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In this paper, we explore the mega riverbed-patterns,

whose longitudinal and vertical length dimensions

scale with a few channel widths and the flow depth,

respectively. We perform the stability analyses from

both linear and weakly nonlinear perspectives by

considering a steady-uniform flow in an erodible

straight channel comprising a uniform sediment

size. The mathematical framework stands on the

dynamic coupling between the depth-averaged flow

model and the particle transport model including

both bedload and suspended load via the Exner

equation, which drives the pattern formation. From

the linear perspective, we employ the standard

linearization technique by superimposing the periodic

perturbations on the undisturbed system to find the

dispersion relationship. From the weakly nonlinear

perspective, we apply the centre–manifold-projection

technique, where the fast dynamics of stable modes

is projected on the slow dynamics of weakly unstable

modes to obtain the Stuart–Landau equation for

the amplitude dynamics. We examine the marginal

stability, growth rate and amplitude of patterns for

a given quintet formed by the channel aspect ratio,

wavenumber of patterns, shear Reynolds number,

Shields number and relative roughness number. This

study highlights the sensitivity of pattern formation

to the key parameters and shows how the classical

results can be reconstructed on the parameter space.
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1. Introduction
Rhythmic riverbed-patterns fascinate geophysicists. They are formed when a turbulent flow

shears an erodible channel-bed by entraining sediment particles into the flow. They remain a

major part in the history of river evolution [1,2]. Mega riverbed-patterns are the configurations,

whose longitudinal and vertical length scales are of the order of a few channel widths and flow

depth, respectively [3]. For example, the classic architecture of large erosion and depositional

patterns (e.g. alternate bars) comprises a longitudinal wavelength up to tenfold the river width,

a transverse wavelength of the order of the river width and a finite amplitude that scales with

the flow depth. The mega riverbed-patterns are classified either from a mechanistic perspective

(e.g. free and forced bars, steady and migrating bars, and central and braided bars) or from a

topological perspective (e.g. longitudinal bars, transverse bars and diagonal bars) [4].

Mega riverbed-patterns appear in several engineering problems. The riverbed erosion favours

the local scour at structures (e.g. bridge piers), whereas the riverbed deposition reduces the width

of the navigation channel, enhancing the flood risk [5]. Further, the mega riverbed-patterns help in

the growth of riparian plants creating aquatic habitats [6]. In particular, the formation of incipient

alternate bars explains the possible origin of the onset of meandering of rivers [7], while the

central and braided bars cause the braiding of rivers [4]. River bars may develop as a single

or periodic repetitions of deep and shallow reaches. The interplay between the carrier fluid and

the erodible channel-bed under certain physical conditions gives rise to periodic patterns [8]. The

patterns that are free from any external forcing are called the free bars [9], e.g. alternate, central

and braided bars. Alternate bars develop at the left and right channel-banks, while central bars

arise at the middle of the channel. In addition, braided bars appear to be several depositional

features at any cross section of the channel. The central and braided bars are usually found in

wide channels [9].

In addition to a plethora of studies carried out through laboratory experiments [10–18],

field measurements [19–23] and numerical simulations [24,25], mega riverbed-patterns were

largely analysed theoretically [3,9,26–35]. In the theoretical framework, the riverbed-patterns are

thought of as double-harmonic waves that develop as a consequence of the so-called instability

phenomenon, which arises as a response of the fluid–riverbed interface to the flow and the

particle transport [8]. The theoretical studies on mega riverbed-patterns mainly considered the

depth-averaged assumption for the momentum and continuity equations of flow, although this

assumption was relaxed elsewhere [9]. In addition, the sediment continuity equation, e.g. Exner

equation, is applied to find the dynamics of bed evolution. The theoretical studies are founded on

two major perspectives, such as linear and nonlinear perspectives.

The linear perspective simplifies the dynamics of patterns by applying the standard

linearization technique. In this technique, the perturbation of a generic variable is considered

to be much smaller than its undisturbed value. Moreover, the perturbations are assumed to

follow harmonic functions in accordance with the Fourier theorem. For a given flow and particle

transport conditions, the mega riverbed-patterns are expected to form above a threshold aspect

ratio (e.g. channel half-width to flow depth ratio) [3]. The linear perspective puts together all

the key quantities, e.g. growth rate, wavelength and migration speed of patterns, in a single

framework. On the other hand, the nonlinear perspective predicts the amplitude of patterns. This

perspective includes both weakly nonlinear [3,26,32] and fully nonlinear [36] theories. The latter

is also known as an axisymmetric approach for forced patterns [4].

The role of particle transport towards the dynamics of mega riverbed-patterns remains a

crucial aspect. Although most of the theoretical studies have analysed the pattern formation

in bedload-dominated channels [3,28,29,31], some studies have taken into account the effects

of sediment suspension in addition to the bedload transport [9,30,32]. Sediment suspension

was incorporated into the theoretical framework either by means of a fully three-dimensional

approach [9] or through an extension of the depth-averaged formulation [37] to two dimensions

[30]. The effects of sediment suspension were found to lower the threshold aspect ratio, enhancing

the unstable domain of patterns significantly. In bedload-dominated channels, the nature of

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

5
 O

ct
o
b
er

 2
0

2
2
 



3

royalsocietypublishing.org/journal/rspa
P
ro
c.
R
.So

c.
A
477:20210331

...........................................................

mega riverbed-patterns was found to be convective [29,31], as any tiny local disturbance is

convected downstream without disturbing the flow domain over a long duration [30]. However,

the convective nature of patterns does not appear to have changed even in the presence of

sediment suspension [30]. The mega riverbed-patterns have been also analysed theoretically

considering the effects of unsteadiness [28,31], vegetation [38,39] and sediment heterogeneity [27].

The sediment heterogeneity causing the selective transport of particles was found to dampen the

wavelength, growth rate and migration speed of patterns [27].

The weakly nonlinear analysis for bedload-dominated channels was carried out by using the

multiple-scale technique [3] and the centre-manifold-projection technique [39], while that for

combined bedload and suspended load transport was performed by using the centre-manifold-

projection technique [32], extending the previous linear analysis [30]. In the weakly nonlinear

analysis, the amplitudes of patterns for both plane and dune-covered beds were predicted [32]. It

was found that the presence of dunes is to enhance the equilibrium amplitude of patterns.

Despite magnificent advances in studying the mega riverbed-patterns theoretically [4,8], little

is known about how the patterns are sensitive to a class of parameters pertinent to flow and

particle transport. Although a recent study has clearly shown that the inclusion of sediment

suspension changes the stability and amplitude of patterns significantly [32], more insights are

to be gained regarding how and why these changes evolve with the characteristic parameters.

Moreover, the behaviours of the growth rate and amplitude of patterns in transitional and rough

flow regimes need to be examined.

In this paper, we analyse the mega riverbed-patterns, being free from an external forcing, from

both linear and weakly nonlinear perspectives. Employing the depth-averaged formulations for

the flow and particle transport, we follow the standard mathematical techniques to analyse the

pattern formation. From the linear perspective, we apply the standard linearization technique,

whereas from the weakly nonlinear perspective, we apply the centre-manifold-projection

technique [32]. The main objective of the linear stability analysis is to explore how the mega

riverbed-patterns are sensitive to the characteristic parameters, e.g. channel aspect ratio, shear

Reynolds number, Shields number and relative roughness number. In addition, the primary

objective of the weakly nonlinear stability analysis is to explore the sensitivity of the finite

amplitude of patterns to the key parameters.

The paper is organized as follows. In §2, the theoretical analysis of flow is presented. The

theoretical analysis of particle transport is described in §3. The stability analyses from the linear

and weakly nonlinear perspectives are furnished in §4. The computational results are discussed

in §5. Finally, the conclusion is drawn in §6.

2. Theoretical analysis of flow
We consider mega riverbed-patterns, having a wavelength λ∗ and a finite amplitude A∗, driven

by a free-surface turbulent flow in an infinitely long straight channel of width 2B∗ (figure 1a,b).

Henceforth, a star superscript is used to represent a dimensional variable. We employ a Cartesian

coordinate system (x∗, y∗, z∗), where x∗, y∗ and z∗ are the longitudinal, transverse and vertical

distances, respectively. The origin of the coordinate system lies on the centreline of the channel.

Two well-recognized patterns are highlighted in figure 1. In figure 1a, the alternate bars are shown,

where the channel embraces a single row of bars. On the other hand, in figure 1b, the central bars

are shown, covering two parallel rows of alternate bars. The presence of bars causes channel-bed

oscillations in both longitudinal and transverse directions. For alternate bars (figure 1a), a typical

section S1–S2 across the channel shows the channel-bed erosion and deposition near the right

and left channel-banks, respectively. In addition, for central bars (figure 1b), the cross-sectional

view shows the channel-bed erosion and deposition near the channel-banks and at the channel-

bed centreline, respectively. At a given time t∗, D∗(x∗, y∗, t∗) is the local flow depth, which is

the vertical distance between two characteristic points P1 and P2 at a given transverse distance

(figure 1a,b). In addition, z∗ = R∗(x∗, y∗, t∗) denotes the elevation of the channel-bed from a fixed
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Figure 1. Conceptual sketch of mega riverbed-patterns: (a) alternate bars and (b) central bars. (Online version in colour.)

horizontal datum. Note that in figure 1, the dashed rectangular section represents the undisturbed

cross section of flow.

In the theoretical analysis, we employ the quasi-steady and the depth-averaged assumptions.

The former is appropriate here, as the time scale of the morphological patterns is quite larger than

that of the flow. In addition, the latter assumption emerges from the fact that the wavelength of

the mega riverbed-patterns scales with a few channel widths [3]. Now, we introduce the pertinent

variables in dimensionless form as follows:

(x, y) =
(x∗, y∗)

B∗
, t =

t∗U∗
0

B∗
, (R, D) =

(R∗, D∗)

D∗
0

, U =
U∗

U∗
0

, T =
T∗

ρf U∗2
0

, (2.1)

where D∗
0 and U∗

0 are the undisturbed flow depth and flow velocity (i.e. the flow depth and flow

velocity corresponding to the uniform flow), respectively, U∗ = (U∗
x , U∗

y) is the depth-averaged

velocity vector, T∗ = (T∗
x , T∗

y) is the bed shear stress vector and ρf is the mass density of fluid.

Moreover, we introduce the channel aspect ratio β and the undisturbed flow Froude number

Fr as

β =
B∗

D∗
0

and Fr =
U∗

0

(gD∗
0)1/2

, (2.2)

where g is the acceleration due to gravity.

The depth-averaged momentum and continuity equations of flow are expressed as

Ux
∂Ux

∂x
+ Uy

∂Ux

∂y
+

1

Fr2

∂

∂x
(D + R) + β

Tx

D
= 0, (2.3)

Ux
∂Uy

∂x
+ Uy

∂Uy

∂y
+

1

Fr2

∂

∂y
(D + R) + β

Ty

D
= 0 (2.4)

and
∂

∂x
(DUx) +

∂

∂y
(DUy) = 0. (2.5)

In order to close the hydrodynamic equations, an estimation of the bed shear stress vector

is essential. The bed shear stress vector is expressed herein as a function of dynamic pressure.
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Hence, we write

T = (Tx, Ty) = Cf (U2
x + U2

y)
1/2

(Ux, Uy), (2.6)

where Cf is the conductance factor. It can be linked with the Darcy–Weisbach friction factor f as

f = 8Cf . The Cf and f can be obtained from the Colebrook–White equation as follows [40]:

1

(8Cf )1/2
=

1

f 1/2
= −0.86 ln

[

(

k∗
s

arD∗

)1.1

+
1

f 1/2
·

as

Re

]

with Re =
4U∗

xD∗

υ
, (2.7)

where k∗
s is the bed roughness height (= αd∗), α is a coefficient (= 2.5) [41], d∗ is the particle size, ar

and as are the constants (= 14.8 and 2.51, respectively), Re is the flow Reynolds number and υ is the

coefficient of kinematic viscosity of fluid. The above equation provides an accurate estimation of

the friction factor over a wide range of flow regimes. The shear Reynolds number R∗ is commonly

used to demarcate the flow regimes [42]. The R∗ is defined as

R∗ =
u∗

f k∗
s

υ
with u∗

f =

(
∣

∣T∗
∣

∣

ρf

)1/2

, (2.8)

where u∗
f is the shear velocity.

3. Theoretical analysis of particle transport
The erodible channel-bed comprises uniform cohesionless sediment particles. The flow over the

channel-bed exerts hydrodynamic force on the particles. The particles are entrained into the flow

when the dimensionless fluid-induced bed shear stress crosses its threshold value Θc [43]. Both

the modes of particle transport as bedload and suspended load transport are considered herein.

The bed shear stress is quantified by introducing the Shields number Θ as follows:

Θ =

∣

∣T∗
∣

∣

ρf (s − 1)gd∗
, (3.1)

where s is the relative density (= ρp/ρf ) and ρp is the mass density of particles. It is pertinent

to mention that the suspended load transport prevails when the Shields number Θ exceeds

its threshold value Θs to bring the particles into the suspension. Hence, for Θc < Θ < Θs, the

bedload remains the dominant mode of particle transport, while for Θ > Θs, both the bedload and

suspended load transport take place. For the estimation of Θs, we use van Rijn’s [44] empirical

formulae as

Θs(1 < D∗ ≤ 10) =
16

D2
∗

·
w∗2

s

(s − 1)gd∗
, Θs(D∗ > 10) = 0.16

w∗2
s

(s − 1)gd∗
. (3.2)

In the above, D∗ = d[(s − 1)g/υ2]1/3, called the particle parameter and w∗
s is the settling velocity

of particles. To find w∗
s , we use Jiménez & Madsen’s [45] empirical formula as

w∗
s

[(s − 1)gd∗]1/2
=

(

0.954 +
20.48

D
3/2
∗

)−1

. (3.3)

The shear Reynolds number R∗ can be linked with Θ and D∗ as

R∗ = α(ΘD3
∗)

1/2
. (3.4)

Further, with the introduction of relative roughness number dr(= d∗/D∗
0), the flow Froude

number Fr can be expressed as

Fr =

[

(s − 1)drΘ

Cf

]1/2

. (3.5)
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The dynamics of bed evolution is governed by the Exner equation. It is expressed as

∂R

∂t
+ Q0

(

∂Φbx

∂x
+

∂Φby

∂y

)

+
∂Φsx

∂x
+

∂Φsy

∂y
= 0, (3.6)

where

Q0 =
1

1 − ρ0
·

[(s − 1)gd∗3]
1/2

U∗
0D∗

0

, Φb =
Q∗

b

[(s − 1)gd∗3]
1/2

and Φs =
Q∗

s

U∗
0D∗

0

. (3.7)

In the above, Q∗
b = (Q∗

bx, Q∗
by) is the bedload flux vector, Q∗

s = (Q∗
sx, Q∗

sy) is the suspended load flux

vector and ρ0 is the porosity of particles. We consider the channel-banks to be impermeable to the

flow and the sediment fluxes, so that the quantities Uy, Φby and Φsy vanish at the channel-banks

(y = ±1).

The bedload flux vector Φb is expressed as

Φb = (Φbx, Φby) = (cos χ , sin χ )Φ, (3.8)

where χ is the angle that the resultant bedload flux makes with the longitudinal direction and Φ

is the bedload flux intensity. The χ is expressed as follows [46,47]:

χ = sin−1

⎡

⎣

Uy

(U2
x + U2

y)
1/2

−
ϑ

βΘ1/2
·
∂R

∂y

⎤

⎦ , (3.9)

where ϑ is the transverse slope coefficient.

For the bedload flux intensity Φ, we use Meyer-Peter & Müller’s formula as follows [48]:

Φ = 8(Θ − Θc)3/2. (3.10)

For the estimation of Θc, we use the Θc(D∗) relationships of Cao et al. [49].

Bolla Pittaluga & Seminara [37] presented an analytical solution for the estimation of

suspended load flux in slowly varying flows by means of asymptotic expansion of the exact

solution of the advection–diffusion equation of sediment concentration. In this study, to obtain

the suspended load flux vector, we employ the two-dimensional extension of the depth-averaged

formulation of Bolla Pittaluga & Seminara [37], as was done by Federici & Seminara [30] and

Bertagni & Camporeale [32]. The perturbation approach assumes that both the advective and

unsteady effects are trivial compared with the gravitational settling and turbulent diffusion. This

suggests δp = [U∗
0D∗

0/(w∗
s λ

∗)] to be much smaller than unity. As the δp depends on the priori

unknown wavelength of riverbed-patterns, we define another small parameter δ as δ = δpλ
∗/B∗ =

U∗
0/(βw∗

s ) [30,32].

The suspended load flux vector is expressed as follows [37]:

Φs = (Ux, Uy)Dψ , (3.11)

where the function ψ is expanded as ψ = ψ0 + δψ1 + O(δ2). Here, ψ0 corresponds to the uniform

flow condition and ψ1 is the correction to ψ at O(δ). This correction takes into account the weak

non-equilibrium effects due to the spatial change in the flow field. The ψ0 and ψ1 are expressed

as follows [37]:

ψ0 =
C0K0

1 − ρ0
, ψ1 =

K1D

1 − ρ0

(

Ux
∂C0

∂x
+ Uy

∂C0

∂y

)

, (3.12)

where C0 is the depth-averaged suspended particle concentration at the leading order, and K0

and K1 are functional parameters.

The C0 is expressed as follows [30]:

C0 =
1

1 − a
CaI1 with I1 =

∫ 1

a

(

a

1 − a
·

1 − z

z

)Z

dz. (3.13)

In the above, a = a∗/D∗, z = z∗/D∗, a∗ is the reference level, Ca is the reference concentration, Z is

the Rouse number [= w∗
s /(κu∗

f )] and κ is the von Kármán coefficient (= 0.41). In this study, we use

van Rijn’s [44] empirical formulae to obtain a and Ca.
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The K0 in equation (3.12) is expressed as follows [30]:

K0 =
C

1/2
f

κ
(1 − a)

(

I2

I1
+ K2

)

with I2 =

∫ 1

a
(ln z + 1.84z2 − 1.56z3)

(

a

1 − a
·

1 − z

z

)Z

dz. (3.14)

In the above, K2 = 0.777 + κC
−1/2
f .

In addition, the K1 in equation (3.12) is expressed as follows [30,37]:

K1 =
C

1/2
f

κ

[∫ 1

a
C12(ln z + 1.84z2 − 1.56z3) dz − ln z0

∫ 1

a
C12dz

]

, (3.15)

where z0 = z∗
0/D∗, z0 is the zero-velocity level at which the time-averaged longitudinal velocity

becomes zero (in accord with the classical logarithmic law) and C12 is a function. The C12 can be

found by imposing the boundary conditions, namely ∂C12/∂z = 0 at z = a and C12 = 0 at z = 1, to

the following differential problem:

∂C12

∂z
+ Z

−1 ∂

∂z

[

z(1 − z)
∂

∂z

]

C12 =
(1 − a)C

1/2
f

κI1

(

ln
z

z0
+ 1.84z2 − 1.56z3

) (

a

1 − a
·

1 − z

z

)Z

.

(3.16)

4. Stability analysis
We expand the set of variables V = (Ux, Uy, D, R)⊺ as

V = V0 + V̂ = (1, 0, 1, R0)⊺ + (Ûx, Ûy, D̂, R̂)
⊺

, (4.1)

where R0 refers to the value of R at the undisturbed state. We express the components of bed

shear stress and bedload flux vectors as

Tx = Cf 0(1 + c1Ûx + c2D̂), Ty = Cf 0Ûy (4.2)

Φbx = Φ0(1 + c3Ûx + c4D̂),

Φby = Φ0

[

−ÛxÛy + (1 + c3Ûx + c4D̂)

(

Ûy −
ϑ

βΘ
1/2
0

·
∂R̂

∂y

)

+
0.5ϑ(c1Ûx + c2D̂)

βΘ
1/2
0

·
∂R̂

∂y

]

, (4.3)

where Cf 0, Φ0 and Θ0 are the conductance factor, bedload flux intensity and Shields number,

respectively, at the undisturbed state and the coefficients c1−4 are given in appendix A. Further,

in order to expand the suspended load flux vector, we express ψ0 and ψ1 as

ψ0 = ψ00(1 + c5Ûx + c6D̂), ψ1 = c7
∂Ûx

∂x
+ c8

∂D̂

∂x
, (4.4)

where ψ00 refers to the value of ψ0 at the undisturbed state. The coefficients c5−8 are given in

appendix A.

Substituting equations (4.1)–(4.4) into equations (2.3)–(2.5) and (3.6), we obtain

L0
∂V̂

∂t
= LmV̂ + N(V̂) + O(V̂

3
), (4.5)

where L0 is the 4 × 4 matrix whose elements are zero except the lower right entry (being equal to

unity), Lm is the 4 × 4 matrix differential operator and the term N(V̂) contains all the second-order

nonlinearities. The perturbations can be expanded in terms of the eigenfunctions as follows [32,
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50]:

V̂(x, y, t) =

p=∞
∑

p=−∞
p�=0

n
∑

m=1

Am,p(t)v̂m(pk, y)exp(ipkx), (4.6)

where Am,p corresponds to the amplitude of the longitudinal mode p and the transverse mode

m, k is the dimensionless longitudinal wavenumber and i is the unit imaginary number. In the

above expansion, the eigenfunctions are the product of eigenvectors v̂m and the exponential term.

We write the eigenvectors v̂m as follows [32]:

v̂m

∣

∣

m=odd =
[

ûxm, ûym cot
(mπy

2

)

, d̂m, r̂m

]⊺

sin
(mπy

2

)

+ c.c. (4.7)

and

v̂m

∣

∣

m=even =
[

ûxm, ûym tan
(mπy

2

)

, d̂m, r̂m

]⊺

cos
(mπy

2

)

+ c.c., (4.8)

where c.c. stands for the complex conjugate. The eigenvectors v̂m are the product of another vector

ûm depending on the wavenumber of perturbation and the corresponding Fourier harmonics

satisfying the boundary conditions. Note that the subscript m denotes the variable associated

with the transverse mode.

(a) Linear perspective

Linear analysis leads to the prediction of the favourable domain of the pattern formation.

In the linear analysis, we consider only the fundamental longitudinal mode, p = 1. Therefore,

each transverse mode leads to an independent problem. The amplitude is considered to grow

exponentially with time as Am,p ∝ exp(ωmt), where ωm is the complex number, whose real and

imaginary parts represent the growth rate and the dimensionless frequency, respectively. With

p = 1, equations (4.6)–(4.8) are substituted into equation (4.5) and the nonlinearities are ignored.

The resultant linear system is

(L0ωm − Lm)ûm = 0, (4.9)

where elements lij of the matrix Lm are expressed as

l11 = −(ik + βCf 0c1), l12 = l21 = l34 = 0, l13 = −(c2 − 1)βCf 0 −
ik

Fr2
, l14 = −

ik

Fr2
,

l22 = −(ik + βCf 0), l23 = l24 = (−1)m πm

2Fr2
, l31 = l33 = −ik, l32 = (−1)m+1 πm

2Fr2
,

l41 = k2δc7 − ikc3Φ0Q0 − ik(1 + c5)ψ00, l42 = (−1)m+1 πm

2
(Φ0Q0 + ψ00),

l43 = k2δc8 − ikc4Φ0Q0 − ik(1 + c6)ψ00, l44 = −
m2π2Φ0Q0ϑ

4βΘ1/2
. (4.10)

The solvability condition of equation (4.9) leads to the dispersion relationship from which the

eigenvalue ωm can be obtained. The dispersion relationship is expressed as

(l44 − ωm)(l13l22l31 − l11l22l33 + l11l23l32) = l11l24(l32l43 − l33l42)

+ l13l24(l31l42 − l32l41) + l14l22(l31l43 − l33l41) − l14l23(l31l42 − l32l41). (4.11)

(b) Weakly nonlinear perspective

An analytical solution for the finite amplitude of mega riverbed-patterns can be obtained by

performing a stability analysis from the weakly nonlinear perspective. Although the multiple-

scale technique has been used to carry out the weakly nonlinear analysis [3], the finite amplitude

solutions obtained from this technique are limited to the surroundings of the critical point.

Bertagni & Camporeale [32,51] used the centre-manifold-projection technique to obtain an

analytical solution for the finite amplitude of morphodynamic patterns. Following the procedure
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of Bertagni & Camporeale [32], this analysis aims at obtaining the finite amplitude solution for

the fundamental mode (m = 1).

Initially, we solve the following linear adjoint eigenvalue problem:

(L†
0ω̄m − L†

m)û†
m = 0, (4.12)

where the superscript † stands for the adjoint operator and the overbar denotes the complex

conjugate. In accordance with the boundary conditions, the inner product defining the adjoint

operator is expressed as ∫ 1

−1
(La1) · ā2dy =

∫ 1

−1
a1 · (L†a2) dy, (4.13)

where L is the linear operator, and a1 and a2 are the generic vectors. In this study, L0 = L†
0 and L†

m

represents the conjugate transpose of Lm. It is worth mentioning that for L = L0, the eigenvectors

v̂m and adjoint eigenvectors v̂
†
m become orthonormal after the proper normalization. Hence, we

write ∫ 1

−1
(L0v̂i) · v̂†

j dy = δij, (4.14)

where δij is the Kronecker delta function, and i and j are the transverse modes. Unlike the linear

analysis, the nonlinear interactions of different modes are to be accounted for in the weakly

nonlinear analysis. In this study, we consider that the contributions from the higher-order modes

are negligible. Therefore, the expansion of equation (4.6) is considered up to p = 2 and m = 2.

We substitute the expansion of equation (4.6) into equation (4.5), take the inner product of the

resulting equation with the adjoint eigenfunctions and subsequently collect the terms of the same

Fourier modes. This operation yields the amplitude equation of the fundamental and two other

stable modes as follows:

dA1,1

dt
= ω1(k)A1,1 + G1Ā1,1A1,2 + G2Ā1,1A2,2 (4.15)

and
dAm,2

dt

∣

∣

∣

∣

m=1,2

= ωm(2k)Am,2 + HmA2
1,1 + . . . , (4.16)

where Ā11 stands for A1,−1, and Gm and Hm (for m = 1 and 2) are the nonlinear interaction

coefficients. The Gm and Hm can be expressed as follows [50]:

Gm = 2

∫ 1

−1
N[v̂1(−k, y) exp(−ikx), v̂m(2k, y) exp(2ikx)] · v̂

†
1(k, y) exp(−ikx)dy (4.17)

and

Hm =

∫ 1

−1
N[v̂1(k, y) exp(ikx), v̂1(k, y) exp(ikx)] · v̂

†
m(2k, y) exp(−2ikx)dy. (4.18)

The centre-manifold-projection technique facilitates to project the amplitudes of the stable

modes on the unstable ones. Therefore, the stable amplitudes Am,2 can be written as a nonlinear

combination of A1,1 and Ā1,1 as

Am,2 = p1A2
1,1 + p2A1,1Ā1,1 + p3Ā2

1,1 + O(A3
1,1), (4.19)

where p1, p2 and p3 are the projection coefficients. After neglecting the higher-order terms, the

time derivative of equation (4.19) is expressed as

dAm,2

dt
= 2p1A1,1

dA1,1

dt
+ p2

(

Ā1,1
dA1,1

dt
+ A1,1

dĀ1,1

dt

)

+ 2p3Ā1,1
dĀ1,1

dt
. (4.20)

Substituting equations (4.15), (4.16) and (4.19) into equation (4.20), we obtain

[p1ωm(2k) − 2p1ω1(k) + Hm]A2
1,1 + p2[ωm(2k) − ω1(k) − ω̄1(k)]A1,1Ā1,1

+ p3[ωm(2k) − 2ω̄1(k)]Ā2
1,1 = 0. (4.21)
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To solve the above equation, we consider p2 = p3 = 0. Therefore, the coefficient p1 is

expressed as

p1 = −
Hm

ωm(2k) − 2ω1(k)
. (4.22)

In addition, the amplitudes of the stable modes can be expressed as

Am,2 = −
Hm

ωm(2k) − 2ω1(k)
A2

1,1. (4.23)

Substituting equation (4.23) into equation (4.15), the Stuart–Landau equation describing the

amplitude dynamics of the fundamental mode can be obtained as

dA1,1

dt
=

[

ω1(k) − σ
∣

∣A1,1

∣

∣

2
]

A1,1, (4.24)

where the coefficient σ is expressed as

σ =
G1H1

ω1(2k) − 2ω1(k)
+

G2H2

ω2(2k) − 2ω1(k)
. (4.25)

The equilibrium amplitude of the fundamental mode, e.g. alternate bars, can be obtained

by setting the time derivative in equation (4.24) equal to zero. Therefore, the dimensionless

amplitude of alternate bars can be expressed as

A = 2

[

Re

(

ω1(k)

σ

)]1/2

. (4.26)

In the above, the factor 2 is involved due to the complex conjugation.

5. Results and discussion
In the numerical computations, we consider the mass density of fluid ρf = 1000 kg m−3, mass

density of particles ρp = 2650 kg m−3, porosity of particles ρ0 = 0.3, transverse slope coefficient

ϑ = 0.56 and acceleration due to gravity g = 9.81 m s−2.

To present the results from the linear perspective, we first examine how the mega riverbed-

patterns evolve with different transverse modes. To this end, we consider a transitional flow

regime and set the characteristic value of the shear Reynolds number as R∗ = 50. In addition, the

reference values of Shields number and the relative roughness number are taken as Θ = 0.2 and

dr = 0.0001, respectively. This combination produces the flow Froude number Fr = 0.166. Figure 2

shows the aspect ratio β as a function of dimensionless wavenumber k for different transverse

modes m (= 1, 2, 3 and 4). Note that each transverse mode corresponds to the specific rhythmic

patterns in both longitudinal and transverse directions, as conceptually sketched in the insets of

figure 2a–d. To be specific, m = 1 corresponds to one row of alternate bars, while m = 2 corresponds

to two rows of alternate bars, i.e. central bars. In addition, m = 3 and 4 comprising three and four

rows of alternate bars correspond to the channelized bars. In each panel of figure 2, the stability

map for a given m is shown on the β(k) plane. The marginal stability curve (solid line) makes

a distinction between the unstable zone (shaded portion) and the stable zone (white portion).

It defines the locus of the vanishing growth rate on the β(k) plane, i.e. Re(ωm) = 0. Therefore,

the unstable and stable zones correspond to Re(ωm) > 0 and Re(ωm) < 0, respectively. From a

physical viewpoint, in the unstable zone (zone confined to the marginal stability curve), the

incipient riverbed-patterns with a given transverse mode grow with time. On the other hand,

in the stable zone (zone outside the marginal stability curve), the incipient riverbed-patterns with

a given transverse mode decay yielding no patterns. Figure 2 shows that the patterns are unable

to grow below a threshold aspect ratio βc for which the slope of the β(k) curve disappears, i.e.

dβ/dk = 0. The βc therefore sets the limit for a stable alluvial channel having no riverbed-patterns.

This indicates that the patterns are likely to form if the aspect ratio is larger than its threshold

value. It is evident that the threshold aspect ratio increases with an increase in transverse mode

(figure 2). For a given β ≫ βc, the unstable zone captures longer wavenumbers as the transverse
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Figure 2. Aspect ratioβ versus dimensionless wavenumber k in a transitional flow regime (R∗ = 50) for different transverse

modesm: (a)m= 1, (b)m= 2, (c)m= 3 and (d)m= 4. (Online version in colour.)

mode increases. Note that in the subsequent sections, we consider only the fundamental mode

(m = 1).

Figure 2 does not offer an understanding of how the marginal stability curve for a given set

(R∗, m) is sensitive to the Shields number and the relative roughness number. To explore this

aspect, figure 3 shows the marginal stability curves for different Shields numbers and relative

roughness numbers. The shear Reynolds number and the transverse mode are considered to

be R∗ = 50 and m = 1 (fundamental mode), respectively. In figure 3a, the β(k) curves are shown

for a given relative roughness number (dr = 0.0001) and different Shields numbers (Θ = 0.2, 0.3

and 0.4 yielding different flow Froude numbers Fr = 0.166, 0.204 and 0.235, respectively). As the

shear Reynolds number is considered to be constant (R∗ = 50), an increase in Shields number in

figure 3a refers to a reduction in particle size, as evident from equation (3.4). The unstable zone for

a given Shields number increases as the Shields number increases (figure 3a). This is credited to

the presence of significant sediment suspension that causes a destabilizing effect. The threshold

aspect ratio reduces with an increase in Shields number. However, the longer wavenumbers at a

large aspect ratio are stabilized as the Shields number increases. On the other hand, in figure 3b,

the β(k) curves are shown for a given Shields number (Θ = 0.2) and different relative roughness

numbers (dr = 0.0001, 0.0005 and 0.001 yielding different flow Froude numbers Fr = 0.166, 0.318

and 0.416, respectively). As the shear Reynolds number and the Shields number are kept constant
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Figure 3. Aspect ratio β versus dimensionless wavenumber k in a transitional flow regime (R∗ = 50) for the fundamental

mode (m= 1): (a)Θ = 0.2, 0.3 and 0.4 and (b) dr = 0.0001, 0.0005 and 0.001. (Online version in colour.)

(R∗ = 50 and Θ = 0.2) in figure 3b, the particle size becomes a constant. It follows that an increase

in relative roughness number produces a reduction in the flow depth. This causes an increase

in the friction factor. The unstable zone for a given relative roughness number increases as the

relative roughness number increases (figure 3b), lowering the threshold aspect ratio. This causes

the threshold aspect ratio to reduce.

It is interesting to figure out how the growth rate of patterns evolves with the Shields number

and the relative roughness number. To this end, we consider the fundamental mode (m = 1) and

set the shear Reynolds number as R∗ = 50 (transitional flow regime). Figure 4a,b displays the

dimensionless growth rate Re(ω1) as a function of dimensionless wavenumber k for different

Shields numbers and relative roughness numbers, respectively. In each panel, the growth rate is

examined for three different cases, β < βc, β = βc and β > βc. In figure 4a, the Re(ω1)(k) curves are

shown for a given relative roughness number (dr = 0.0001) and different Shields numbers (Θ =

0.2, 0.3 and 0.4 yielding different flow Froude numbers Fr = 0.166, 0.204 and 0.235, respectively).

The growth rate curves corresponding to β < βc, β = βc and β > βc are shown by solid, dotted and

dashed lines, respectively. As the Re(ω1) = 0 sets the limit for the stable patterns, the shaded zone

above Re(ω1) = 0 represents the unstable zone. For β < βc (solid lines), the growth rate is expected

to be negative. It is apparent that the growth rate for a given Shields number increases (decrease

in negative magnitude) with a marginal increase in wavenumber depicting a peak at a shorter

wavenumber, and thereafter it reduces (increase in negative magnitude) with a further increase in

wavenumber (figure 4a). In general, the growth rate for a longer wavenumber dampens (increase

in negative magnitude) as the Shields number increases. For β = βc (dotted lines), the growth rate

for a given Shields number follows a similar trend with the wavenumber. Note that the growth

rate for a given Shields number is negative except at the critical wavenumber, where it is zero.

The growth rate for a longer wavenumber diminishes (increase in negative magnitude) as the

Shields number increases. For β > βc (dashed lines), the growth rate for a given Shields number

changes from negative to positive at a shorter wavenumber, attaining a positive peak with an

increase in wavenumber and then it reduces with a further increase in wavenumber. The growth

rate makes another changeover from positive to negative at a longer wavenumber and reduces

(increase in negative magnitude) as the wavenumber increases (figure 4a). Importantly, for a given

Shields number and β > βc, the crossings (where the growth rate changes its sign) correspond

to the two points on the marginal stability curve β(k). For a given intermediate wavenumber,

the growth rate enhances with the Shields number. However, for a given shorter (or longer)

wavenumber, it reduces (increase in negative magnitude) as the Shields number increases. In
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Figure 4. Dimensionless growth rate Re(ω1) versus dimensionless wavenumber k in a transitional flow regime (R∗ = 50)

for the fundamental mode (m= 1) corresponding to three distinct conditions,β < βc (blue solid lines),β = βc (red dotted

lines) and β > βc (green dashed lines): (a)Θ = 0.2, 0.3 and 0.4 and (b) dr = 0.0001, 0.0005 and 0.001. (Online version in

colour.)

figure 4b, the Re(ω1)(k) curves are shown for a given Shields number (Θ = 0.2) and different

relative roughness numbers (dr = 0.0001, 0.0005 and 0.001 yielding different flow Froude numbers

Fr = 0.166, 0.318 and 0.416, respectively). For β < βc (solid lines), the growth rate for a given

relative roughness number increases (decrease in negative magnitude) with a small increase in

wavenumber attaining a peak and thereafter reduces (increase in negative magnitude) with a

further increase in wavenumber. The growth rate for a given wavenumber diminishes (increase

in negative magnitude) with an increase in relative roughness. For β = βc (dotted lines), the

growth rate for a given relative roughness number is negative everywhere except at the critical

wavenumber, which produces a vanishing growth rate. The growth rate for a given wavenumber

reduces (increase in negative magnitude) as the relative roughness number increases. Similar

to figure 4a, for β > βc (dashed lines), the growth rate for a given relative roughness number

changes its sign twice at shorter and longer wavenumbers (figure 4b). For a given intermediate

wavenumber, the growth rate increases with an increase in relative roughness number. However,

for a given shorter (or longer) wavenumber it decreases (increase in negative magnitude) as the

relative roughness number increases.

Figures 3 and 4 highlight the marginal stability curves and the growth rates in a transitional

flow regime. However, riverbed-patterns are sensitive to flow regimes. Therefore, the evolution

of patterns with shear Reynolds number is an important aspect. Figure 5a shows the marginal

stability curves corresponding to the fundamental mode (m = 1) for different shear Reynolds

numbers (R∗ = 50, 100 and 500). The Shields number and the relative roughness number are

taken as Θ = 0.2 and dr = 0.0001, respectively. This combination produces different but nearly

equal flow Froude numbers Fr = 0.166, 0.168 and 0.169. Note that R∗ = 100 and 500 correspond

to a rough flow regime. As the Shields number is kept constant (Θ = 0.2), an increase in shear

Reynolds number refers to an increase in particle size (see equation (3.4)). The unstable zone for

a given shear Reynolds number reduces with an increase in shear Reynolds number due to an

increase in particle size (figure 5a). Therefore, the threshold aspect ratio increases as the shear

Reynolds number increases. The longer wavenumbers at a large aspect ratio are stabilized as

the shear Reynolds number increases. It is worth emphasizing that for a given shear Reynolds

number R∗, the growth rate of patterns for a given aspect ratio β(> βc) attains a maximum value

at some characteristic wavenumber, called the maximum unstable wavenumber. For a given

shear Reynolds number, the locus of the maximum growth rate is shown in figure 5a (see dotted

lines). In fact, the loci of the maximum growth rate for different shear Reynolds numbers almost
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Figure 5. (a) Aspect ratio β versus dimensionless wavenumber k for different shear Reynolds numbers (R∗ = 50, 100 and

500) shown by blue, red and green solid lines, respectively (dotted lines show the loci of the maximum growth rate) and (b)

dimensionless growth rate Re(ω1) versus dimensionlesswavenumber k for different shear Reynolds numbers (R∗ = 50, 100 and

500) corresponding to three distinct conditions, β < βc (yellow solid lines), β = βc (pink dotted lines) and β > βc (black

dashed lines). (Online version in colour.)

coincide. Figure 5b shows the dimensionless growth rate Re(ω1) as a function of wavenumber k

corresponding to β < βc, β = βc and β > βc for different shear Reynolds numbers (R∗ = 50, 100

and 500). For β < βc (solid lines), the growth rate for a given shear Reynolds number increases

(decrease in negative magnitude) with a small increase in wavenumber reaching a peak and

thereafter decreases (increase in negative magnitude) with a further increase in wavenumber.

The growth rate for a given longer wavenumber increases (decrease in negative magnitude)

as the shear Reynolds number increases. For β = βc (dotted lines), the growth rate for a given

longer wavenumber also increases (decrease in negative magnitude) as the shear Reynolds

number increases. However, for β > βc (dashed lines), the growth rate for a given intermediate

wavenumber lessens as the shear Reynolds number increases. Note that the growth rate for

a given shear Reynolds number changes its sign twice at shorter and longer wavenumbers

(figure 5b).

Figure 6 offers comparison of the computed dimensionless wavelength of patterns with

the available experimental data [10–13,17]. The comparison is performed for the fundamental

mode of riverbed-patterns, e.g. alternate bars (see the conceptual sketch in the inset of figure 6)

by making the pertinent variables on a par with the experimental data. A brief summary of

the experimental conditions used for the comparison is given in table 1. Note that some of

the experimental data in figure 6 primarily correspond to the bedload-dominated channels.

Therefore, the theoretical results for them in figure 6 are obtained by neglecting the role of

sediment suspension. In this context, it is worth mentioning that an accurate estimation of the

transverse slope coefficient ϑ from the experimental data is a difficult proposition. Therefore,

the ϑ is kept as a free parameter. It is found that for ϑ ≈ 0.2, the theoretical predictions are in

satisfactory agreement with the experimental data, as most of the data are confined to the ±20%

error band (figure 6). In fact, the choice of ϑ = 0.2 is close to the previously proposed value (= 0.56)

of the transverse slope coefficient [52].

To present the results from the weakly nonlinear perspective, we first explore the amplitude of

patterns for a given set (β, k, R∗, Θ , dr). Figure 7 shows the contours of dimensionless amplitude

on the β(k) plane. The flow regime is considered to be transitional (R∗ = 50). The Shields number

and the relative roughness number are taken as Θ = 0.2 and dr = 0.0001, respectively. For a given

aspect ratio β(> βc), the amplitude varies with the wavenumber over a certain range. For a given
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Figure 6. Comparison of the theoretical predictions of dimensionless wavelength of patterns with the experimental data. The

solid line represents the line of perfect agreement. The dashed lines bound the±20% error band. (Online version in colour.)

Table 1. Brief summary of the experimental conditions.

author Fr Θ dr R∗

Kinoshita [10] 1.04–1.98 0.064–0.311 0.069–0.266 24.6–374.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yoshino [11] 0.74–1.5 0.065–0.463 0.021–0.186 29.6–762.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ikeda [12] 0.77–1.16 0.062–0.098 0.036–0.133 112.4–147.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lanzoni [13] 0.32–0.69 0.147–0.366 0.006–0.014 40.7–64.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Boraey [17] 0.67–1.33 0.088–0.102 0.026–0.107 108.7–116.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aspect ratio, the amplitude amplifies towards the shorter wavenumbers. On the other hand, for a

given wavenumber, the amplitude varies insignificantly with the aspect ratio (figure 7).

The sensitivity of the amplitude of patterns to the key variables remains a key aspect.

Therefore, it is further interesting to envision how the amplitude of patterns varies with the

pertinent variables, such as Θ , dr and R∗. Figure 8a–c shows the maximum unstable wavenumber

km and the dimensionless amplitude A as a function of the Shields number Θ , relative roughness

number dr and shear Reynolds number R∗, respectively. In figure 8a, the km(Θ) and A(Θ)

curves are shown for dr = 0.0001 and R∗ = 50. The maximum unstable wavenumber reduces

with an increase in Shields number, while the amplitude increases. In figure 8b, the km(dr) and

A(dr) curves are shown for Θ = 0.2 and R∗ = 50 on a semi-logarithmic scale. The maximum

unstable wavenumber increases marginally as the relative roughness number increases, while the

amplitude remains nearly invariant with the relative roughness number. In addition, in figure 8c,

the km(R∗) and A(R∗) curves are shown for Θ = 0.2 and dr = 0.0001. The maximum unstable

wavenumber appears to remain constant with an increase in shear Reynolds number, while the

amplitude reduces attaining a constant value for large shear Reynolds numbers (R∗ > 300).

Figure 9 shows comparison of the computed dimensionless amplitude of patterns with the

experimental data corresponding to the bedload-dominated channels [10–13,17]. The comparison

is performed for the fundamental mode of riverbed-patterns, e.g. alternate bars (see the
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Figure 7. Contours of dimensionless amplitude A in a transitional flow regime (R∗ = 50) on theβ(k) plane. (Online version in

colour.)
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(b) dimensionless maximum unstable wavenumber km and dimensionless amplitude A versus relative roughness number dr
and (c) dimensionless maximum unstable wavenumber km and dimensionless amplitude A versus shear Reynolds number R∗.

(Online version in colour.)

conceptual sketch in the inset of figure 9). The experimental conditions used for the comparison

are furnished in table 1. The ϑ is set equal to 0.2, as was also considered in figure 6. The theoretical

predictions match well with the experimental data, as most of the data excepting a few fall within

the ±20% error band (figure 9).

6. Conclusion
We analyse the sensitivity of mega riverbed-patterns of finite amplitude without an external

forcing from both linear and weakly nonlinear perspectives. The depth-averaged flow model

and the particle transport model are coupled by means of the Exner equation, which governs

the dynamics of the physical system that describes a steady-uniform flow in a straight channel

with an erodible channel-bed. The stability analyses include the standard linearization technique

and the centre-manifold-projection technique from linear and weakly nonlinear perspectives,

respectively. The stability of mega riverbed-patterns is found to be largely sensitive to the channel
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Figure 9. Comparison of the theoretical predictions of dimensionless amplitude of patterns with the experimental data. The

solid line represents the line of perfect agreement. The dashed lines bound the±20% error band. (Online version in colour.)

aspect ratio, wavenumber of patterns, shear Reynolds number, Shields number and relative

roughness number. The marginal stability, growth rate and amplitude of patterns are explored.

The unstable zone for a given Shields number increases with an increase in Shields number due

to the destabilizing effect caused by the sediment suspension. In addition, the unstable zone for a

given relative roughness number increases, as the relative roughness number increases. However,

the unstable zone for a given shear Reynolds number reduces as the shear Reynolds number

increases. For a given shear Reynolds number, Shields number and relative roughness number,

the threshold aspect ratio increases with an increase in transverse mode.

Within the unstable zone, the growth rate for a given intermediate wavenumber increases with

an increase in Shields number. Further, the growth rate for a given intermediate wavenumber

increases as the relative roughness number increases. However, the growth rate for a given

intermediate wavenumber reduces as the shear Reynolds number increases. The loci of the

maximum growth rate for different shear Reynolds numbers approximately coincide.

Within the unstable zone, the amplitude of patterns intensifies towards shorter wavenumbers.

The amplitude increases with an increase in Shields number, while it remains nearly constant with

an increase in relative roughness number. However, the amplitude reduces as the shear Reynolds

number increases.

From the linear perspective, this study reveals that among the chosen range of characteristic

parameters, the marginal stability curve is more sensitive to the Shields number and the shear

Reynolds number than to the relative roughness number. However, the growth rate is largely

sensitive to the relative roughness number. From the weakly nonlinear perspective, the finite

amplitude of patterns is most sensitive to the Shields number.

It is worth emphasizing that the limitation of the linear stability analysis is its inefficacy to

predict the finite amplitude of patterns. This can be resolved by performing a weakly nonlinear

stability analysis. However, the weakly nonlinear stability analysis is not capable of addressing

the complete nonlinear interactions of the physical system. This may require a sophisticated

numerical treatment.

Essentially, this study provides an insight into the stability of mega riverbed-patterns from

both linear and weakly nonlinear perspectives. However, the theoretical results in the presence
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of sediment suspension are to be extensively validated with the experimental data, as most of the

laboratory experiments were limited to the bedload-dominated channels. This aspect demands

high-fidelity data of the wavelength and the amplitude of patterns forming in a laboratory

environment, where suspended particles play a major role.
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Appendix A. Coefficients c1−8

The coefficients c1−8 are expressed as

c1 = 2

(

1 −
Θ0

Cf 0
·
∂Cf

∂Θ

)−1

, c2 =
1

Cf 0
·
∂Cf

∂D

(

1 −
Θ0

Cf 0
·
∂Cf

∂Θ

)−1

,

c3 =
Θ0

Φ0
·
∂Φ

∂Θ
c1, c4 =

Θ0

Φ0
·
∂Φ

∂Θ
c2 +

1

Φ0
·
∂Φ

∂D
,

c5 = c1

⎧

⎨

⎩

Θ0

2Cf 0
·
∂Cf

∂Θ
+

1.5Θ0

Θ0 − Θc
− 0.5(I20 + K20I10)−1

⎡

⎣Z0(I21 + K20I11) +
κΘ0I10

C
3/2
f 0

·
∂Cf

∂Θ

⎤

⎦

⎫

⎬

⎭

,

c6 = c2

⎧

⎨

⎩

1

2
−

1

c2
+

1.5Θ0

Θ0 − Θc
− 0.5(I20 + K20I10)−1

⎡

⎣Z0(I21 + K20I11) +
κI10

C
1/2
f 0

⎤

⎦

⎫

⎬

⎭

,

c7 =
c1Ca0K10

(1 − a)(1 − ρ0)

(

1.5Θ0

Θ0 − Θc
I10 − 0.5Z0I11

)

,

c8 =
c2Ca0K10

(1 − a)(1 − ρ0)

[(

1.5Θ0

Θ0 − Θc
−

1

c2

)

I10 − 0.5Z0I11

]

, (A 1)

where Z0, Ca0, I10, I20 and K20 are the Rouse number, reference concentration, I1, I2 and K2,

respectively, at the undisturbed state.

In the above equation, the integral functions I11 and I21 are expressed as

I11 =

∫ 1

a

(

a

1 − a
·

1 − z

z

)Z0

ln

(

a

1 − a
·

1 − z

z

)

dz (A 2)

and

I21 =

∫ 1

a
(ln z + 1.84z2 − 1.56z3)

(

a

1 − a
·

1 − z

z

)Z0

ln

(

a

1 − a
·

1 − z

z

)

dz. (A 3)
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