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A B S T R A C T 

We present a method for mapping variations between probability distribution functions and apply this method within the context 

of measuring galaxy redshift distributions from imaging surv e y data. This method, which we name PITPZ for the probability 

integral transformations it relies on, uses a difference in curves between distribution functions in an ensemble as a transformation 

to apply to another distribution function, thus transferring the variation in the ensemble to the latter distribution function. This 

procedure is broadly applicable to the problem of uncertainty propagation. In the context of redshift distributions, for example, 

the uncertainty contribution due to certain effects can be studied ef fecti vely only in simulations, thus necessitating a transfer 

of variation measured in simulations to the redshift distributions measured from data. We illustrate the use of PITPZ by using 

the method to propagate photometric calibration uncertainty to redshift distributions of the Dark Energy Surv e y Year 3 weak 

lensing source galaxies. For this test case, we find that PITPZ yields a lensing amplitude uncertainty estimate due to photometric 

calibration error within 1 per cent of the truth, compared to as much as a 30 per cent underestimate when using traditional methods. 

Key words: gravitational lensing: weak – methods: numerical – galaxies: distances and redshifts. 

1  I N T RO D U C T I O N  

The matter density field of the Universe and its evolution o v er time 

relate directly to the cosmological model of the Universe. Galaxy sur- 

v e ys pro vide observable proxies of the matter density field, and thus 

can be used to place competitive constraints on parameters of cosmo- 

logical models. Specifically, experiments such as the Dark Energy 

Surv e y (DES), Kilo-Degree Survey (KiDS), and the Hyper Suprime- 

Cam Surv e y (HSC) as well as the future Vera C. Rubin Observatory’s 

Le gac y Surv e y of Space and Time (LSST), Euclid , and Roman Space 

Telescope missions measure statistics such as correlation functions of 

galaxy positions and shapes to probe the underlying matter density 

field (Green et al. 2011 ; Laureijs et al. 2011 ; LSST Dark Energy 

⋆ E-mail: jmyles@stanford.edu 

Science Collaboration 2012 ; Hildebrandt et al. 2017 ; Abbott et al. 

2018 ; Hikage et al. 2019 ; Hildebrandt et al. 2020 ; Heymans et al. 

2021 ; Abbott et al. 2022 ). In these analyses, determining the impact 

of weak gravitational lensing on the observed galaxy images provide 

crucial information to relate observations to the underlying matter 

density field that galaxies live in. Among the data products needed for 

these experiments, redshift distributions , which encode the relative 

contribution of galaxies at different redshifts to the gravitational 

lensing signal observed loom large due to their key role in enabling 

interpretation of the effect of weak lensing on the apparent shapes 

and sizes of galaxies (For a re vie w, see e.g. Ne wman & Gruen 2022 . 

See also Huterer et al. 2006 ; Lima et al. 2008 ; Cunha et al. 2012 ; 

Hildebrandt et al. 2012 ; Benjamin et al. 2013 ; Bsemi Huterer, Cunha 

& Fang 2013 ; Bonnett et al. 2016 ; Samuroff et al. 2017 ; BsemiHoyle 

et al. 2018 ; BsemiWright et al. 2020a , b ; Euclid Collaboration et al. 

2020 ; Joudaki et al. 2020 ; Tessore & Harrison 2020 ; BsemiMyles 
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et al. 2021 ; Hildebrandt et al. 2021 ; BsemiCabayol et al. 2022 ; Gatti 

et al. 2022 ; S ́anchez et al. 2022 ). 

In lensing surv e y nomenclature, the term ‘redshift distribution’ 

refers to a function describing the relative probability of a galaxy in a 

sample to have come from a particular narrow redshift histogram bin. 

A typical lensing surv e y will divide its data set into a few tomographic 

bins, each with its own redshift distribution. We highlight that a 

redshift distribution is distinct from the photometric redshift for 

any individual galaxy, and the uncertainty requirements of redshift 

distributions are likewise distinct from uncertainty requirements 

of individual galaxy photometric redshifts. As reducing systematic 

uncertainties in redshift distributions is necessary to meet uncertainty 

goals on estimated cosmological parameters, greater attention is 

being drawn to the importance of modelling redshift distribution 

uncertainty with sufficient complexity (see e.g. Malz et al. 2018 ; 

Hadzhiyska et al. 2020 ; Malz 2021 ; Myles et al. 2021 ; St ̈olzner 

et al. 2021 ; Cordero et al. 2022 ; Malz & Hogg 2022 ; Zhang et al. 

2022 ). Redshift distributions have been historically described as a 

single probability density function together with, for example, a shift 

parameter describing uncertainty on the mean redshift value (e.g. 

Hoyle et al. 2018 ). More recently, redshift distrib utions ha ve been 

described as joint probability distribution function (PDF) for redshift 

histogram bin heights, meaning each bin in a redshift histogram 

has a full associated PDF (see e.g. Leistedt et al. 2019 ; S ́anchez 

& Bernstein 2019 ; Alarcon et al. 2020 ), or alternatively as an 

ensemble of slightly varying PDFs that collectively describe the full 

uncertainty in knowledge of galaxy redshift (see e.g. Hildebrandt 

et al. 2017 ; Myles et al. 2021 ). In this work, we present a method 

for characterizing such an ensemble of PDFs that collectively 

represent the knowledge of the redshift distribution for a galaxy 

sample. 

Measuring and quantifying the uncertainty of redshift distributions 

often involves detailed studies of simulated galaxy catalogues, 

where particular sources of error can be tightly controlled. For 

example, simulation codes easily facilitate changes in the number 

and spatial extent of galaxies used, biases in the assumed distribution 

of true galaxy redshifts, and the level of photometric noise in the 

surv e y. In this work, we present a methodology for mapping the 

variation present in an ensemble of redshift distributions measured in 

simulations to redshift distributions measured from the data, and vice 

versa. Our methodology relies on probability integral transformations 

to transfer the variation in an ensemble of distributions to another 

fiducial distribution. We call this method PITPZ for the probability 

integral transformations (PITs) that characterize and enable it and 

for the redshift ‘ z’ distributions that it is designed to help to estimate. 

Although this method is designed and discussed in the context of 

relating effects measured in cosmological simulations to analogous 

measurements on data, its potential for application is notably broader 

than this. 

This paper is organized as follows: in Section 2 , we describe 

the PITPZ method and its differences compared to related existing 

methods, in Section 3 , we discuss how we implement our method 

as software, in Section 4 , we derive quantities conserved by the 

transformations of the method, in Section 5, we show an example use 

of this method for propagating photometric calibration uncertainty 

to redshift distributions of galaxies in the Dark Energy Surv e y, in 

Section 6 , we show results of the experiment outlined in Section 5 , 

and in Section 7 we conclude. 

A flat � CDM cosmology with H 0 = 70 km s −1 Mpc −1 and �m = 

0.3 is assumed throughout this work. Other cosmological parameters 

are taken to be consistent with Planck 2018 � CDM cosmology 

Planck Collaboration VI ( 2020 ). 

2  M E T H O D  

This section describes the PITPZ method for transferring the 

variation measured in one ensemble of distributions to another 

distribution. We provide a visual illustration of the method in Fig. 1 

to accompany the text of this section. 

In our description of the PITPZ method, we use notation p ( z) to 

denote the probability distribution function of a random variable z 

of interest. In this work, the variable of interest is galaxy redshift 

for a weak lensing sample of galaxies, but we refer only to abstract 

general probability distributions in Sections 2 , 3 , and 4 , because our 

method is broadly applicable to any problem with an ensemble of 

probability distribution functions describing some uncertainty. We 

thus defer specific redshift discussion until the analyses discussed in 

the sections thereafter. 

PITPZ requires two inputs and produces one output. Namely, the 

two inputs are: 

I. A fiducial p ( z) measurement or ensemble of measurements. We 

denote this ensemble with p fid. ( z). While only one such measurement 

is needed for the purposes of this algorithm, the algorithm accom- 

modates having an ensemble of fiducial p ( z) measurements to, for 

example, sequentially propagate multiple independent sources of 

uncertainty. 

II. An ensemble of redshift distributions whose variation we want 

to map to p fid. ( z). We call this ensemble the input ensemble and 

denote it with p 
in . 
i ( z), where i is an index for each realization in the 

ensemble. 

The sole output is: 

III. An ensemble of p ( z) whose variation is related to the variation 

between realizations of the input ensemble but which is mapped 

onto p fid. ( z). We call this ensemble the output ensemble and denote 

it with p out. ( z). We describe quantitatively the relationship between 

the variation of the input ensemble and the variation of the output 

ensemble in Section 4 . 

We begin by computing the inverse cumulative distribution func- 

tion (inverse CDF, also called the quantile function) F 
−1 
i for each 

realization p i ( z) in the input ensemble. This can be written as 

F 
−1 
i ( p) = { z : F i ( z) = p} , (1) 

where the CDF is defined as 

F i ( z) = 

∫ ∞ 

−∞ 

p i ( z 
′ ) d z ′ = 

∫ z max. 

0 

p i ( z 
′ ) d z ′ . (2) 

The integral transforming p ( z) to F ( z) is called a probability integral 

transformation (Dodge et al. 2006 ). Our method relies on these 

transformations to generate the cumulative distribution functions 

necessary to subsequently produce a transformation that transfers 

variation from the input ensemble onto p fid. ( z). 

We note that our method, while making use of PITs, differs from 

past uses of PITs for galaxy redshift estimation. Such past work 

includes the use of PITs to assess redshift biases by taking advantage 

of the fact that the PIT of a proper PDF is uniformly distributed, 

so deviations from uniform distributions in PITs computed from 

redshift PDFs indicate the presence of biases in these underlying 

PDFs (see e.g. Bordoloi, Lilly & Amara 2010 ; Polsterer, D’Isanto 

& Gieseke 2016 ; Freeman, Izbicki & Lee 2017 ; Tanaka et al. 2018 ; 

Schmidt et al. 2020 ; Shuntov et al. 2020 ; Hasan et al. 2022 ; Zhang 

et al. 2022 ). Our method, by contrast, uses PITs to construct another 

transformation entirely, which is used to alter p ( z) to make them 

more like some other p ( z), as to be described in greater detail in the 

following text. 
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Figure 1. PITPZ method used to propagate the uncertainty associated with the mock ensemble shown in the top left-hand panel onto the mock fiducial curve 

of the bottom right-hand panel. Top left : Input ensemble of PDFs. The variation between these curves is the information we want to transfer. Top right : Input 

ensemble of CDFs. Bottom left : Delta transformations constructed from the input ensemble by taking the difference of inverse CDFs with respect to the mean 

inverse CDF. Bottom right : Output ensemble of PDFs constructed by applying delta transformations to the inverse CDF of the fiducial p ( z), then converting the 

result to a PDF. 

We define a new transformation which we call a delta transforma- 

tion (denoted here as T ) as the difference between the inverse CDF 

F 
−1 
i of a given realization in the input ensemble and the avera g e 

inverse CDF of the input ensemble: 

T i = F 
−1 , in . 
i − 〈 F 

−1 , in . 〉 . (3) 

Given this definition, each delta transformation encodes the 

difference between a given realization of the input ensemble and 

the mean of the realizations of said input ensemble. We apply these 

transformations by adding each delta transformation to the inverse 

CDF F 
−1 
fid. of the fiducial data n ( z): 

F 
−1 , out. 
i = F 

−1 , fid. 
i + T i . (4) 

Given this ensemble of transformed inverse CDFs of p fid. ( z), we 

construct the output ensemble by taking the inverse of these inverse 

CDFs to yield CDFs, then differentiating to yield PDFs: 

p 
out. 
i ( z) = 

d 

d z 

(
F 

out. 
i 

)
. (5) 
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3  IMP LEM ENTATION  

The conceptual algorithm described in Section 2 for generating an en- 

semble of p ( z) involves manipulating smooth probability density and 

quantile functions. We circumvent implementation complications 

that arise from operating on smooth functions by evenly sampling 

each PDF to generate an ordered list of n samples { z 0 , . . . , z n } from 

each p ( z) and manipulating these samples, rather than the quantile 

functions directly as follows. In practice, the probability density 

functions used are often stored digitally as histograms, in which case 

our sampling procedure a v oids complications related to differing 

normalizations and bin size and range. 

In brief, applying a delta transformation (as in equation 4 ) amounts 

to generating an ordered list of samples z from each p ( z), adjusting the 

values of those samples with the delta transformation, and computing 

the distribution of the adjusted samples for a specified histogram 

binning. We first determine the number of samples to be apportioned 

to each histogram bin, then use those samples to compute and apply 

each delta transformation, and finally compute the new p ( z) from 

each array of ordered, adjusted samples. 

We use the largest remainder method to apportion the discrete 

samples among histogram bins as closely to the bins’ relative 

probability as is possible (Tannenbaum 2010 ). This method consists 

of dividing the total number n of samples to be apportioned by the 

histogram value p ( z) of each histogram bin. Each bin is apportioned 

a number of samples equal to the integral part of its respective 

quotient. The histogram bins are then ranked by the size of their 

remainders, and each bin is assigned an additional sample until 

the remaining samples have been fully allocated. This procedure 

is done for the fiducial distribution p ( z), and for each realization 

p 
in . 
i ( z) constituting the input ensemble. After using this method to 

compute the appropriate number of samples apportioned to each bin, 

we distribute those samples evenly across the width of the bin. This 

yields the following sets of ordered redshift values: 

I. 1 (or more) set { z 0 , z 1 ,. . . , z n } 
fid. 

II. N sets { z 0 , z 1 , . . . , z n } 
in . 
i 

Here the j th value z i , j of the i th set of ordered redshift samples 

{ z} i represents the redshift corresponding to the j 
n 

th quantile of the 

distribution. In other words, these samples constitute the quantile 

function for p ( z). 

We then compute the delta transformations by taking the difference 

of each ordered sample of a realization in the input ensemble and the 

corresponding ordered sample for the mean of these realizations: 

T i = { z 0 , z 1 , . . . , z n } 
in . 
i − { z 0 , z 1 , . . . , z n } 

〈 in . 〉 

= { � 0 , � 1 , . . . , � n } i . (6) 

Applying these delta transformations amounts to adding each of 

these �z values to the value of its corresponding quantile in the list 

of ordered samples of p fid. ( z). For a single delta transformation T = 

{ � 0 , � 1 ,. . . , � n } , the implementation of equation ( 4 ) is then: 
{
z out. 

0 , z out. 
1 , . . . , z out. 

n 

}
= 

{
z fid . 

0 + � 0 , z 
fid . 
1 + � 1 , . . . , z 

fid . 
n + � n 

}
. (7) 

We note that as a result of the delta transformation some samples 

can be shifted outside of the range of acceptable v alues, e.g. belo w 

zero in the case of cosmological redshift. In the case of redshift 

distributions, we discard these samples and increase the value of the 

remaining samples such that the mean redshift of the distribution 

is not changed. Once we have the perturbed samples described by 

equation ( 7 ), constructing the final modified p ( z) is done by binning 

the samples with an y giv en histogram bin edges, which is done in 

lieu of equation ( 5 ). 

4  CONSERVATI ON  RU L ES  O F  D E LTA  

T R A N S F O R M AT I O N S  

Recall the goal of the PITPZ method: we aim to propagate uncer- 

tainties to measured redshift distributions. Past analyses have used 

coherent shifts of measured redshift distributions to lower and higher 

values, with the shifts drawn from a Gaussian distribution whose 

standard deviation encapsulates mean redshift uncertainty (see e.g. 

Hoyle et al. 2018 ). This approach produces an output ensemble of 

PDFs that only varies in mean redshift, but in reality many sources of 

uncertainty produce more complicated variations than simple mean 

shifts. The goal of PITPZ is to preserve the full correlation structure 

across an input ensemble in a constructed output ensemble. This 

section is dedicated to illustrating how this information is conserved 

by the PITPZ method. 

Recall that the starting point for applying the PITPZ method is two 

inputs: a fiducial measured p fid. ( z) (or an ensemble of such fiducial 

measurements) and an input ensemble p 
in . 
i ( z) of redshift distributions 

whose variation encodes uncertainty due to some relevant effect(s). 

Our algorithm produces an output ensemble p 
out. 
i ( z) which has 

mapped the variation in the input ensemble onto the fiducial mea- 

surement p fid. ( z). Posing the question of information conservation in 

the broadest possible sense, we want to relate each central moment 

of each realization in p 
in . 
i ( z) to the corresponding central moment 

of its counterpart realization in p 
out. 
i ( z). We proceed by deriving 

the conservation rules for the mean, variance, and skewness of a 

realization of the output ensemble in terms of the corresponding 

moments of the fiducial p ( z), the realization of the input ensemble 

used, and the mean of the realizations of the input ensemble. Fig. 2 

shows the performance of our software implementation of PITPZ 

to conserve the rules derived for mean and variance. Inspection of 

this figure illustrates that PITPZ produces an output p ( z) realization 

whose mean differs from the fiducial in proportion to how the mean 

of the corresponding realization of the input ensemble differs from 

the mean of the input ensemble. By contrast, mean shifts maintain 

this relationship only when sufficiently far from the edges of the 

allowed parameter limits. The fact that the observed numerical noise 

lies within the LSST uncertainty region illustrates that the deviation 

from conservation of the mean value is negligible for near-term weak 

lensing redshift calibration applications. PITPZ preserves a similar 

relationship for the variance, but mean shifts do not transfer the 

relative change in width of realizations in the input ensemble to the 

constructed output ensemble. Although for the source of uncertainty 

propagated for this figure (see Section 5 ), the changes in p ( z) width in- 

troduced by the mean shift method are within the LSST year 10 target 

uncertainty, it is the combined value for all sources of uncertainty that 

should be ultimately compared to the target error budget. In practice, 

using PITPZ may be necessary to meet the LSST year 10 target 

uncertainties. 

In this section, we introduce the following notation convention: 

Overlines represent averages over the redshift value samples, which 

are inde x ed with j . F or e xample, the mean redshift z of p ( z) is 

represented by z . Brackets represent averages over the redshift 

distribution realizations of an ensemble, which are inde x ed by i . For 

example, the mean p ( z) of the input ensemble, p 
in . 
i ( z), is represented 

by p 〈 in. 〉 ( z). 

4.1 Mean of redshift distributions 

Measuring the mean redshift of each constituent realization of 

the input ensemble yields a distribution of mean redshifts z̄ in . i 

where z̄ in . i = 
∫ 

z ′ p 
in . 
i ( z ′ ) d z ′ . We aim to derive the relation between 
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Figure 2. Illustration of mean and variance conservation by the PITPZ method and of impro v ed behaviour compared to mean shifts. Shown here are results 

for the first tomographic bin of the experiment described in Section 5 . Top : Relationship in redshift distribution moments between the input ensemble and 

output ensemble realizations. Bottom : Deviations from the conservation rules derived in Section 4 due to numerical noise in our software implementation of 

the formalism described. The blue uncertainty region corresponds to the LSST Y10 WL analysis uncertainty requirements of 0.001 (1 + z) on the mean and 

0.003 (1 + z) on the standard deviation (here scaled to variance) of redshift at z = 0 (The LSST Dark Energy Science Collaboration et al. 2018 ). 

each mean redshift in this ensemble and the mean redshift of the 

corresponding output in the output ensemble produced by the PITPZ 

algorithm, z̄ out. 
i . 

As introduced in Section 3 , we can represent a given realization 

of the input ensemble p in. ( z), a given delta transformation T , and 

the resulting realization of the output ensemble p out. ( z) as a set of 

ordered samples: 

p 
in . ( z) ⇔ 

{
z in . 0 , z 

in . 
1 , . . . , z 

in . 
n 

}

T ⇔ 
{
� 0 , � 1 , . . . , � n 

}

p 
out. ( z) ⇔ 

{
z out. 

0 , z out. 
1 , . . . , z out. 

n 

}

= 
{
z fid . 

0 + � 0 , z 
fid . 
1 + � 1 , . . . , z 

fid . 
n + � n 

}
. (8) 

It is straightforward to pro v e that the mean redshift of each 

realization of the output ensemble is the sum of the mean redshift 

of the fiducial p ( z) and the mean value of the shifts comprising 

the delta transformation. In the following we use our custom- 

ary labels of ‘in.’ and ‘out.’ to represent single realizations of 

the input and output ensembles, respectively, and the letter T to 

likewise represent a single delta transformation. With this con- 

vention, each input-output pair follows the following conservation 

rule: 

z̄ out. = 
1 

n 

n ∑ 

j 

z out. 
j 

= 
1 

n 

n ∑ 

j 

(
z fid . 
j + � j 

)

= 
1 

n 

n ∑ 

j 

z fid . 
j + 

1 

n 

n ∑ 

j 

� j 

= z̄ fid . + �̄ 

= z̄ fid . + ̄z in . − z̄ 〈 in . 〉 . (9) 

4.2 Higher order moments of redshift distributions 

We present results for the variance and skewness here, deferring the 

full deri v ation to Appendix A . 

Our expression for the variance of a realization in the output 

ensemble is 

σ 2 
out. = σ 2 

fid . + σ 2 
T + 2 Cov 

[
z fid . 
j , � j 

]

= σ 2 
fid . + σ 2 

in . + σ 2 
〈 in . 〉 − 2 Cov 

[
z in . j , z 

〈 in . 〉 
j 

]
+ 2 Cov 

[
z fid . 
j , � j 

]
. 

(10) 
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Our expression for the skewness of a realization in the output 

ensemble is: 

σ 3 
out. ̃  μout. 

3 = σ 3 
fid . ̃  μfid . 

3 + σ 3 
in . ̃  μin . 

3 + σ 3 
〈 in . 〉 ̃  μ

〈 in . 〉 
3 

+ 3 σ 2 
fid . σin . S 

(
z fid . 
j , z fid . 

j , z in . j 

)

− 3 σ 2 
fid . σ〈 in . 〉 S 

(
z fid . 
j , z fid . 

j , z 
〈 in . 〉 
j 

)

+ 3 σfid . σ
2 
in . S 

(
z fid . 
j , z in . j , z 

in . 
j 

)

− 6 σfid . σin . σ〈 in . 〉 S 
(
z fid . 
j , z in . j , z 

〈 in . 〉 
j 

)

+ 3 σfid . σ
2 
〈 in . 〉 S 

(
z fid . 
j , z 

〈 in . 〉 
j , z 

〈 in . 〉 
j 

)

− 3 σ 2 
in . σ〈 in . 〉 S 

(
z in . j , z 

in . 
j , z 

〈 in . 〉 
j 

)

+ 3 σin . σ
2 
〈 in . 〉 S 

(
z in . j , z 

〈 in . 〉 
j , z 

〈 in . 〉 
j 

)
, (11) 

where the S denotes the coskewness of three random variables X , Y , 

and Z : 

S( X, Y , Z) = 
E [( X − E ( X))( Y − E ( Y ))( Z − E ( Z))] 

σX σY σZ 
. (12) 

5  C O S M O L O G I C A L  I M PAC T  ANALYSIS  

Having defined PITPZ as a statistical method and illustrated the 

rules by which it conserves and transfers information from one 

distribution of PDFs to another, we now turn to understand how 

this can affect scientific conclusions in the context of weak lensing 

cosmology e xperiments. F or the remainder of this work, we choose 

to denote our probability distribution function of interest as n ( z) to 

remain consistent with the redshift calibration literature, in which 

n ( z) represents a weighted number density of galaxies at redshift z, 

where each galaxy’s may be weighted according to its contribution 

to the associated shear catalogue (for more information about weight 

choices see e.g. Gatti et al. 2021 ). We note that n ( z) has a different 

normalization than the probability density function of a galaxy in 

the surv e y having a specific redshift and emphasize that n ( z) is not 

the probability distribution function for the redshift of an individual 

galaxy. 

Weak gravitational lensing refers to the accumulated deflections 

to the path of light from a distant source galaxy as it travels through 

the large-scale structure of the Universe toward an observer. In order 

to interpret the coherent distortions in the shapes of large samples 

of observed galaxies due to this effect, we must have a constraint on 

the redshift of the source galaxies and the intervening distribution 

of lensing matter. In this context, the salient question is how using 

PITPZ to generate n ( z) realizations whose variation encodes uncer- 

tainties in the redshift distributions of the selected galaxy sample 

will affect the uncertainty on parameters of the cosmological model 

being tested with weak lensing analyses. In practice, the relationship 

between variations of n ( z) realizations and cosmology uncertainty 

is that e v aluating the cosmology likelihood function given weak 

lensing data should sample o v er an ensemble of n ( z) realizations. 

For the purpose of our work, the question of how n ( z) uncertainty 

and cosmology are related can be reduced to assessing the impact that 

using PITPZ to construct redshift distributions has on the resulting 

distribution of lensing signal amplitude (for a given lens redshift). 

To this end, we first briefly summarize the way galaxy photometry is 

used in the redshift calibration scheme applied in this work, deferring 

to Myles et al. ( 2021 ) for a full description. 

5.1 DES Year 3 redshift methodology 

The DES Y3 redshift calibration relies on a method called SOMPZ 

developed to take advantage of the DES deep-drilling fields, where 

longer exposure times and spatial o v erlap with near-infrared surv e ys 

provides more information to use for redshift inference (Buchs et al. 

2019 ; Myles et al. 2021 ; Hartley et al. 2022 ). In this method, the deep- 

field galaxies serve as an intermediary between galaxies with secure 

(e.g. spectroscopic) redshifts and the o v erall wide-field sample; the 

deep-field galaxies play the crucial role of enabling secure redshifts 

to be used for subsamples of galaxies while a v oiding selection bias 

between the secure redshift sample and galaxies in the o v erall wide- 

field surv e y sample (for more information on such selection bias, see 

Gruen & Brimioulle 2017 ). Within this scheme, redshift distributions 

are computed in small regions of deep-field colour-magnitude space. 

The wide-field galaxy density is determined in small regions of 

wide-field colour-magnitude space. The ultimate calibrated redshift 

distributions of the wide-field sample are the weighted sum of redshift 

distributions in deep-field colour-magnitude space, where weights 

are the likelihood of given deep galaxies being detected and selected 

in the wide-field sample as determined using the BALROG image 

simulation package (Everett et al. 2022 ). SOMPZ is additionally 

combined with independent information from galaxy clustering and 

shear ratios (Myles et al. 2021 ; Gatti et al. 2022 ; S ́anchez et al. 

2022 ). The final product of this kind of redshift calibration is not a 

single n ( z), but rather an ensemble of n ( z) whose variations encode 

the uncertainty. This ensemble can be used in cosmology analyses 

by sampling the ensemble for each e v aluation of the cosmological 

likelihood function. PITPZ is designed as a method for generating 

such an ensemble to be sampled in cosmology analyses. 

5.2 Experimental design 

Among the several sources of uncertainty inherent to the DES Year 

3 redshift methodology, the photometric calibration of the deep- 

field galaxies stands out due to the no v el use of these galaxies to 

impro v e our calibration. This uncertainty is best understood by taking 

advantage of realistic simulations in which photometric calibration 

error can be easily scaled at will. We therefore choose this source of 

uncertainty to illustrate the characteristics of our PITPZ method for 

propagating uncertainty. 

Our experimental design to illustrate the impact of PITPZ consists 

of the procedure described in the following test and illustrated in 

Fig. 3 . 

We begin with an ensemble of 100 n ( z) produced using the 

Buzzard simulations (DeRose et al. 2019 ), where each realization 

has zero-point offsets according to the photometric calibration 

uncertainty measured by Hartley et al. ( 2022 ) are introduced to the 

deep-field photometry. The variation between the n ( z) realizations 

in this ensemble reflects the uncertainty in n ( z) due to deep-field 

photometric zero-point uncertainty. 

We split this ensemble into two halves of 50 realizations each. 

The first half is used to construct delta transformations relative to 

the mean. Because it is used in this way, the first half serves the role 

of the input ensemble as defined in §2 , so it is labelled n in. ( z). The 

second half is to construct the fiducial n fid. ( z): n fid. ( z) is simply the 

mean of the n ( z) comprising the second half. 

We apply the delta transformations made from the first half (i.e. 

from the input ensemble) to this fiducial n fid. ( z). As an alternative 

to applying the delta transformations, we also apply to the fiducial 

n fid. ( z), the mean shifts corresponding to the difference in mean 

redshift between each realization of the input ensemble and the 

mean of the realizations of the aforementioned input ensemble; 

this is a simpler alternative to PITPZ, which has been employed 

for past redshift calibration analyses (e.g. Jee et al. 2013 ; Bonnett 

et al. 2016 ; Hoyle et al. 2018 ). As a result, we have produced two 
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Figure 3. Illustration of the experimental design of the cosmological impact analysis in this work. The input ensemble is produced by running SOMPZ 50 times 

with varying deep-field photometric zero-points. The fiducial n ( z) is produced by taking the mean of an ensemble produced by running SOMPZ 50 times again 

with varying deep-field photometric zero-points. ‘Output Ensemble – Mean Shift’ is constructed by shifting the fiducial n ( z) by the mean value of each PIT; 

‘Output Ensemble – PITPZ’ is constructed with the PITPZ method, i.e. by applying the full-shape delta transformations constructed from the input Ensemble 

to alter the fiducial n ( z). 

versions of the output ensemble: one with PITPZ and one with mean 

shifts. The mean shift ensemble transfers only changes in the mean 

redshift between realizations in n in. ( z) by contrast PITPZ transfers, 

the information for higher than mean-order moments according to 

the conservation rules shown in 4 . In short, PITPZ transfers the full 

correlation structure of the realizations generated by the simulations. 

These two versions of the output ensemble should have transferred 

a different aspect or ‘amount’ of information from n in. ( z) to n fid. ( z). 

The difference between these two versions of the output ensemble 

will demonstrate the benefits of using PITPZ rather than mean shifts. 

To summarize, the three n ( z) ensembles discussed are: 

I. (Input ensemble): First determine random zero-point offsets due 

to the uncertainty of the photometric calibration error by drawing 

from a Gaussian centred on zero with standard deviation set to the 

uncertainty of the deep-field photometric calibration in each band. 

Shift all deep-field magnitudes according to the result of this draw 

in each respective band for each deep field. Use these altered deep- 

field magnitudes as input to a run of the SOMPZ method on the 

Buzzard simulated galaxy catalogues. Select the first 50 realizations 

and construct delta transformations from them. 

II. (Output ensemble – mean shift): n ( z) constructed by applying 

mean shifts (rather than full-shape delta transformations) to the 

fiducial n ( z). 

III. (Output ensemble – PITPZ): n ( z) constructed by applying 

full-shape delta transformations to the fiducial n ( z). Following the 

notation of §2 , this ensemble is labelled n out. ( z). 

These n ( z) are shown in Fig. 4 . With these mock redshift distribu- 

tion ensembles produced, we turn to assessing the difference between 

them for cosmology analysis. Our analysis consists in computing the 

uncertainty on the lensing amplitude associated with each ensemble, 

which relates closely to uncertainty on cosmological parameters. 

We are interested in the following comparisons of the lensing 

amplitude distribution results yielded from these analyses: 

(1) The difference between the lensing amplitude distributions 

associated with II and III illustrates the residual effect on redshift 

distributions of zero-point uncertainties beyond the first-order shift 

of the mean redshift. This is equi v alent to illustrating the importance 

of using PITPZ, rather than simpler mean shifts, to incorporate this 

systematic uncertainty into redshift distributions. 

(2) Because the input ensemble serves as a ground truth for the 

degree of variation due to photometric calibration uncertainty present 

in the simulations, any difference between the lensing amplitude 

distributions associated with I and III illustrates the residual effect 

on redshift distribution of zero-point uncertainties beyond what is 

corrected for with delta transformations produced with Buzzard. 

This is equi v alent to illustrating the impact of higher than first-order 

moments due to the effect of photometric calibration uncertainty 

beyond what can be accounted for with the PITPZ method. In 

summary, any difference here illustrates shortcomings of the PITPZ 

method. 

While the primary goal of this work is the illustration of the 

importance of using the delta transformation to preserve higher-order 

information than lower n -th order statistics in generating ensembles 

of probability distributions (i.e. comparison 1), this experimental 

design facilitates a secondary goal of illustrating the impact of 

our chosen source of uncertainty – photometric calibration error 

– on cosmology constraints. This secondary goal can play a role 

in informing future observing strategy decisions to collect the data 

necessary to reduce this uncertainty. 
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Figure 4. Illustration of the n ( z) distributions used in the simulated likelihood analysis in this work. The input ensemble is produced by running SOMPZ 

50 times with varying deep-field photometric zero-points. ‘Output ensemble – mean shift’ is constructed by shifting the fiducial n ( z) by the mean value of 

each PIT; ‘Output Ensemble – PITPZ’ is constructed with the PITPZ method, i.e. by applying the full-shape delta transformations constructed from the input 

ensemble to alter the fiducial n ( z). 

It remains to describe the rele v ant statistic that relates redshift 

distributions to constraints on the parameters of a given cosmological 

model. In practice, weak gravitational lensing involves inferring 

the matter distribution from coherent distortions in the measured 

shapes of galaxies. The presence of tangential alignment in galaxy 

shapes measured on the sky corresponds to the presence of a matter 

o v erdensity along the line of sight. The observed mean tangential 

shear γ t associated with a separation angle θ on the sky can be 

expressed in terms of the lensing convergence that describes the 

amount of lensing 

〈 γt 〉 ( θ ) = κ( < θ ) − 〈 κ〉 ( θ ) . (13) 

Convergence, in turn, can be written in terms of the total projected 

mass density 
 along a line-of-sight � θ , and a critical surface density 

parameter which characterizes the lensing system 

κ( � θ) ≡

( � θ) 


 crit. 
. (14) 

This critical surface density due to lensing of a source at distance 

D s from the observer by a lens (i.e. deflector) at distance D d from 

the observer in a universe, where the distance between the source 

and the lens is D ds is defined as follows under the assumption that 

the distances between source, lens, and observer are all much greater 

than the spatial extent of the lens (see e.g. Bartelmann & Schneider 

2001 ) 


 
−1 
crit. ≡

c 2 

4 πG 

D s 

D d D ds 
. (15) 

This definition illustrates that uncertainty on galaxy distance 

corresponds directly to uncertainty on critical surface density, which 

in turn directly limits the degree to which projected mass density, and 

therefore cosmology can be constrained. For this reason, we choose 

critical surface density to test the impact of PITPZ on cosmology. 

The shear γ ( � θ, z s ) to which a particular source galaxy image is 

subject is a function of source galaxy redshift, so the mean shear 

observed along a line of sight � θ must be expressed with respect to the 

source galaxy redshift distributions (MacCrann et al. 2022 ; Amon 

et al. 2022 ) 

γ ( � θ ) = 

∫ 
d z s n ( z s ) γ ( � θ , z s ) . (16) 

Similarly, the total averaged lensing signal amplitude can be 

expressed in terms of the critical surface density integrated in the 
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Table 1. Summary statistics for each ensemble in the cosmological impact analysis of this work. We show the mean value and standard 

deviation for each of two statistics – mean redshift ( z ) and lensing amplitude ( 
 −1 
crit. ) of an n ( z), for each of four tomographic bins; we 

also show the relative value of the lensing amplitude mean and standard deviation compared to the input ensemble to directly highlight the 

difference between PITPZ and mean shifts. We find that using our PITPZ method reco v ers, the uncertainty in z and 
 −1 
crit. of the input 

ensemble (the ground truth in our experiment), using simpler mean shifts recovers only a portion of the total uncertainty in these parameters. 

The extent to which mean shifts underestimate uncertainty depends on the context of which underlying physical effect is being considered. 

In our case of photometric calibration uncertainty, we find that using mean shifts underestimates the uncertainty in lensing amplitude by as 

much as approximately 30 per cent in each of the bins. We choose z = 0.25 as the lens redshift for the lensing amplitudes shown in this table. 

z 
 −1 
crit. 

[ 
M ⊙
Mpc 

] −1 

 −1 

crit. 

[ 
M ⊙
Mpc 

] −1 

Name Symbol μ σ μ σ μ/ μin. σ / σ in. 

Bin 1 

Input ensemble p in. ( z) 0.310 1.044e-02 9.043e-17 5.856e-18 1.000 1.000 

Output ensemble – mean shift – 0.313 9.478e-03 9.181e-17 4.256e-18 1.015 0.727 

Output ensemble – PITPZ p out. ( z) 0.312 1.041e-02 9.166e-17 5.919e-18 1.014 1.011 

Bin 2 

Input ensemble p in. ( z) 0.506 5.424e-03 2.007e-16 3.588e-18 1.000 1.000 

Output ensemble – mean shift – 0.506 5.385e-03 2.013e-16 2.592e-18 1.003 0.722 

Output ensemble – PITPZ p out. ( z) 0.506 5.387e-03 2.013e-16 3.576e-18 1.003 0.997 

Bin 3 

Input ensemble p in. ( z) 0.745 1.998e-03 2.910e-16 6.246e-19 1.000 1.000 

Output ensemble – mean shift – 0.745 1.999e-03 2.909e-16 4.504e-19 1.000 0.721 

Output ensemble – PITPZ p out. ( z) 0.745 1.964e-03 2.909e-16 6.174e-19 1.000 0.989 

Bin 4 

Input ensemble p in. ( z) 0.911 2.024e-03 3.185e-16 3.861e-19 1.000 1.000 

Output ensemble – mean shift – 0.912 2.023e-03 3.186e-16 3.169e-19 1.000 0.821 

Output ensemble – PITPZ p out. ( z) 0.912 2.002e-03 3.186e-16 3.830e-19 1.000 0.992 

same way as the total shear 


 −1 
crit. = 

∫ z s , max . 
z l 

4 πG 
c 2 

D d ( z l ) D ds ( z s ,z l ) 
D s ( z s ) 

n ( z s ) d z s ∫ z s , max . 
0 n ( z s ) d z s 

, (17) 

where the denominator is a normalization factor. Here D d , D s , and 

D ds are determined by the lens and source redshifts z l and z s . 

Equation ( 17 ) is a statistic to relate uncertainty on n ( z) to uncertainty 

on cosmology results. Note that this statistic is a weighted integral 

of n ( z), and ef fecti vely measures the probability density at redshift 

higher than the lens redshift z l , with higher redshift probability being 

weighted higher. As such, this statistic depends on higher than mean- 

order moments in n ( z). While mean redshift is the most important 

determining factor in the value of this statistic, at fixed mean redshift 

increasing variance, for example, will increase the probability at the 

highest redshifts. As a result, we expect this quantity to be more 

accurately e v aluated from n ( z) constructed with PITPZ than from 

simpler mean shifts because PITPZ propagates uncertainty to higher- 

order moments (cf. Fig. 2 ). 

We compute the distribution in 
 −1 
crit. for each of our redshift 

distribution ensembles using the lenstronomy (Birrer & Amara 

2018 ; Birrer et al. 2021 ) software, and report the resulting values in 

Table 1 . Since the uncertainty on constraints on cosmology from a 

cosmic shear analysis such as that conducted with the Dark Energy 

Surv e y Year 3 data set (Amon et al. 2022 ; Secco et al. 2022 ) is 

proportional to the uncertainty on lensing amplitude, the distribution 

of possible lensing amplitudes functions as a proxy for the resulting 

uncertainty on cosmological parameters. In addition to the statistic 

defined in equation ( 17 ), we compute the cosmic shear two-point 

correlation function ξ+ / − with each n ( z) in our input and output 

ensembles using the CCL package of Chisari et al. ( 2019 ) (for details 

on cosmic shear, see e.g. Amon et al. 2022 ; Secco et al. 2022 ). 

We inte grate o v er this cosmic shear data vector ξ , and show results 

relating input and output values of this quantity in Fig. 6 . 

6  RESULTS  

Our primary results are shown in Figs 5 and 6 and Table 1 . Fig. 5 

illustrates that PITPZ propagates the relative strength of the lensing 

signal amplitude, which depends on higher-order moments of n ( z) 

across all scales. By contrast, the loss of higher than mean-order 

moment information associated with mean shifts causes deviations 

from linearity in the relationship between lensing amplitude in the 

input ensemble and output ensemble realizations. As a result, the 

o v erall scatter in 
 −1 , out. 
crit. is smaller in the case of using mean 

shifts. As shown in Table 1 , the scatter in the output ensemble lensing 

amplitude using the full PITPZ method matches the true scatter from 

the input ensemble to within 1 per cent for all tomographic bins. 

By contrast, using mean shifts underestimate this scatter by 27, 28, 

28, and 18 per cent in the four tomographic bins, respectively ( z lens 

= 0.25). We can summarize the imperfections of the mean shift 

method relative to PITPZ in terms of two effects visually apparent 

in Fig. 5 : first, the slope of the relationship between input and output 

lensing amplitude deviates from the value of unity, leading to the 

bulk of the loss of scatter in lensing amplitude. Second, ho we ver, 

the mean shift method introduces significant scatter about the linear 

relationship, which has an o v erall additiv e effect to the scatter in the 

lensing amplitude. In this sense, our estimate of the degree to which 

mean shifts underestimate the uncertainty in lensing amplitude are a 

lower bound because they include this additive effect. Our result that 

using mean shifts on n ( z) underestimates uncertainty applies not only 

to lensing signal amplitude, but to any quantity that is a weighted 

integral of n ( z), as any such quantity will depend on higher-order 

moments in n ( z). We finally highlight that since n ( z), unlike 
 −1 
crit. , 

is cosmology independent, our method does not depend on an 

assumed cosmology. By contrast, an attempt to propagate uncertainty 

by way of mean shifts on lensing signal amplitude itself would require 

an assumed cosmology to determine the D ds factor present in the 

definition of 
 −1 
crit. . This is an additional advantage of operating 

directly on n ( z) with PITPZ. We emphasize that although the 
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Figure 5. Relationship between lensing signal amplitude in the input ensemble and the output ensemble realizations using PITPZ or mean shifts for the 

experiment described in Section 5 with z lens = 0.25. We find that PITPZ more reliably transfers lensing amplitude information than mean shifts. This is explained 

by the fact that the lensing amplitude is a weighted integral of n ( z), so higher-order moments of n ( z), which are conserved by PITPZ but not conserved by 

mean shifts will cause the mean shift to underestimate the scatter in lensing amplitude. Histograms on the side panels illustrate the distribution of lensing 

signal amplitude for the output ensemble, where the solid line corresponds to the output ensemble produced with PITPZ, and the dotted line corresponds to that 

produced with mean shifts. 

qualitative results shown are applicable in general, the quantitative 

difference between PITPZ and mean shifts is specific to the source 

of uncertainty under consideration, and the redshift distributions of 

the source and lens galaxy samples observed. Larger values of lens 

redshift eliminate the impact of differences between realizations in 

the input ensemble at redshift values less than z lens . As one scales lens 

redshift up from zero, the degree to which the effect shown in Fig. 5 

varies depends on how much relative variation in n ( z) is below and 

abo v e the value of the lens redshift. As a result, the degree to which 

these results change for a higher choice of lens redshift is again 

specific to the source of uncertainty and the redshift distribution 

of the galaxy surv e y in question. Fig. 6 shows the relationship 

between input and output values of the cosmic shear data vector 

ξ+ . In particular, for each n ( z) realization in the input ensemble, 

we compute the galaxy shape two-point correlation function ξ+ ( θ ) 

(given the assumed cosmology defined in Section 1 ) and the integral ∫ 
d θ θξ+ . We likewise compute this value for each realization of the 

output ensembles produced by the mean shift and PITPZ methods, 

respectively. Fig. 6 shows that PITPZ again preserves a linear rela- 

tionship between input and output realizations, whereas mean shifts 

do not. 

7  C O N C L U S I O N  

We have presented a method for transferring variations between 

realizations of PDFs in one ensemble onto another PDF (or ensemble 

of PDFs). Our method, dubbed PITPZ, may have general applications 

for propagating uncertainties on posterior probability functions. In 
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Figure 6. Relationship between the cosmic shear signal amplitude as inferred from input ensemble n ( z) realizations to the cosmic shear signal amplitude as 

inferred from output ensemble n ( z) realizations. The output ensembles are produced with PITPZ or mean shifts with the experiment described in Section 5 . Axis 

values are integrals over the full cosmic shear data vector ξ+ . As in Fig. 5 , we find that PITPZ more reliably transfers information than mean shifts. Histograms 

on the side panels illustrate the distribution of signal amplitude for the output ensemble, where the solid line corresponds to the output ensemble produced with 

PITPZ, and the dotted line corresponds to that produced with mean shifts. 

addition to providing a treatment of the algorithm, we derive analytic 

estimates of the conservation rules for the first three moments (mean, 

variance, and skewness) of the PDFs used. 

We illustrate the use of this method with an experiment in the 

context of the weak gravitational lensing survey redshift calibration 

problem, for which the redshifts for large numbers of galaxies are 

estimated. We find that our method is an impro v ement o v er simpler 

mean shifts of PDFs for transferring higher-order information. We 

show that this higher-order information is critically important in the 

context of redshift calibration by propagating redshift distributions 

to total gravitational lensing signal amplitude, which relates directly 

to the cosmological constraints of lensing surv e ys. In summary, 

we find for our fiducial test case involving photometric zero-point 

uncertainty for a DES Y3-like surv e y ( z lens = 0.25) that our method 

reco v ers the true uncertainty on lensing amplitude to within 1 per 

cent, in contrast to an underestimate of as much as 30 per cent 

when using mean shifts. The difference between PITPZ and mean 

shift on lensing amplitude reflects the importance of this method for 

cosmology analyses requiring redshift distributions. 

We confirm that the numerical errors associated with our software 

implementation of our method fall well-within the LSST DESC 

Year 10 uncertainty targets for redshift calibration. By contrast, 

using simple mean shifts exceeds this uncertainty target in the mean 

redshift in our test case. While in our test case, the error on the 

variance introduced by mean shifts is still so small as to fall within 

the LSST DESC Y10 uncertainty target in the scatter in redshift, 

it is the accumulated effect for all higher moments, and when also 

accounting for multiple independent sources of redshift uncertainty 

that propagates directly to uncertainty on cosmological parameters, 

which may justify the additional complexity of PITPZ relative to 
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mean shifts. Based on these results, we conclude that future galaxy 

lensing surv e ys should consider using PITPZ for propagating redshift 

uncertainties. 

Development of the PITPZ method has been moti v ated by the 

significant and consequential challenges of the redshift calibration 

problem to accomplish the stated goals of upcoming galaxy imaging 

surv e ys like the Le gac y Surv e y of Space and Time (LSST Science 

Collaboration et al. 2009 ; The LSST Dark Energy Science Collabo- 

ration et al. 2018 ; Ivezi ́c et al. 2019 ). In this conte xt, impro v ements 

in our ability to measure redshift distributions from photometric 

galaxy samples are a prerequisite to fulfill the promise of the next 

generation of weak lensing experiments and of the investments made 

to this end. As we have discussed, PITPZ will facilitate more accurate 

uncertainty characterization of these measurements by enabling a 

transfer of uncertainties from simulations where certain observa- 

tional effects can be scaled at-will to the measurements on data. 

Similarly, uncertainties measured in data products can be likewise 

transferred to measurements in simulations, which will facilitate 

realistic end-to-end analyses in simulations for cosmology pipeline 

validation. Noting the characterization of the redshift calibration 

problem as being within a category for which ‘promising ideas exist, 

but more exploration is needed to determine which will work and how 

exactly to use them at the level of precision needed for future surv e ys’ 

(Mandelbaum 2018 ), we highlight that although this work has 

focused on weak lensing source galaxies, our method has important 

implications for lens redshift calibration. Given that lens redshift 

distributions appear as a quadratic term in the galaxy clustering 

signal by way of the radial selection function of lens galaxies for 

a given source galaxy tomographic bin (i.e. the ‘galaxy clustering 

kernel’), the galaxy clustering signal is especially sensitive to the 

width of the lens n ( z) (see e.g. P ande y et al. ( 2021 ), Porredon et al. 

( 2021 ), Rodr ́ıguez-Monroy et al. ( 2022 )). PITPZ, as a first solution to 

propagating n ( z) uncertainty for the width of n ( z) (and other higher 

than mean-order moments) may pro v e an essential component to 

calibrating lens redshift distributions within uncertainty requirements 

for upcoming galaxy clustering analyses. Because PITPZ is part of 

an effort to express redshift distribution uncertainty with sufficient 

complexity to meet future uncertainty goals, a natural question to 

ask is whether the form of redshift distribution uncertainty relates 

to degeneracies between redshift distribution uncertainty, and other 

nuisance parameters in weak lensing cosmology analyses such as 

intrinsic alignment model parameters. We leave this question to 

future work. 

PITPZ is a flexible solution with numerous potential applications 

in the context of weak lensing redshift calibration to address the 

clear needs for higher precision in scheduled next-generation galaxy 

surv e ys. More broadly, recognizing the trend within astrophysics 

and cosmology toward the use of Bayesian statistical methods that 

produce full posterior probability distributions for model parameters 

of interest, PITPZ can serve a useful role of sophisticated propagation 

of uncertainties in a wide variety of subfields of astronomy. 
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Ivezi ́c Ž. et al., 2019, ApJ , 873, 111 

Jee M. J., Tyson J. A., Schneider M. D., Wittman D., Schmidt S., Hilbert S., 

2013, ApJ , 765, 74 

Joudaki S. et al., 2020, A&A , 638, L1 

Laureijs R. et al., 2011, preprint ( arXiv:1110.3193 ) 

Leistedt B., Hogg D. W., Wechsler R. H., DeRose J., 2019, ApJ , 881, 80 

Lima M., Cunha C. E., Oyaizu H., Frieman J., Lin H., Sheldon E. S., 2008, 

MNRAS , 390, 118 

LSST Dark Energy Science Collaboration, 2012, preprint ( arXiv:1211.0310 ) 

LSST Science Collaboration et al., 2009, preprint ( arXiv:0912.0201 ) 

MacCrann N. et al., 2022, MNRAS , 509, 3371 

Malz A. I., 2021, PRD , 103, 083502 

Malz A. I., Hogg D. W., 2022, ApJ , 928, 127 

Malz A. I., Marshall P. J., DeRose J., Graham M. L., Schmidt S. J., Wechsler 

R., (LSST Dark Energy Science Collaboration, 2018, AJ , 156, 35 

Mandelbaum R., 2018, ARA&A , 56, 393 

Myles J. et al., 2021, MNRAS , 505, 4249 

Newman J. A., Gruen D., 2022, ARA&A , 60, 363 

P ande y S. et al., 2021, Phys. Rev. D , 106, 043520 

Planck Collaboration VI, 2020, A&A , 641, A6 

Polsterer K. L., D’Isanto A., Gieseke F., 2016, MNRAS, preprint ( arXiv: 

1608.08016 ) 

Porredon A. et al., 2021, Phys. Rev. D , 106, 103530 

Rodr ́ıguez-Monroy M. et al., 2022, MNRAS , 511, 2665 

Samuroff S., Troxel M. A., Bridle S. L., Zuntz J., MacCrann N., Krause E., 

Eifler T., Kirk D., 2017, MNRAS , 465, L20 

S ́anchez C., Bernstein G. M., 2019, MNRAS , 483, 2801 

S ́anchez C. et al., 2022, Phys. Rev. D , 105, 083529 

Schmidt S. J. et al., 2020, MNRAS , 499, 1587 

Secco L. F. et al., 2022, Phys. Rev. D , 105, 023515 

Shuntov M. et al., 2020, A&A , 636, A90 

St ̈olzner B., Joachimi B., Korn A., Hildebrandt H., Wright A. H., 2021, A&A , 

650, A148 

Tanaka M. et al., 2018, PASJ , 70, S9 

Tannenbaum P., 2010, Excursions in Modern Mathematics, Pearson Custom 

Mathematics. Prentice Hall. Available at: https://books.google.com/boo 

ks?id=jHAbOgAACAAJ 

Tessore N., Harrison I., 2020, The Open J. Astrophys. , 3, 6 

The LSST Dark Energy Science Collaboration et al., 2018, preprint ( arXiv: 

1809.01669 ) 

Wright A. H., Hildebrandt H., van den Busch J. L., Heymans C., 2020a, 

A&A , 637, A100 

Wright A. H., Hildebrandt H., van den Busch J. L., Heymans C., Joachimi 

B., Kannawadi A., Kuijken K., 2020b, A&A , 640, L14 

Zhang T., Rau M. M., Mandelbaum R., Li X., Moews B., 2022, MNRAS, 

518, 709 

APPENDIX  A :  H I G H E R  O R D E R  M O M E N T S  O F  REDSHIFT  DI STRI BU TI ON  

In the following, we provide more complete algebra deriving the conserved quantities associated with the variance and skewness of the 

distributions used in our work. We use the same convention as Section 2 , where ‘in.’ represents a p ( z) in the input ensemble that contains 

variation we wish to map to another p ( z), 〈 in. 〉 denotes the mean of these realizations, T represents a delta transformation, and ‘out.’ represents 

the output realization resulting from the PITPZ algorithm. The index j runs over the number of samples used to represent smooth p ( z), as 

described in Section 3 . 

A1 Variance 

We now turn to representing the variance of the output ensemble in terms of the variances of the inputs. 

σ 2 
in . = 

1 

n 

n ∑ 

j 

[(
z in . j − z̄ in . 

)2 ]

= 
1 

n 

n ∑ 

j 

[ 
z in . 

2 

j − 2 z in . j z̄ 
in . + ̄z in . 

2 
] 
. (A1) 
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σ 2 
T = 

1 

n 

n ∑ 

j 

[
( � j − �̄ ) 2 

]

= 
1 

n 

n ∑ 

j 

[ (
z in . j − z 

〈 in . 〉 
j 

)
−

(
z in . j − z 

〈 in . 〉 
j 

) ] 2 

= 
1 

n 

n ∑ 

j 

[ (
z in . j − z 

〈 in . 〉 
j 

)
−

(
z in . j − z 

〈 in . 〉 
j 

) ] [ (
z in . j − z 

〈 in . 〉 
j 

)
−

(
z in . j − z 

〈 in . 〉 
j 

) ] 

= 
1 

n 

n ∑ 

j 

[(
z in . j − z 

〈 in . 〉 
j 

)2 
− 2 

(
z in . j − z 

〈 in . 〉 
j 

)(
z in . j − z 

〈 in . 〉 
j 

)
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(
z in . j − z 

〈 in . 〉 
j 

) 2 
]
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1 

n 

n ∑ 
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z in . j 

)2 
− 2 z in . j z 

〈 in . 〉 
j + 

(
z 

〈 in . 〉 
j 

)2 
− 2 z in . j 

(
z in . j − z 

〈 in . 〉 
j 

)
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〈 in . 〉 
j 

(
z in . j − z 

〈 in . 〉 
j 

)
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]
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z in . j 
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− 2 z in . j z 
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〈 in . 〉 + 2 z 

〈 in . 〉 
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. (A2) 

In summary, we find that the variance of a delta transformation can be written as the sum of the variance of the input p ( z) used in its 

construction, the variance of the mean of the realizations of the input p ( z) ensemble used in its construction, and the covariance between these 
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elements. This covariance is computed directly from the ordered, evenly-spaced samples of the relevant PDFs. 

σ 2 
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fid . + σ 2 

T + 2 Cov 
[
z fid . 
j , � j 

]
. (A3) 

Using equation ( A2 ) to replace σ 2 
T with quantities from the input ensemble, this yields our final expression for the variance of a realization 

in the output ensemble 

σ 2 
out. = σ 2 

fid . + σ 2 
in . + σ 2 

〈 in . 〉 − 2 Cov 
[
z in . j , z 

〈 in . 〉 
j 

]
+ 2 Cov 

[
z fid . 
j , � j 

]
. (A4) 

Alternatively we can expand � j to yield 

σ 2 
out. = σ 2 

fid . + σ 2 
in . + σ 2 

〈 in . 〉 − 2 Cov 
[
z in . j , z 

〈 in . 〉 
j 

]
+ 2 Cov 

[
z fid . 
j , z in . j 

]
− 2 Cov 

[
z fid . 
j , z 

〈 in . 〉 
j 

]
. (A5) 

A2 Skewness 

We now turn to developing an expression for the skewness of a realization of the output ensemble in terms of moments of the input ensemble. 

We use the standardized moments, which are normalized to be scale invariant. For a random variable X with probability distribution P with 

mean μ, the standardized moment of degree k is defined as the ratio of the moment of degree k , and the standard deviation σ , 

˜ μk ≡
μk 

σ k 
= 

E[( X − μ) k ] 

(E[( X − μ) 2 ]) k/ 2 
. (A6) 

The standardized moment of degree k of a realization of the output ensemble can be written as follows. Using σ out. to represent the standard 

deviation of a given realization (see equation 10 ), 

˜ μout. 
k = 

1 

σ k 
out. 

E 

[ (
z out. 
j − z out. 

j 

)k 
] 

= 
1 

σ k 
out. 

1 

n 

n ∑ 

j 

[ (
z out. 
j − z out. 

j 

)k 
] 
. (A7) 

Expanding z out. 
j = z fid . 

j + � j = z fid . 
j + z in . j − z 

〈 in . 〉 
j yields 

˜ μout. 
k = 

1 

σ k 
out. 

1 

n 

n ∑ 

j 

[ (
z fid . 
j + z in . j − z 

〈 in . 〉 
j 

)
−

(
z fid . 
j + z in . j − z 

〈 in . 〉 
j 

)] k 

= 
1 

σ k 
out. 

1 

n 

n ∑ 

j 

[ (
z fid . 
j + z in . j − z 

〈 in . 〉 
j − z fid . 

j − z in . j + z 
〈 in . 〉 
j 

)k 
] 

= 
1 

σ k 
out. 

1 

n 

n ∑ 

j 

[ ((
z fid . 
j − z fid . 

j 

)
+ 

(
z in . j − z in . j 

)
−

(
z 

〈 in . 〉 
j − z 

〈 in . 〉 
j 

))k 
] 
. (A8) 
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The standardized skewness is thus 

˜ μout. 
3 = 

1 

σ 3 
out. 

1 

n 

n ∑ 

j 

[ (
z fid . 
j − z fid . 

j 

)3 
+ 3 

(
z fid . 
j − z fid . 

j 

)2 (
z in . j − z in . j 

)
− 3 

(
z fid . 
j − z fid . 

j 

)2 (
z 

〈 in . 〉 
j − z 

〈 in . 〉 
j 

)
+ 3 

(
z fid . 
j − z fid . 

j 

)(
z in . j − z in . j 

)2 

− 6 
(
z fid . 
j − z fid . 

j 

)(
z in . j − z in . j 

)(
z 

〈 in . 〉 
j − z 

〈 in . 〉 
j 

)
+ 3 

(
z fid . 
j − z fid . 

j 

)(
z 

〈 in . 〉 
j − z 

〈 in . 〉 
j 

)2 
+ 

(
z in . j − z in . j 

)3 

− 3 
(
z in . j − z in . j 

)2 (
z 

〈 in . 〉 
j − z 

〈 in . 〉 
j 

)
+ 3 

(
z in . j − z in . j 

)(
z 

〈 in . 〉 
j − z 

〈 in . 〉 
j 

)2 
−

(
z 

〈 in . 〉 
j − z 

〈 in . 〉 
j 

)3 
] 
. (A9) 

Compare to the individual expressions for the k th moment of each ingredient in the recipe for constructing each realization in the output 

ensemble, 

˜ μfid . 
k = 

1 

σ k 
fid . 

1 

n 

n ∑ 

j 

[ (
z fid . 
j − z fid . 

j 

)k 
] 
, (A10) 

˜ μin . 
k = 

1 

σ k 
in . 

1 

n 

n ∑ 

j 

[ (
z in . j − z in . j 

)k 
] 
, (A11) 

˜ μ
〈 in . 〉 
k = 

1 

σ k 
〈 in . 〉 

1 

n 

n ∑ 

j 

[ (
z 

〈 in . 〉 
j − z 

〈 in . 〉 
j 

)k 
] 
. (A12) 

We identify these terms in the expression to write the standardized skewness as 

σ 3 
out. ̃  μout. 

3 = σ 3 
fid . ̃  μfid . 

3 + σ 3 
in . ̃  μin . 

3 + σ 3 
〈 in . 〉 ̃  μ

〈 in . 〉 
3 

+ 3 σ 2 
fid . σin . S 

(
z fid . 
j , z fid . 

j , z in . j 

)
− 3 σ 2 

fid . σ〈 in . 〉 S 
(
z fid . 
j , z fid . 

j , z 
〈 in . 〉 
j 

)

+ 3 σfid . σ
2 
in . S 

(
z fid . 
j , z in . j , z 

in . 
j 

)
− 6 σfid . σin . σ〈 in . 〉 S 

(
z fid . 
j , z in . j , z 

〈 in . 〉 
j 

)

+ 3 σfid . σ
2 
〈 in . 〉 S 

(
z fid . 
j , z 

〈 in . 〉 
j , z 

〈 in . 〉 
j 

)
− 3 σ 2 

in . σ〈 in . 〉 S 
(
z in . j , z 

in . 
j , z 

〈 in . 〉 
j 

)

+ 3 σin . σ
2 
〈 in . 〉 S 

(
z in . j , z 

〈 in . 〉 
j , z 

〈 in . 〉 
j 

)
, (A13) 

where the coskewness of three random variables X , Y , and Z is defined as 

S( X, Y , Z) = 
E [( X − E ( X))( Y − E ( Y ))( Z − E ( Z))] 

σX σY σZ 
. (A14) 

APP ENDIX  B:  N U L L I N G  

Here we introduce an additional optional procedure, which we call nulling that can reduce the error on the mean redshift caused by the PITPZ 

algorithm. Nulling enforces a requirement that the mean of the delta transformation values be zero for each sample index j , i.e. the mean of 

the delta transformations be zero for each percentile of the delta transformation distributions. 

Recalling our definition of the delta transformation in Section 2 , we can write the j th sample of the i th delta transformation as the following 

difference in redshift values between the i th realization of the input ensemble ( p 
in . 
i ( z)) and the mean of the input ensemble, p 〈 in. 〉 ( z). 

T ij = z in . ij − z 
〈 in . 〉 
j . (B1) 

The mean value of the j th sample of each delta transformation o v er all realizations in the input ensemble is thus: 

〈 T ij 〉 = 
1 

n real . 

∑ 

i 

z in . ij − z 
〈 in . 〉 
j 

= −z 
〈 in . 〉 
j + 

1 

n real . 

∑ 

i 

z in . ij 

= −z 
〈 in . 〉 
j + 

〈
z in . ij 

〉
. (B2) 

This quantity does not vanish in general, in particular at the lowest and highest percentiles. These non-zero mean values at each percentile 

of the delta transformation sum to a non-zero mean value of the ensemble of the delta transformations. 

We find empirically that without this procedure, the mean of the delta transformations is approximately 10 −5 , which leads to an error on 

the mean redshift in the p ( z) of the output ensemble at the level of 10 −5 . By contrast, applying this procedure decreases the mean of the delta 

transformations to the level of approximately 10 −10 at the expense of a slightly more complicated method, and a slight deviation from the 

conservation rules in Section 4 . 
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