

(

1 − Q0

BS0VW ∆x

)

0–0.5

a [56], b [57], c [50]

Where CNcomposite is the composite curve number, i is the index of sub-basins of uniform

land use and soil type, Ai is the area of ith sub-basin, CNi is the curve number for ith

sub-basin, S is the potential maximum retention that represents mainly the infiltration
occurring after runoff has started, ABuilt−up is the built-up area of a basin or a sub-basin, L
is the longest flow path of a sub-basin, s is the slope of the channel, l is the channel length,

VW is the wave celerity, B is the top width of the water surface, dQ
dy is the slope of the rating

curve at a known cross-section, Q0 is the reference flow from the inflow hydrograph, an
average flow, midway between the baseflow and peak flow, Qt is the baseflow at any time
t, S0 is the frictional slope, and ∆x is the length of the reach.

4.3.2. Model Parameter Optimization

The parameters Ia, CN, Tc, R, Q0, k and Rp were optimized simultaneously using the
simplex algorithm for the lumped model. For the remaining five configurations, i.e., for
five semi-distributed models, only Ia and CN were optimized using the simplex algorithm
and the remaining seven parameters were estimated in the trial-and-error mode one-by-one
in the following order, i.e., Tc, R, Q0, k, Rp, K and X. The parameter R was calibrated first
in case of either high volumetric error or no error in time to peak flow corresponding to
optimal values of Ia and CN. The range of values for which parameters can be varied
during its calibration suggested by the HEC-HMS user manual is mentioned in Table 3.



Water 2021, 13, 1224 7 of 26

Optimal parameter estimation in the trial-and-error mode was stopped when the Nash
Sutcliffe Efficiency (NSE) of simulations was greater than or equivalent to 0.4. The chosen
NSE threshold is subjective and can be modified.

The HEC-HMS’s optimization routine Nelder and Mead Simplex algorithm was
chosen to minimize the objective function, Peak-Weighted RMSE (PWRMSE) [50]. The
PWRMSE is a measure that implicitly compares magnitudes of flow peak, volume and
time to peak between observed and simulated hydrographs. As it is seen from the equation
(Table 4), the measure is a weighted sum of squared differences of simulated flows and
corresponding observed flows. The weight of each ordinate is proportional to its observed
streamflow magnitude.

Streamflow hydrographs that were derived based on initial values of parameters
referred to as the reference scenario, whereas streamflow hydrographs that were derived
based on optimal values of parameters treated as the calibration scenario. Streamflow from
both reference and calibration scenarios were evaluated by calculating multiple verification
metrics, i.e., the correlation coefficient (r), Nash-Sutcliffe Efficiency (NSE), Root Mean
Square Error (RMSE), Mean Absolute Error (MAE) [58], Percentage Bias (PBIAS) [59],
Percentage Error in Peak flows (PEP) [50] and Error in Time to Peak (ETP). Table 4 shows
the mathematical formulae of the objective function and verification metrics.

Table 4. Mathematical formulae of the objective function and verification metrics used for the model calibration.

Metric Equation Range

Peak-Weighted Root Mean Square Error (PWRMSE) (m3/s)
Z =

{

1
NQ

[

NQ

∑
i=1

(Oi − Pi)
2
(

Oi+O
2O

)

]}1/2
0 to ∞

Correlation coefficient, r ∑
N
i=1(Oi−O)(Pi−P)

[

∑
N
i=1(Oi−O)

2
]0.5[

∑
N
i=1(Pi−P)

2
]0.5

−1 to 1

Nash-Sutcliffe Efficiency, NSE 1 − ∑
N
i=1 (Oi−Pi)

2

∑
N
i=1(Oi−O)

2
−∞ to1

Root Mean Squared Error, RMSE (m3/s)
√

∑
N
i=1 (Oi−Pi)

2

N
0 to ∞

Mean Absolute Error, MAE (m3/s) N−1
N
∑

i=1

∣

∣

∣

∣

Oi − Pi

∣

∣

∣

∣

0 to ∞

Percent bias, PBIAS (%) ∑
N
i=1(Oi−Pi)

∑
N
i=1 Oi

× 100 −∞ to ∞

Percentage Error in Peak, PEP (%)
[

(OQP
−PQP

)
OQP

]

× 100 −∞ to ∞

Error in Time to Peak, ETP (number of days) DateQPP
− DateQPO

−∞ to ∞

Where Z is the objective function, NQ is the number of hydrograph ordinates, N indicates
the number of observations or the duration in days of the event; O and P are the observed
and simulated values; O and P correspond to the average of observed and simulated
values; QPP is the peak flow of simulated hydrograph and QPO is the peak flow of the
observed hydrograph.

4.4. Model Validation

As part of the model validation, streamflow for the three flood events was estimated
and then verified at all four selected locations, i.e., the basin’s outlet and three interior
locations of the basin, i.e., Injaram, Saradaput and Potteru. The model parameter set
consists of CN, Ia, Tc, R, k, Q0, Rp, K and X, and calibration of the model for each event
yields an optimal value for each parameter. Thereby, 15 events together result in a set of
15 values for each of the model parameters. In this way, first, an ensemble set of parameters
was created, and then, a corresponding ensemble of streamflow was produced for the three
selected events at all four selected locations. However, noting that the CN and Ia values
as event specific as they depend on antecedent moisture conditions (AMC), the values of
these parameters were not taken from calibration, consequently, the parameters were not
part of the ensemble set of parameters. Similar to the calibration phase, the CN values were
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estimated for each event using rainfall five days prior to the event and LULC [60], and Ia

was calculated as 30% of the potential maximum retention (S) (Table 1). The ensemble of
streamflows was evaluated using the verification metrics shown in Table 4 as well as the
Continuous Ranked Probability Score (CRPS), which is an ensemble verification metric [61].
The metrics in Table 4 are single-valued measures, and the ensemble mean of all ensemble
members was used here. Thus, the model output in the validation mode was evaluated in
both single-valued and ensemble modes.

5. Results and Discussions

5.1. The Six Configurations of Sabari River Basin

Figure 2 displays sub-basins that resulted from six configurations. The configuration
that has no sub-basins resulted from treating the entire basin as a single unit and is
named as S1. The configurations that were generated with five different area thresholds
produced as small as eight to 132 sub-basins (Table 5). Accordingly, the basin configuration
was named S8, S20, S48, S52 and S132. Sub-basins in all configurations except S8 were
algorithm-based and automatic. The S8 was resulted from merging of a few sub-basins
with a small stream order so that basins with only the highest stream order were retained.
The logic behind the S8 is to perform the rainfall-runoff calculations by considering the
tributaries that are directly joining the Sabari river. As the spatial resolution becomes
finer, a few sub-basins are further divided into smaller sub-basins, and a few remained
intact. Note that a sub-basin of S8 contains one or multiple reservoirs, whereas a sub-
basin of a finer configuration typically contains only a part of the reservoir. Thus, basins
with finer configuration require multiple sub-basins to encompass completely or a part of
the reservoir.

 

̅ ̅

̅ ̅ ̄

S8 S1

Konta Konta Konta

S132 S58 S48

Konta KontaKonta

S20

0 10050 Km 0 10050 Km 0 10050 Km

0 10050 Km 0 10050 Km 0 10050 Km

Basin or sub-basin boundary River stream Outlet (Konta)

Figure 2. Delineation of Sabari river basin for six different configurations.

Several topographical parameters, i.e., area, longest flow path, elevation, average
channel slope, average basin slope and basin lag, were calculated for all the sub-basins for
the six spatial resolutions. Table 5 displays basin/sub-basin average values of topograph-
ical parameters. As the spatial resolution became finer, the sub-basin average values of
parameters were decreased. The values for the six configurations differed significantly sug-
gesting basins of a different order. The relation between area and physical characteristics
was found to be a power-law; thus, the characteristics exhibited scaling with respect to the
basin or sub-basin area.
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Table 5. Average values of topographical parameters of Sabari River Basin. The values for six configurations were calculated

by taking the average value of all sub-basins of the corresponding configuration. Here, At is the threshold area used to

delineate the configuration, A is the mean area of the basin, L is the mean longest flow path, and Lag is the basin lag.

Configuration
Threshold Area

(At, km2)
Mean Area (A, km2)

Mean Longest Flows
Path (L, Km)

Mean Basin Lag
(Lag, h)

S1 Not applicable- Not applicable 171.05 60.00
S8 300 2515 131.99 16.75
S20 450 1006 82.27 8.00
S48 225 419 49.77 5.36
S58 205 347 45.34 4.58

S132 90 152 29.00 3.31

5.2. Results from the Model Calibration

As mentioned in Section 4.3.2, the set of seven parameters were optimized simulta-
neously for S1. For the remaining five configurations, the set of nine parameters were
optimized. The two parameters, Ia and CN were optimized simultaneously, and the remain-
ing seven parameters were optimized one-by-one through trial-and-error. The calibration
was continued until the NSE of the simulations was greater than or equal to 0.4. It was
observed that both baseflow and routing related parameters (k, Q0, Rp, K and X) have less
influence in improving the NSE of simulations, therefore these parameters were always
assigned with their initial values. This leaves excess rainfall and direct runoff related pa-
rameters (CN, Ia, Tc and R) as active in terms of calibration; hence optimal values of these
parameters were analyzed for six spatial resolutions with respect to 15 flood events and
event characteristics. The following sub-sections detail how these optimized parameters
vary in multiple aspects.

5.2.1. Spatial Resolution

The set of calibrated parameters was analyzed for 15 events for six spatial resolu-
tions in the context of basin response as well as basin area. Figure 3 has four panels, and
each panel corresponds to a parameter. Each panel has six boxplots, and each boxplot
corresponds to a configuration. A filled circle in each boxplot correspond to a sub-basin’s
parameter value for an event of a configuration. Thus, filled circles represent all values of a
parameter for 15 events and all sub-basins of the configuration. Importantly, a boxplot with
filled circles highlights whether values take only a certain portion of the range or vary con-
tinuously throughout the range, thus provides information on their distribution. Increased
sample size (number of filled circles) was observed for finer resolution configurations
because of an increase in the number of sub-basins.

A skewed and a horizontal band of values were observed for all the configurations
and four parameters (Ia, CN, Tc, R). A skewed distribution implies a unique response of a
sub-basin, where a long right or left tail of values was observed. Whereas the horizontal
band of values suggests either a similar response of a sub-basin irrespective of the event or
a similar response of all sub-basins to an event, hence the same set of values was observed.
In this regard, the values of the parameters were analyzed with respect to the sub-basin
area (Supplementary Materials Figure SI1–SI5) and an event. Although the sample size of
the parameters for each configuration is different, the following was observed. The median
of the values for parameters Ia, CN, Tc and R is high (low) for the S20 (S132, S48 and S1), S48
(S58 and S1), S1 (S58 and S8) and S1 (S132, S58, S4, S20 and S8) configurations, respectively.
The results indicate the dominance of no single configuration across all parameters either
for high or low values.

Noting that each parameter corresponds to a different physical process, the results
suggest a different response of sub-basins of a configuration for each process and an
association among parameters of a configuration. For example, relatively large Ia values of
the S20 configuration indicate dry antecedent moisture conditions and are in accordance
with the corresponding moderate CN values. Moreover, relatively low Tc values are
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in accordance with observed high R values for the S58 configuration. Other notable
observations are decreased R values for configurations of finer spatial resolution (S8 to
S132) and exponentially increasing R values with respect to the basin area, e.g., for S58
configuration (Figure SI6). The higher the R, the longer it takes for attenuation of peak flow
and this was observed for larger basins. Thus, the results are consistent.
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Figure 3. Boxplots of the calibrated parameter for 15 events, for six configurations. Each panel

corresponds to a parameter, and panels in the clockwise direction from the top left, (a–d) correspond

to Ia, CN, Tc and R, respectively. The red color-filled circle corresponds to a value of the parameter of

an event of a sub-basin of a configuration. The filled circles for any value are arranged randomly

in the boxplot along the width of the box. The boxplot with filled circles highlights the distribution

aspects of the parameter values.

Apart from the above analysis, the values of parameters for sub-basins that are
common in both S8 and S58 configurations were analyzed (Figure 4). A total of five
sub-basins were chosen and were named differently in two different configurations. The
common basins for both configurations were named in S58 (S8) as W1110 (W4), W1140
(W5), W1150 (W6), W1160 (W7) and W1170 (W8). The boxplot of values for the same basin
of two configurations indicates that the parameters are not similar in their magnitude and
distribution. The above implies that the response of a basin is different when it is modelled
with a different configuration. However, this is not valid because the basin’s response
will be the same irrespective of the configuration. All parameters, except Ia, exhibited an
association with the sub-basin area (Supplementary Materials Figure SI1–SI5). However, a
medium or large spread of parameter values implies a significantly different basin response
and raises questions on the transferability of parameters for a basin for all events. In this
regard, the values of the parameters were analyzed for each event separately.
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Figure 4. Similar to Figure 3 but for five sub-basins that are common in both S8 and S58 configurations.

In the plot, (a), (b), (c) and (d) correspond to the parameters Ia, CN, Tc and R, respectively. The

two adjacent boxplots have different names in different configurations; however, they correspond to

the same basin.

5.2.2. Selected Flood Events

Figure 5 has four panels, and each panel corresponds to a parameter. Calibrated
parameter values of all sub-basins of a configuration specific to an event are displayed in a
boxplot. A set of six boxplots, of which each boxplot is in a different color and corresponds
to a configuration, were developed for each event, and are arranged in chronological order
of events. A filled circle in a boxplot corresponds to a value of the parameter for a sub-basin.
Thus, the number of filled circles in each boxplot is equivalent to the number of sub-basins
of the configuration. A notable observation among all plots is the pattern exhibited by the
CN, i.e., high and low CN values for events of the early- and recent- part of the record.
High CN values correspond to less infiltration, which may potentially result in higher
runoff. However, it is a counter-intuitive observation to see high CN values in the early
part of the record before any significant development in the basin. Apart from CN, no other
parameters exhibited a pattern except that the range of values for a few parameters is high
for certain events.

Except for Ia and CN values of S58 configuration, the boxplots broadly suggest no
large variations in parameter values among sub-basins of the same configuration (indicated
by boxplot of small size) and all configurations of an event (indicated by a set of boxplots
corresponding to an event). However, the boxplots of values indicate a large event-to-event
variability, particularly for Ia values (Figure 5a). Moreover, patterns with small variability
in CN values (Figure 5b) and moderate to small variability in Tc and R values (Figure 5c,d)
are mainly responsible for the boxplot of values to be different for six configurations were
observed. Nevertheless, excluding 1966SP and 1986SP, no event with a combination of a
parameter set with either high or low values was observed. In this regard, parameters were
analyzed with respect to flood event characteristics.
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Figure 5. Boxplots show the calibrated parameter values of all basins of six configurations for each

of the 15 events. Events were sorted as per their year of occurrence. Boxplots of red, green, orange,

blue, purple and yellow colors correspond to S132, S48, S8, S58, S20 and S1, respectively. The letters

in the event name, i.e., SP, DP and MP, correspond to single peak, double peak and multiple peak

flood events. Panels in the clockwise direction from the top left, (a–d) correspond to Ia, CN, Tc and R,

respectively.

5.2.3. Event Characteristics

Four characteristics of a flood event, i.e., peak flow (Qp), event duration (t) and time to
peak (Tp), and accumulated rainfall (Rsum), corresponding to the event were considered as
part of the analysis (see Table 1). While the time-to-peak values are uniformly distributed,
flood duration values are relatively less right-skewed than the flood peak values (Figure 6).
Rainfall amount increased with an increase in the flood duration of an event. With an event
exclusion, two aspects, i.e., flood duration and flood peak exhibited a moderate linear
association. However, flood magnitude exhibited no apparent association. As no clear
pattern is observed among different aspects of flood events, parameters of all configurations
were analyzed with event characteristics (Figure 7).



Water 2021, 13, 1224 13 of 26

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

14416

20187

10414
7468

6889

8854

8416

7591

6494

6167

12182
97889768

8037

7992

T P
 (d

ay
s)

t (days)

150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0
550.0
600.0
625.0
650.0
700.0

RSum (mm)

 

Figure 6. Bubble plot showing the relation among four different flood aspects, i.e., flood duration

(t in days), time to peak (Tp in days), peak flow (Qp in m3/s) and accumulated rainfall (Rsum) of

selected 15 events. The size of a bubble corresponds to the magnitude of peak flow, and each bubble

is annotated with the corresponding streamflow magnitude. The color corresponds to the rainfall

amount, and its scale is mentioned in the legend.

In Figure 7, each row corresponds to an event characteristic, and each column cor-
responds to a parameter. As parameter Ia was not exhibiting any specific pattern with
any event characteristic, the corresponding association plot is not shown in Figure 7. Rel-
atively high CN values were observed for high peak flow events and value greater than
70 were observed for approximately eight events for most of the configurations. High CN
values with a small spread (i.e., small boxplot) were observed for the two highest peak
flow events (Figure 7a). The large spread in CN values for three specific flood durations
(16, 28 and 37 days) suggests that the CN values are different for flood events with the
same flood duration (Table 1; Figure 7b). The difference in CN values reflects the different
infiltration conditions, which can be attributed to different antecedent rainfall and soil
moisture conditions of the events. Unlike for flood duration, the large spread in CN values
for three different time to peak values (6, 9 and 15 days) was seen in all configurations and
it indicates different responses from sub-basins of a configuration (Figure 7c).

Most Tc values for many configurations fall within a range of values from 3 to 10 h.
High Tc values (~10 h) were observed for two flood events of high peak flow for all
configurations (Figure 7d). Typically, high Tc values can be related to flood events of large
magnitude for which most of the basin contributes as well as large flood events that result
from high rainfall events in mid- and down-stream sub-basins. Thus, spatial variability of
rainfall plays a key role in Tc values, and it is dominant for all configurations except S1.
This also explains the relatively high Tc values of the S1 configuration. Tc values of the
S1 were increased with respect to flood duration (Figure 7e), and it can be attributed to
high rainfall amount ignoring spatial variability; typically, in these conditions, increased
rainfall is associated with increased flood duration. Similar to CN values, the large spread
in Tc values for the same flood duration and time to peak was observed and it is due to
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combining values from different flood events of the same flood duration or same time to
peak (Table 1; Figure 7e,f).
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Figure 7. Boxplots of calibrated parameter values of all sub-basins of six configurations with respect

to flood events’ characteristics. Three columns, left to right, (a–c) corresponds to CN, (d–f) correspond

to Tc and (g–i) correspond to R, respectively. The rows from top to bottom correspond to flood peak,

flood duration and time to peak, respectively. Boxplots of red, blue, green, purple, orange and yellow

colors correspond to S132-, S58- S48-, S20-, S8-and S1- configurations, respectively.

Storage coefficient (R) values of S1 increased with peak flow magnitude; however,
approximately similar values were observed for S8 (Figure 7g). Relatively, smaller R values
were observed for S58 and S132, and they exhibited event-to-event variation only for a few
events. The R values indicate the number of hours that a basin can temporarily store the
excess rainfall, and it explains relatively small values for the basins of finer resolution as
compared to the basins of coarser resolution. The three large sub-basins of S8 (see Figure 2)
have one or more hydraulic structures which can store the excess rainfall during the event;
therefore, similar R values were observed for S8. Similar to CN and Tc values, the R values
for the flood events of the same flood duration or time to peak differ significantly (Table 1;
Figure 7h,i). The two events with the same flood duration and time to peak resulted in
a large spread (large boxplot) of R values. Note that there are also a few flood events
for which R values are the same. Therefore, no large spread was observed, e.g., 1972SP,
2005DP,1988DP and 1969MP.

5.2.4. Performance Metrics

Model performance was analyzed by calculating various verification metrics us-
ing estimated and corresponding observed streamflow values for six configurations, for
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the 15 events. The verification metrics consist of r, NSE, RMSE, MAE, PBIAS, PEP and
ETP, and were calculated separately for streamflow of reference and calibrated scenarios
(Tables A1 and A2). As seen in the table, each of these scenarios has 90 values for each
verification metric and result from a combination of six configurations and 15 events.

Positive correlation coefficient (r) values for both scenarios were observed. For the
calibration scenarios, approximately 92% of the values are greater than 0.7 and 50% of the
values are greater than 0.9. High values of r, ~ 0.85 or greater values were observed for
at least one of the six configurations when 1988DP and 2014MP are excluded. However,
the r values for the reference scenario suggest its poor performance, yet 33% of values are
greater than 0.9 and nine of 15 events exhibited a value of ~ 0.85 at least for one of the
configurations. In terms of NSE, approximately 85% of the values were greater than 0.4 for
the calibration scenario. However, both positive and negative values were observed for the
reference scenario, i.e., 50% of the NSE values are smaller than zero, and 20% of the values
are greater than zero and less than 0.4. For the calibration scenario, the highest NSE values
were greater than 0.4 for at least one of the six configurations for all the events. Whereas,
for the reference scenario, the highest values of greater than 0.4 were observed only for
seven of the 15 events. These suggest the better performance of the calibration scenario.
While the linear association among estimated and corresponding observed streamflow
and performance of estimated streamflow with respect to climatology are essential, the
difference in streamflow magnitude should not be large. Therefore, metrics based on error
terms were estimated.

The error term corresponds to a flow magnitude, and it is challenging to set a threshold
to define the best or acceptable value. In this regard, first, the configuration with the lowest
error was identified. Second, the score “1” was assigned for configurations with error
values under 25% of the lowest error; otherwise “0” was assigned. Thus, if the error is
within 25% of the lowest error for all configurations, then all configurations get a score
of “1” and are accepted as equally performing. Finally, the above criterion was repeated
for all 15 events and configurations. A model score can range from 0 to 15, and a high
score indicates a relatively better performing configuration. The scheme was extended for
both r and NSE metrics, but configurations with the metric values within 10% of the best
metric were considered. Similarly, the model scores were calculated for error in time to
peak (ETP), and configurations with non-zero values were penalized with a score of “0”.
The model scores were tabulated for all configurations of both reference and calibration
scenarios, and the label of a column without the asterisk (*) corresponds to the reference
scenario (Table 6).

Table 6. Model scores were calculated for six configurations of both reference and calibration scenarios. A model score can

range from 0 to 15, and a high score indicates a relatively better performing configuration. The label of a column without

and with asterisk (*) corresponds to streamflow simulations of reference and calibration scenarios, respectively.

Verification Metric S132 S132 * S58 S58 * S48 S48 * S20 S20 * S8 S8 * S1 S1 *

Correlation coefficient, r 9 14 7 13 10 14 3 13 6 8 11 15
Nash-Sutcliff Efficiency, NSE 5 10 4 8 6 11 2 11 3 5 7 14

Root Mean Square Error, RMSE 3 9 2 11 3 6 0 6 2 5 3 14
Mean Absolute Error, MAE 2 9 4 9 3 7 0 5 1 5 4 14
Percentage of Bias, PBIAS 0 5 0 6 2 0 2 4 1 3 0 4

Percentage Error in Peak, PEP 0 4 0 5 0 1 4 6 2 5 0 5
Error in Time of Peak, ETP 5 11 5 10 6 10 7 13 3 4 7 9

Among all configurations of calibrated scenario, S1 stands out with very high model
score values for four verification metrics (r, NSE, RMSE and MAE) followed by S132. Except
for S8, all configurations exhibited similar scores for r and NSE. Whereas S1, S132 and
S58 exhibited slightly higher values than S20 and S48 configurations in the case of RMSE
and MAE. For PBIAS and PEP, all configurations exhibited relatively smaller model score,
and among them, S132 and S58 have slightly higher values followed by S1. Low model
score indicates no consensus on the best configuration, i.e., a few configurations performed
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better for certain events. The model score values for ETP suggest the relatively better
performance of S20, S132, S58 and S48 compared to S1 and S8. When the threshold values
of 25% and 10% were modified to 15% and 5%, respectively, no significant changes in the
model scores were observed.

In addition to verification metrics, streamflow hydrographs were developed and used
in the qualitative assessment of streamflow simulations. Figure 8 shows hydrographs of
observed and estimated streamflow of reference and calibrated scenarios for six configura-
tions, for 15 events. The plots are arranged in descending order based on magnitude of
observed peak flow. Each plot has 13 hydrographs, of which one corresponds to observed
streamflow, and two sets each with six hydrographs correspond to streamflow of reference
and calibration scenarios.
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Figure 8. Comparison of hydrographs of observed and estimated streamflow of reference (denoted

by Ref) and calibration scenarios for six configurations, for the 15 events at Konta. Hydrographs are

arranged as per the magnitude of the peak flow of an event. The black line corresponds to observed

flows, and other colors correspond to estimated flows from different spatial resolutions.

Hydrographs of all events suggest that estimated streamflow from all configurations
are realistic and exhibit day-to-day variations like observed streamflow. However, the plots
also highlighted underestimated peak flow and volume for the two highest flood events, i.e.,
1986SP and1966SP, and for a multi-peak flood event, i.e., 2014MP, for all six configurations,
for both the scenarios. The large error for the two highest flood events indicates the model’s
inability to simulate excess rainfall and its translation into direct runoff. For 1986SP,
underestimated streamflow is attributed the backwater effect in the Sabari river due to the
high streamflow in the Godavari river (main tributary). The backwater effect increased
the streamflow at the Konta GD station, but it is not accounted for by the HEC-HMS’s
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regular direct runoff related calculations. Therefore, underestimated streamflow was
produced. For the 1966SP, dry AMC resulted in incorrect CN values, which in combination
with other parameters produced underestimated streamflow. The time to peak (Tp) was
advanced by a day for S1, S8 and S48 (Table A1). Streamflow of the reference scenario was
underestimated for six events, overestimated for another six events, and showed less bias
for three events. In a similar proportion, time to peak was either advanced or delayed;
however, no association was observed with either under-or over-estimated streamflow.
Whereas streamflow of the calibration scenario was relatively better, i.e., exhibited less bias
and correctly estimated time to peak, which was reflected in the model score as well. For
the two events (1988DP and 2014MP), the time to peak was largely advanced or delayed
for most of the configurations. The same was observed for 2006MP for the S8. The error
can be attributed to the presence of two or more peaks of the same magnitude at longer
days apart and overestimated peak flows for other than the actual peak. However, there
are other events of two or more peaks for which most of the configurations have zero error
in time to peak e.g., 1966DP, 1975DP and 1984MP.

5.3. Results from the Model Validation

The model calibration results suggested a better performance of S1 followed by
S132. Given that S1 estimates streamflow only at the basin’s outlet and S132 estimates
streamflow at both basins’ outlet and interior locations, S132 was considered for the model
validation. The HEC-HMS model was run for three events at four locations (Konta, Injaram,
Saradaput and Potteru) using the ensemble of parameter values that were obtained during
the calibration. The parameter set consists of nine parameters, of which a total of five
parameters from baseflow (Q0, k and Rp) and routing (K and X) methods exhibited no
significant variation irrespective of an event. Therefore, the same value of the parameter
was used in the validation, i.e., no ensemble of values for these parameters. In addition,
the excess rainfall method parameters are events specific, therefore, the parameters are
not part of the ensemble set of parameter values. Thus, it results in an ensemble set of
parameter values for direct runoff method, i.e., Tc and R.

The excess rainfall method parameters, i.e., Ia and CN, vary with each event, therefore
the parameters were estimated separately for three events. The Clark’s UH parameters
(Tc and R) of all events excluding two extreme events, i.e., 1966SP and 1986SP, were used.
Thus, it potentially yields 13 sets of Tc and R. However, values for a set of events are the
same. In this regard, Tc and R values of events, 1968SP, 2015SP, 2005DP, 1988DP, 1975DP
and 1969MP were grouped as set 1, and events 1969DP and 1966DP were grouped as set 2.
The values for the remaining five events (1972SP, 2006MP, 2014MP, 1984MP and 1978MP)
are different and treated as a separate ensemble member. Thus, a total of seven sets of
parameters were created.

The ensemble of seven sets of parameters was used to generate an ensemble of
streamflow for four locations, for three events (Figure 9). Both single-valued and mean
continuous ranked probability score (CRPS) [61] were calculated using ensemble median
and all ensemble members, respectively (Table 7). The mean CRPS considers all members of
an ensemble forecast, and it reduces to the mean absolute error (MAE) of the single-valued
forecasts. Thus, both mean CRPS and MAE can be compared. Performance of estimated
streamflow varied with each event; however, relatively better performance was observed
for 2003SP in terms of linear association and NSE (Table 7). The mean CRPS and MAE
are of approximate values for most of the locations and events. Estimated streamflow at
the Konta has exhibited relatively better performance, and it is intuitive as the HEC-HMS
model calibrated with Konta streamflow.
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Figure 9. Hydrographs of the observed and estimated streamflow for the three events. Each row

corresponds to an event, and each column corresponds to a location. The black line corresponds to

observed flows, and other colors correspond to estimated flows from an ensemble of seven sets of

parameters. Set 1 represents the Clark’s UH parameters estimated for events, 1968SP, 2015SP, 2005DP,

1988DP, 1975DP, 1969MP and Set 2 represents the Clark’s UH parameters estimated for the events

1969DP, 1966DP.

Table 7. Deterministic and ensemble verification metrics for three events at four locations.

Metric
2003SP 1997DP 2004MP

Konta Injaram Saradaput Potteru Konta Injaram Saradaput Potteru Konta Injaram Saradaput Potteru

r 0.96 0.90 0.83 0.14 0.82 0.73 0.72 0.48 0.57 0.63 0.66 0.15
NSE 0.88 0.70 0.51 −75.60 −0.55 −0.09 −0.23 −3.11 0.06 −0.32 −0.12 −35.85

RMSE 325.67 649.59 611.61 341.87 519.08 419.64 204.98 92.96 994.55 845.49 291.41 321.32
MAE 316.70 436.25 287.02 226.98 456.48 320.48 160.92 83.73 756.28 653.52 202.41 240.86

PBIAS −14.00 −25.30 −34.00 175.00 −44.20 −36.40 −34.90 −58.50 2.70 21.20 −15.50 221.60
PEP −10.06 −26.04 −57.12 376.48 −43.41 −42.19 −31.70 −60.61 −29.88 −12.35 9.95 184.16
ETP 0 1 1 2 1 1 0 0 1 1 0 −10

CRPS 235.77 303.96 246.52 163.13 368.51 260.41 132.53 77.28 585.31 507.37 170.86 185.90

In addition to the verification metrics, hydrographs for an ensemble of estimated
streamflow were developed (Figure 9). Each ensemble member and all members together
showed realistic estimated streamflows. The estimated streamflow exhibited day-to-day
variability and produced single-, double and multiple peaks encompassing of observed
streamflow for three events for all locations excluding Potteru. Note that the estimated
streamflow corresponds to set 1 and set 2 were of the same values; therefore, they are
not distinguished in the plot. The estimated ensemble of streamflows exhibited poor
performance at the Potteru for events 2003SP and 2004MP; however, they appeared realistic
for the event 1997DP with a systematic bias. The poor model performance at the Potteru for
events 2003SP and 2004MP could be attributed to the controlled streamflows from upstream
at the Jalaput reservoir, which has been operational since 2000. While no systematic pattern
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was seen for events for the remaining three locations, a few verification metrics suggest
good performance with error metrics emphasizing post-processing of streamflows [62–65].

As the need for the basin-wide real-time forecast is imminent, reliable and accurate
runoff estimates at customized locations of a basin including ungauged basins are necessary.
The estimation of streamflow for the interior part of a basin requires a scientific under-
standing of hydrologic processes with respect to resolution and integration of information
in the modeling context so that a robust forecast system can be developed. Insights gained
from the analysis of parameter values and model performance with respect to sub-basin
area, model spatial resolution and events assist in developing the system. The results
suggest that the runoff estimates are chiefly driven by excess rainfall and direct runoff
components. Equal performance of all configurations in Percentage Error in Peak (PEP,
see Tables A1 and A2) agree with [66], who observed smaller differences in the model
performance metrics with an increase in spatial resolution for two flood events. However,
no consensus was observed among configurations with respect to other verification metrics,
and it requires further analysis.

As part of the future work to develop an operational real-time flood forecast system,
the following needs to be considered. Sub-basin specific rainfall amounts with respect
to events highlight the influence of spatial variability of rainfall. However, it warrants a
detailed analysis (e.g., [36,37,51]). Channel routing is an essential component of modeling,
and apparently, the Muskingum method did not exhibit any significant role. In this
regard, other methods of channel routing need to be explored. In addition, a detailed
analysis of rainfall-runoff modeling with finer and coarser resolutions to understand the
anthropogenic effects (e.g., land-use change and the role of reservoirs) and integration of
hydrologic information as per its availability, including for a short period of the record, is
much needed.

6. Conclusions

The Sabari River Basin was delineated into six configurations, and event-based rainfall-
runoff modeling was carried out using the HEC-HMS model. The model calibration and
validation were performed for 15 and three flood events of single, double and multiple
peaks. The calibrated parameters were analyzed with respect to spatial resolution (sub-
basin area), flood events and event characteristics, and then performance metrics were
calculated for the reference and the calibration scenarios. It was observed that the param-
eters vary among the sub-basins and all configurations for a given event. Values of the
parameters suggest the key role of initial abstractions (Ia), curve number (CN), unit hydro-
graph related parameters, and less influence of baseflow and channel routing parameters.
While Ia and CN varied event-to-event without any pattern, Tc and R exhibited similar
values for most of the events for finer resolution configurations. Being unit hydrograph
parameters, Tc and R represent the basin’s geomorphological characteristics. Therefore,
approximate Tc and R values for most of the events are agreeable. The performance metrics
highlight the better performance of S1 and S132 during the calibration. The hydrographs
suggest realistic estimates of streamflow for most of the configurations and events. Noting
that S1 estimates streamflow only at the basin outlet, S132 was used to estimate streamflow
at four locations as part of the validation.

S132 was implemented with a set of seven unique values of calibrated parameters and
produced an ensemble of streamflow for three events at four locations. Three of the four
locations are interior locations of the basin; thus, the model validation mimics basin-wide
streamflow estimates. While performance metrics for a few configurations suggested
an agreeable performance, the estimated streamflow was not of similar accuracy as in
calibration because of input forecast uncertainties [36,67,68]. As in calibration, streamflow
hydrographs suggested realistic flows. However, streamflow estimation may be improved
with post-processing including simple techniques for bias correction. Thus, this study
shows the estimation of an ensemble of streamflows that can be further enhanced at
the basin′s interior locations at multiple spatial resolutions. In addition, these types of
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studies need to be extended in the context of other aspects of modeling, for example,
input—including rainfall and model structure—related uncertainties. To address the above
limitations, a systematic analysis of rainfall-runoff modeling using other well-established
hydrologic models and techniques is necessary, and this study can be treated as one of the
steps in this direction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10

.3390/w13091224/s1, SI1: Methods used in the HEC-HMS model to simulate hydrological processes;

SI2: Parameters with respect to sub-basin area, Figure SI1: Boxplots of the calibrated parameter for
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ter, and panels in the clockwise direction from the top left, (a), (b), (c) and (d) correspond Ia, CN, Tc

and R, respectively. Area in km2 was mentioned in the X-axis labels; Figure SI2: Similar to Figure

SI1, but for S20 configuration; Figure SI3: Similar to Figure SI1 but for S48 configuration; Figure

SI4: Similar to Figure SI1 but for S58 configuration; Figure SI5: Similar to Figure SI1, but for S132

configuration; Figure SI6: Storage coefficient (R) with respect to the area for S58 configuration. The

X-axis is on logartihamic scale and plot suggests an exponential increase in the R values. References:
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Appendix A

Table A1. Verification metrics for streamflow simulations of the reference scenario; verification metrics from left to right column are r, NSE, RMSE, MAE, PBIAS and PEP for six

configurations, and each row corresponds to an event.

Event
Pearson Correlation Coefficient (r) Nash-Sutcliffe Efficiencey (NSE) Root Mean Square Error (RMSE)

S132 S58 S48 S20 S8 S1 S132 S58 S48 S20 S8 S1 S132 S58 S48 S20 S8 S1

1986SP 0.47 0.48 0.52 0.41 0.58 0.63 0.15 0.17 0.23 0.04 0.31 0.37 5118.88 5080.12 4879.84 5455.93 4618.44 4411.23
1966SP 0.43 0.40 0.52 0.32 0.64 0.71 −0.07 −0.28 −0.04 −0.11 0.09 −0.01 4657.01 5111.15 4595.99 4764.48 4298.19 4534.46
1968SP 0.93 0.86 0.96 0.84 0.85 0.95 0.82 0.10 0.86 0.69 0.67 0.68 1068.81 2374.82 924.15 1395.14 1443.25 1419.53
2015SP 0.91 0.86 0.86 0.92 0.35 0.83 −1.05 −2.27 −0.79 −2.58 −0.42 −1.37 3019.58 3814.38 2822.60 3991.26 2518.43 3248.37
1972SP 0.92 0.93 0.96 0.74 0.97 0.98 −0.17 −0.66 0.11 −1.90 −0.20 0.54 2133.86 2539.65 1859.45 3355.05 2157.22 1336.20
2005DP 0.96 0.95 0.96 0.87 0.65 0.86 −2.03 −1.44 −1.15 −2.50 0.05 −0.51 3836.96 3442.04 3233.00 4122.93 2147.18 2712.62
1969DP 0.84 0.86 0.85 0.77 0.75 0.85 0.59 0.65 0.59 0.55 0.43 0.55 1100.69 1016.35 1092.58 1153.14 1291.11 1148.58
1966DP 0.91 0.91 0.92 0.88 0.91 0.94 0.81 0.81 0.82 0.68 0.77 0.84 734.79 735.25 717.34 944.85 810.78 680.04
1988DP 0.70 0.43 0.66 0.76 0.48 0.67 −0.03 0.14 0.03 −0.33 −0.71 −0.69 1322.45 1204.08 1283.42 1500.39 1698.36 1689.17
1975DP 0.91 0.89 0.90 0.80 0.84 0.89 −0.51 0.67 0.06 −2.73 −2.43 −1.08 1407.16 659.26 1112.53 2213.73 2124.83 1655.59
2006MP 0.63 0.63 0.67 0.51 0.74 0.79 −5.44 −4.92 −4.38 −6.71 −5.38 −2.55 6882.41 6599.83 6290.87 7531.05 6850.24 5113.00
1969MP 0.84 0.84 0.86 0.75 0.89 0.94 0.70 0.71 0.74 0.48 0.78 0.85 1326.04 1315.39 1241.21 1753.40 1124.58 928.52
2014MP 0.61 0.54 0.62 0.47 0.67 0.68 0.24 0.17 0.31 −0.12 0.38 0.42 1693.96 1774.77 1614.52 2054.33 1530.16 1485.55
1984MP 0.80 0.81 0.83 0.60 0.89 0.90 −1.12 −0.14 −0.99 −2.87 −1.67 −0.19 2332.54 1706.15 2256.04 3147.65 2614.85 1750.01
1978MP 0.82 0.82 0.82 0.76 0.75 0.81 −0.02 −0.19 0.09 −0.61 −0.28 0.24 1650.69 1777.40 1557.29 2069.51 1842.01 1425.39

Event
Mean Absolute Error (MAE) Percent Bias (PBIAS) Percent Error in Peak flows (PEP)

S132 S58 S48 S20 S8 S1 S132 S58 S48 S20 S8 S1 S132 S58 S48 S20 S8 S1

1986SP 2600.49 2641.39 2528.20 2997.37 2386.76 2200.10 21.70 18.30 21.70 12.80 17.80 25.00 20.81 21.88 26.09 7.79 15.21 25.98
1966SP 2446.43 2792.20 2420.88 2461.57 2271.55 2478.39 180.10 414.20 208.40 141.90 183.20 246.10 54.87 81.60 60.68 43.86 52.58 72.32
1968SP 676.42 1372.62 641.37 864.60 742.86 699.81 19.10 162.50 17.80 16.30 33.00 43.40 23.45 72.92 24.04 14.74 21.70 50.19
2015SP 1770.01 2189.63 1699.86 2353.43 1715.73 2197.38 −52.00 −57.10 −50.10 −59.20 −27.40 −57.40 −99.99 −139.32 −93.64 −171.65 1.12 −89.48
1972SP 1203.88 1391.14 1042.55 1771.96 1071.33 935.79 −27.00 −33.90 −26.00 −35.90 −27.80 −26.10 −90.26 −107.95 −77.63 −113.78 −98.97 −41.52
2005DP 2441.92 2304.82 2245.28 2604.28 1506.53 1925.68 −47.30 −46.40 −45.70 −48.70 18.40 −42.40 −112.19 −94.80 −81.97 −135.32 −14.57 −54.44
1969DP 792.44 706.01 721.17 873.49 770.29 614.95 45.60 38.40 44.40 22.10 52.50 46.20 39.12 39.77 42.59 14.77 39.03 53.12
1966DP 555.86 541.65 557.56 696.48 629.57 557.51 −5.40 −9.50 −4.10 −16.80 −14.40 −12.90 28.16 25.79 31.83 13.65 12.74 24.22
1988DP 968.11 702.03 1002.39 1161.82 1236.25 1378.21 −37.50 15.00 −35.70 −43.50 −38.20 −48.00 20.72 55.56 29.33 −0.05 7.55 3.91
1975DP 994.18 514.45 866.49 1404.04 1274.32 1162.14 −45.40 −23.70 −41.60 −54.40 −52.70 −50.60 −57.91 4.97 −21.36 −95.10 −96.39 −46.71
2006MP 4115.94 4112.93 3840.79 4469.64 4531.14 3366.20 −58.90 −59.00 −57.70 −61.10 −62.90 −55.50 −253.12 −226.78 −227.83 −285.96 −268.98 −178.57
1969MP 830.42 810.39 768.79 1167.36 801.54 680.59 5.20 4.60 3.50 −4.00 3.90 9.50 −5.34 −1.87 −2.83 −15.65 −1.30 16.19
2014MP 1044.86 1020.87 962.64 1227.02 1033.01 871.91 6.10 45.90 11.10 −1.30 16.20 22.20 32.55 50.35 40.24 24.64 33.39 54.03
1984MP 1495.72 1150.07 1497.65 1854.15 1736.08 1267.21 −42.60 −33.10 −45.40 −48.80 −50.60 −43.40 −98.30 −65.11 −96.33 −148.68 −141.90 −59.07
1978MP 1232.74 1367.74 1193.07 1577.13 1327.79 1118.16 −27.60 −31.20 −28.00 −34.10 −30.80 −27.50 −41.92 −43.67 −36.65 −45.25 −38.96 −23.33
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Table A1. Cont.

Event
Error in Time of Peak (ETP)

S132 S58 S48 S20 S8 S1

1986SP −3 −3 −3 −3 −2 −3
1966SP −3 −3 −3 −3 −2 −2
1968SP 0 0 0 0 1 0
2015SP 1 1 1 0 2 1
1972SP 1 1 1 1 0 1
2005DP 1 1 1 0 1 1
1969DP 0 0 0 0 1 0
1966DP 0 −1 0 0 −1 0
1988DP −10 11 11 −10 −9 −10
1975DP 0 0 0 0 1 0
2006MP −1 −1 −1 −2 −1 −1
1969MP 0 0 0 −1 0 0
2014MP −9 12 12 −9 13 −1
1984MP −1 −1 −1 −1 0 0
1978MP −1 0 0 0 1 0

Table A2. Verification metrics for streamflow simulations of the calibration scenario; verification metrics from left to right column are r, NSE, RMSE, MAE, PBIAS and PEP for six

configurations, and each row corresponds to an event.

Event
Pearson Correlation Coefficient (r) Nash-Sutcliffe Efficiencey (NSE) Root Mean Square Error (RMSE)

S132 S58 S48 S20 S8 S1 S132 S58 S48 S20 S8 S1 S132 S58 S48 S20 S8 S1

1986SP 0.94 0.92 0.93 0.94 0.95 0.96 0.70 0.72 0.65 0.70 0.73 0.77 3062.60 2957.57 3282.83 3051.76 2892.32 2682.37
1966SP 0.97 0.92 0.93 0.91 0.95 0.96 0.60 0.52 0.34 0.51 0.56 0.61 2849.74 3140.06 3655.97 3146.50 2988.00 2814.65
1968SP 0.92 0.95 0.95 0.85 0.90 0.99 0.85 0.84 0.90 0.72 0.81 0.98 963.38 987.00 795.42 1318.33 1092.39 378.02
2015SP 0.88 0.67 0.90 0.89 0.72 0.92 0.76 0.24 0.60 0.73 0.40 0.81 1041.06 1839.43 1330.76 1093.59 1635.54 917.79
1972SP 0.97 0.98 0.97 0.94 0.91 0.99 0.93 0.95 0.89 0.88 0.76 0.98 520.33 454.78 667.09 674.40 962.55 244.54
2005DP 0.95 0.95 0.97 0.93 0.64 0.95 0.79 0.84 0.84 0.64 0.16 0.89 1010.73 872.03 880.77 1319.41 2015.19 739.90
1969DP 0.87 0.85 0.82 0.81 0.77 0.85 0.73 0.69 0.64 0.56 0.56 0.71 885.44 955.43 1031.39 1130.24 1137.69 913.91
1966DP 0.93 0.93 0.95 0.90 0.91 0.94 0.84 0.86 0.84 0.77 0.79 0.84 662.51 632.66 662.63 808.09 761.07 680.04
1988DP 0.69 0.70 0.70 0.75 0.49 0.74 0.46 0.23 0.35 0.39 0.11 0.44 953.11 1143.66 1044.62 1013.31 1226.43 974.64
1975DP 0.90 0.93 0.90 0.90 0.77 0.93 0.80 0.85 0.68 0.69 0.53 0.84 518.64 440.94 646.79 638.50 782.40 455.91
2006MP 0.81 0.81 0.86 0.83 0.65 0.82 0.36 0.65 0.40 0.21 0.16 0.37 2164.97 1614.49 2102.33 2403.98 2490.76 2160.16
1969MP 0.89 0.90 0.89 0.93 0.94 0.94 0.76 0.78 0.76 0.85 0.85 0.85 1189.84 1145.96 1175.99 930.23 930.17 928.52
2014MP 0.72 0.66 0.70 0.71 0.72 0.67 0.44 0.39 0.44 0.49 0.46 0.41 1451.57 1522.37 1459.05 1391.97 1433.25 1487.57
1984MP 0.80 0.78 0.77 0.81 0.81 0.91 0.54 0.55 0.55 0.32 0.59 0.80 1091.34 1068.71 1074.01 1320.20 1022.82 708.96
1978MP 0.88 0.88 0.85 0.86 0.83 0.87 0.74 0.72 0.55 0.58 0.54 0.71 837.01 863.13 1089.93 1053.55 1109.89 874.70
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Table A2. Cont.

Event
Mean Absolute Error (MAE) Percent Bias (PBIAS) Percent Error in Peak flows (PEP)

S132 S58 S48 S20 S8 S1 S132 S58 S48 S20 S8 S1 S132 S58 S48 S20 S8 S1

1986SP 1886.34 2046.45 1819.89 1920.99 1715.78 1456.52 13.90 2.10 23.40 9.70 26.80 21.70 48.48 46.63 48.95 48.22 44.06 40.58
1966SP 1487.92 1757.26 2056.98 1740.25 1586.15 1559.57 60.80 59.60 109.30 56.70 80.20 61.70 53.10 57.21 66.67 59.21 52.17 51.64
1968SP 619.97 670.11 593.46 800.60 674.69 290.69 −2.10 4.80 −7.50 8.60 −2.00 −2.70 1.61 24.37 −3.91 5.09 −1.08 4.51
2015SP 564.42 1294.91 866.35 664.67 1198.14 541.53 12.00 −26.40 −23.30 −4.60 −25.00 −10.00 −3.57 0.40 −34.15 −19.30 −7.51 −15.59
1972SP 388.69 352.49 395.90 470.29 837.10 193.61 2.60 12.00 −9.20 2.90 −18.70 −1.60 −13.40 2.11 −13.42 −1.61 0.69 −0.48
2005DP 693.15 612.89 647.84 1020.47 1364.94 578.27 7.20 2.30 −7.70 −24.70 35.20 −1.40 −18.23 −13.09 −14.61 −10.79 2.49 0.18
1969DP 679.04 719.97 767.13 705.99 660.10 622.53 13.70 19.80 18.20 6.70 19.50 −7.50 23.40 33.80 19.14 −1.03 19.12 22.69
1966DP 537.11 470.71 524.54 616.25 595.84 557.51 −5.50 −6.00 −14.00 −13.90 −9.90 −12.90 23.43 23.70 22.10 16.97 19.33 24.22
1988DP 591.06 822.09 721.19 741.52 763.95 696.83 −6.90 −28.30 −23.90 −24.00 −14.40 −20.30 48.42 30.46 39.02 27.40 39.06 38.97
1975DP 437.67 344.87 482.85 453.83 449.04 384.60 −7.60 −8.50 −26.00 −22.50 −6.40 −10.40 12.59 15.61 17.68 3.23 7.49 10.36
2006MP 1691.45 930.67 1675.45 1881.46 1992.84 1589.23 −35.80 17.10 −38.20 −41.40 −32.30 −34.70 5.68 5.12 2.24 −4.97 −2.80 −0.39
1969MP 739.22 706.99 747.52 604.60 711.16 680.59 15.90 16.20 17.00 5.50 18.40 9.50 −0.22 1.29 3.07 −2.66 −1.16 16.19
2014MP 906.52 995.75 906.11 918.70 965.59 868.78 −8.60 −11.50 −4.90 7.60 −2.30 22.30 19.67 34.12 27.85 44.69 29.08 54.10
1984MP 869.64 687.76 842.65 1086.23 703.69 506.11 −23.80 2.80 −17.10 −33.90 9.60 −10.50 8.60 −2.83 22.98 −7.44 −10.92 −4.56
1978MP 518.37 600.08 852.98 770.13 736.47 611.64 12.70 8.80 −21.00 −19.30 15.20 12.00 1.76 −2.49 1.44 6.15 −0.98 7.66

Event
Error in Time of Peak (ETP)

S132 S58 S48 S20 S8 S1

1986SP 0 0 −1 0 −1 −1
1966SP −1 0 −1 0 −2 −1
1968SP 0 0 0 0 1 0
2015SP 1 1 0 0 1 1
1972SP 0 0 0 0 0 −1
2005DP 0 0 1 0 1 0
1969DP 0 0 0 0 1 0
1966DP 0 0 0 0 0 0
1988DP 1 1 11 −10 −9 −10
1975DP 0 0 0 0 1 0
2006MP 0 −1 0 0 45 0
1969MP 0 0 0 0 0 0
2014MP 8 7 8 8 7 −1
1984MP 0 −1 0 0 0 0
1978MP 0 0 0 0 1 0
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