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System State Estimation Using Upper Bound

Optimization Techniques

Thukaram Dhadbanjan and Seshadri Sravan Kumar Vanjari

Abstract

State estimation plays an important role in real time security monitoring and control of power

systems. There are many problems in the implementation of state estimator for large scale

networks due to measurement errors, weights given and the numerical ill-conditioning associated

with the solution techniques. In this paper a new formulation using linear programming approach

is presented. The formulation is devoid of weights and errors associated with the measurements

are taken care of in constraints. The non linear problem is linearized at previous operating state

and constraints are set up using flow mismatches. The implementation of the formulation exploits

sparse features of the network matrices and avoids matrix inversions. Upper bound optimization

technique is employed to solve the linear programming problem. Illustration of the proposed

approach on sample 3-bus and 6-bus systems and a practical Indian Southern grid 72 bus

equivalent system are presented.

KEYWORDS: Linear Programming, LP, Normal Equations, NE, Power System State Estimation,

PSSE, upper bound optimization, Weighted Least Squares, WLS
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1 Introduction

State estimation is an essential precursor to all network security applications in

modern Energy Control Centers (ECC). Implementation of online security-oriented

functions in Energy Management System (EMS) requires prior information of sys-

tem operating states provided by the state estimator.

Although different versions of state estimators are widely adopted in the

EMS, difficulties are being reported for its effective implementation to practical

systems. In analyzing the causes of the 2003 blackout [1] the NERC outage task

force final report indicates the ineffectiveness of one of the EMS state estimators to

assess system conditions for most of the outage period.

Development of efficient Power System State Estimator (PSSE) for han-

dling large power systems has been a topic of research since 1970’s. Tinney et al.

[2, 3] presents a methodology for processing measured data from electric power

networks in order to obtain the best possible estimates of the system variables. This

approach is popularly known as the Normal Equations (NE) approach or Weighted

Least Squares (WLS) approach. Problems show up in implementation of WLS ap-

proach for large scale systems. Monticelli et al. [4] describes the ill conditioning

associated with NE approach when dealing with networks having large number of

injection measurements, networks with long line connected to short line, assigning

weights to virtual measurements etc. It also suggests solving of normal equations

by orthogonal transforms to overcome the problems associated with the ill condi-

tioning arising in gain matrix.

Various methods have been suggested to overcome the numerical ill condi-

tioning problem [5, 6, 7, 8, 9]. Holten et. al [10] compares various methods for state

estimation in terms of numerical stability, computational efficiency and implemen-

tation complexity. Monticelli [11] discusses the state of art of electric power system

state estimation along with alternative formulations for solving Power System State

Estimation (PSSE) .

State estimation problem formulation suitable for employing Linear Pro-

gramming (LP) approach has been attempted in the past. Irving et al. [12] were the

first to propose the Weighted Least Absolute Value (WLAV) approach for PSSE.

Although different approximations [13, 14] were considered to improve computa-

tional efficiency, the objective function still dependent on measurement weights,

which is one of the major causes of ill-conditioning. Clewer et al. [15] proposed

an variant of LP approach for estimating the voltage magnitudes and phase angles

utilizing four sets of linear equations.

The primary objective of this paper is to develop a new formulation for

PSSE that is free from ill-conditioning caused due to weightages. The objective

function of the proposed approach is devoid of weights but the errors associated
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with the measurements are taken care of in constraints. As decoupled technique

is employed, the voltage magnitudes and angles are obtained by solving sequen-

tially two sets of LP problem as against four in method proposed by Clewer et al..

Also the proposed approach tries to make use of the previous state information for

effective implementation.

The paper is organized as follows. Sections 2 and 3 describes the proposed

approach and issues regarding implementation. Network modeling, actual algo-

rithm and computational requirements are described in Sections 4 and 5. Section 6

gives the illustrative results of the proposed approach tested on sample 3 bus, 6 bus

system and also a practical 72 bus equivalent 400/230/220kV Indian southern grid

system. Section 7 discusses the advantages associated with the proposed approach

and concludes the discussion.

2 Mathematical formulation for the proposed

approach

The general estimation consists of estimating the state vector x based on a set of

measurements z in the presence of an error ε . A mathematical model describing the

functional relations between z, x and ε is described by (1). This model is expressed

in the form of a set of non-linear equations which relates the measurements z and

the true state vector x.

z j = f j(x)+ ε j (1)

where f j is a nonlinear scalar function relating the jth measurement to states and ε j

is the measurement error.

The initial objective for performing state estimation is to determine the state

x such that the difference between the measured value and the estimated value is

minimum. i.e.

J(x) =
nm

∑
i=1

(zi − fi(x))
2 (2)

Where, ns=number of states or unknowns, nm=number of measurements.

In this approach, we start with an initial value of x and determine correction

∆x so that J(x) is minimized. The correction ∆x can be obtained by solving the

linear optimization problem given by (3).
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min vs(x) = cT [∆x]

sub to bmin ≤ [A][∆x] ≤ bmax

and ∆xmin ≤ ∆x ≤ ∆xmax

(3)

For state estimation, the initial value of x is chosen as the voltage mag-

nitude and angles during the previous state (i.e. voltage magnitudes and angles at

the instant when state estimation was last performed) or flat start (in case previous

state information is not available).

In the optimization problem (3), the control variables (decision variables)

are the deviations in state variables (∆v or ∆δ ) i.e. deviations in voltage magnitude

and angle. As decoupled technique is employed, the control variables are ∆δ dur-

ing the p −δ process and ∆v during the q − v process.

∆xpδ = [∆δ2 ∆δ3 . ....∆δn]
T

∆xqv = [∆v1 ∆v2 . .....∆vn]
T

(4)

The objective function coefficients [c]T , is obtained by linearizing (2) at

previous state or at flat start.

cT =

[

∂J(x)

∂x1

∂J(x)

∂x2
...........

∂J(x)

∂xn

]

(5)

upon finding the derivative the expression for cT is given by (6)

cT = (−2) [d]T [H] (6)

where [d] = [z]− [ f (x)]

[H] =
∂ f (x)

∂x

The constraints are formulated in such way so that they take care of the

mismatches and errors associated with the measurements. The constraints are given

by (7)

{z− εz − f (x0)} ≤ H[∆x] ≤ {z+ εz − f (x0)} (7)

The factor H[∆x] gives the change in measurement value for a given change

in ∆x. Here εz is the error associated with the meter providing measurement z.

The measurement uncertainty is handled by adding the meter errors to the measure-

ments. z + εz and z− εz are the measurement values with the associated errors. If

3

Dhadbanjan and Vanjari: LP Approach for State Estimation Using Upper Bound Optimization

Brought to you by | University of Arizona

Authenticated

Download Date | 5/27/15 5:39 PM



these errors are not known, conventional weights can also be used to scale each row

of the constraints. In such a case, the constraints are given as,

[W ][H][∆x] ≤ [W ]{z− f (x0)}

However, in this paper, we consider constraints given by (7).

The reason for having limits on ∆x is to set the region where the linearizing

approximation holds good. This is generally chosen as 5-6%. In case if ∆x hits

the limits, the cT is again calculated at this updated state and optimization is again

performed. This is employed to get a better accuracy.

The following features of the power system make this approach feasible

1. Under normal operating conditions the voltage magnitude and phase angle

deviations from instant to instant will be marginal or around 5-6%. So lin-

earizing it around the previous operating state is a good approximation.

2. Effectiveness of the proposed approach when previous operating state infor-

mation is not available is demonstrated in sections 6.1 and 6.2.

3. Application of the proposed approach when the system is not under normal

operating state or the deviation is more than 5-6% is described in section 6.3.

3 Issues regarding implementation

Techniques required for efficient implementation of linear optimization given by

(3) are discussed in this section. Number of constraints (flow and injection mea-

surements) is generally 1.5 to 2.5 times the number of states. In the optimization

problem (3), the values of control variables (i.e. ∆x) are more important than the

minimum value of objective function.

Generally constraints such as bmin ≤ A[∆x] ≤ bmax are handled by splitting

the constraint into two constraints. i.e.

[A][∆x] ≤ bmax and −[A][∆x] ≤−bmin

Employing such technique doubles the number of constraints which in-

creases complexity. Even if bmin is positive, a two phase simplex method will

be required in order to handle −A[∆x] ≤ −bmin. Also limits on ∆x can cause in-

feasibility of the constraint bmin ≤ A[∆x] ≤ bmax.

An efficient way to handle such a constraint from power system prospective

is

4
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repeat until : A[∆X ] ≥ bmin

min vs(x) = cT [∆x]

sub to [A][∆x] ≤ bmax

and ∆xmin ≤ ∆x ≤ ∆xmax

(8)

Initially x = x0 and after each iteration of solving the bounded optimization

problem, x is updated as x = x + ∆x. Suppose ’l’ being number of times the opti-

mization problem is solved in order to satisfy [A][x − x0] ≥ bmin, the new state x1

is given as

x1 = x0 +∆x01 +∆x02 + . ...∆x0l (9)

The additional advantage of such an approach is detection of no change

in states (control variables) without actually proceeding to the optimization phase.

This possibility arises as PSSE is run repeatedly in the order of seconds.

Simplex method [16] developed for handling upper bounds on control vari-

ables is employed to solve the optimization problem. Bland’s rule for avoiding

cycling and presolving [17] for reducing the number of constraints are employed.

The general technique to handle optimization problems having generic form as in

(8) is outlined in Appendix A

4 Decoupled model for PSSE

In Power System State Estimator (PSSE), the measurement vector z comprises of

active and reactive power injection measurements at buses and flows in the lines.

The control variables(∆x) are deviations in magnitude of bus voltages and angles.

The function matrix that relates the deviations in estimated values to the deviations

in states is the Jacobian H.

Active/reactive decoupling introduces into power system state estimators

the same computational advantages as in the load-flow calculations. It reduces the

complexity or dimensionality of the problem, computing time per iteration and stor-

age. Only zeroing effect of decoupling is considered without major approximations.

P−δ and Q−V are solved as two separate linear programming sub-problems. The

results from one sub problem are used to modify the power mismatches of other.

5
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4.1 P−δ sub-problem

In decoupled model the voltage angles are estimated from active power measure-

ments. Mathematically the P−δ sub-problem can be stated as

“Given a set of noisy active power measurements and load angles at all the

buses in the previous state, find the deviation in load angles from present state to

previous state such that the difference between the measurements and the computed

values is minimum or zero ideally”.

The voltage angles can be computed from active power mismatches by solv-

ing optimization problem (10).

min vs(δ ) = (−2) [dp]
T
[

Hpδ

]

[∆δ ]

sub to [Hpδ ][∆δ ] ≤ {zp + εz − f (δ0
,v0)}

and ∆δmin ≤ ∆δ ≤ ∆δmax

(10)

where dp = zp − fp

(

δ0
)

(11)

and Hpδ is the Jacobian defined as

[

∆Pi

∆Pi j

]

= [Hpδ ][∆δ ] (12)

The vector zp comprises of active power injection and flow measurements

(13) and fp comprises of computed values of active power injection and flow mea-

surements,

zp =

[

Pmeasured
i

Pmeasured
i j

]

and fp =

[

Pcalculated
i

Pcalculated
i j

]

(13)

4.2 Q−V sub-problem

The voltage magnitude at all the buses are estimated from the reactive power mis-

matches. The updated volatge angles obtained from (10) are used to compute the

reactive power mismatches. The Q−V sub-problem can be stated as

“Given a set of noisy reactive power measurements and voltages at all the

buses in the previous state, find the deviation in voltages from previous state to

present state such that the difference between the measurements and the computed

values is minimum or zero ideally”.

The voltage magnitude can be estimated from the reactive power measure-

ments by solving the optimization problem (14).
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min vs(v) = (−2)
[

dq

]T [

Hqv

]

[∆v]

sub to [Hqv][∆v] ≤ {zq + εz − f (v0
,δ1)}

and ∆vmin ≤ ∆v ≤ ∆vmax

(14)

where dq = zq − fq

(

v0
)

(15)

and Hqv is the Jacobian defined as

[

∆Qi

∆Qi j

]

= [Hqv][∆v] (16)

The vector zq comprises of reactive power injection and flow measurements

(17) and fq comprises of computed values of reactive power injection and flow

measurements,

zq =

[

Qmeasured
i

Qmeasured
i j

]

and fq =

[

Qcalculated
i

Qcalculated
i j

]

(17)

5 Computational algorithm

The real time modeling of power network usually follows a six-step procedure.

Data gathering, network topology processing and observability analysis are essen-

tial before actual state estimation algorithm begins. Inability of state estimator to

yield estimates with a desired degree of accuracy indicates the presence of bad data.

An ideal state estimator should detect and eliminate bad data.

The proposed approach can be summarized by the following algorithm:

Step 1: Process the raw data obtained from various meters to form zp (real power

measurements) and zq (reactive power measurements) matrices.

Step 2: Check if the previous operating state of the system is available. If the states

of the system are known use them as initial condition else use flat start.

Step 3: Compute dp, Hpδ and fp(δ ).
Step 4: Form the optimization problem as defined in (10) and solve to get an

estimate of ∆δ .

Step 5: Update δ .

Step 6: Compute dq, Hqv and fq(v) using updated values of δ .

Step 7: Solve the optimization problem as defined in (14) to get estimate of ∆v

Step 8: Update v.

Step 9: Check if [Hpδ ] [∆δ ] ≥ bmin
p and [Hqv] [∆V ] ≥ bmin

q , if so the current solution

in optimal else goto step 3.

7
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Step 10: Compute the in jected powers and line f lows using estimated v and δ and

compute the residue.

Step 11: Print the estimated values of voltages, load angles, power flows, power

injections and exit.

This formulated approach has been developed in “C” programming lan-

guage. The sparse features of the matrices are exploited for efficient implemen-

tation. Sparsity not only reduces memory requirements but brings down the com-

putation time significantly. Compact row scheme for storing sparse matrices has

been employed for the elements of Ybus and Jacobian H.

The popular WLS algorithm is implemented by taking into account the

sparse features. One of the major advantages of the proposed approach is that the

memory requirement is relatively low as compared for the WLS method as there

are no inversions.

6 System studies

The proposed approach has been demonstrated on three sample systems. Two sam-

ple systems [18] i.e. 3-bus system, and a 6-bus system are used to compare the

proposed approach with the WLS approach. Practical 72 bus equivalent of Indian

Southern grid 400 kV/230 kV system is used to demonstrate the application of the

proposed approach in situations where the previous state information is available.

The input data for the state estimator has been obtained by performing the load flow

and introducing random errors for measurement data.

6.1 3 bus system

Sample 3-bus system as shown in Fig.1 comprising of 2 generators and a load is

presented for analysis. The parameters of the system along with the injections are

indicated in the figure. Injection measurement at all the buses is given as an input

to state estimator. There are 3 measurements, giving a redundancy of 1.0.

Flat start (V 6 δ = 16 0) is used as the initial operating condition as previous

state information is not available. The estimated values of injections along with the

true and measured value is given in Table 1.

It has been observed that the application of the WLS approach for the given

sample system did not converge.
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~ ~
Bus 1 Bus 3

Bus 2

j0.25

j 0.2

j0.4

50.2 MW
99.8 MW

150 MW

Figure 1: Sample 3 bus system

Table 1: Estimated values for Sample 3 bus System

Meter True Value Measured Value Estimated Value

MW MVAR MW MVAR MW MVAR

M1 50.2 111.3 48.2 105.4 48.6 110.9

M2 -150.0 -70.0 -155.0 -68.3 -147.7 -68.8

M3 99.8 94.8 97.3 93.8 99.1 94.8

6.2 6 bus system with flat start

A sample 6 bus system (Fig. 2) is chosen for performing comparative studies with

the WLS approach. Injection measurements at all the buses and flow measurements

at either ends of the lines are given as an input to state estimator.

In the developed approach, the p− δ optimization problem has 23 control

variables (i.e. voltage angles) governed by 28 constraints 28 (i.e. the real power

measurements), while the q− v problem has 24 control variables (i.e. voltage mag-

nitudes) governed by 28 constraints.

A comparison between the estimated voltage magnitude and angles of the

proposed approach and WLS approach is given in Table 2. It can be inferred from

the results that the proposed approach has a much better estimate for voltage magni-

tudes than the WLS approach. For example, the estimated voltage at bus 1 is 1.043

p.u by proposed approach and 0.98 by the WLS approach. The estimated values

of the flows by the proposed approach along with the the true values are given in

Table 3.

The proposed approach took 4 iterations to converge while the WLS ap-

proach took 7 iterations.

9

Dhadbanjan and Vanjari: LP Approach for State Estimation Using Upper Bound Optimization

Brought to you by | University of Arizona

Authenticated

Download Date | 5/27/15 5:39 PM



~
~

~

Bus 6

Bus 3
Bus 1

Bus 5Bus 4

107.9 MW

70.0 MW

70.0 MW70.0 MW

Bus 2
50.0 MW

60.0 MW

Figure 2: Sample 6 bus system

Table 2: Comparison of estimated voltages for 6 bus system

Bus Load flow LP Approach WLS Approach

v δ (Deg) v δ (Deg) v δ (Deg)

1 1.050 0.00 1.043 0.00 0.98 0.00

2 1.050 -3.67 1.044 -3.58 0.98 -4.38

3 1.070 -4.0 1.067 -3.88 1.00 -5.11

4 0.989 -4.2 0.980 -4.52 0.91 -4.98

5 0.985 -5.28 0.985 -5.20 0.91 -6.31

6 1.000 -5.90 1.004 -5.27 0.93 -7.05

Table 3: Estimated Line flows for 6 bus system

Meter True Value Measured Value Estimated Value

MW MVAR MW MVAR MW MVAR

MG1 107.9 16 113.1 20.2 107.75 14.7

M12 28.7 -15.4 31.5 -13.2 27.35 -14.2

M14 43.6 20.1 38.9 21.2 46.09 21.2

MG2 50 74.4 48.4 71.9 49.93 71.7

M21 -27.8 12.8 -34.9 9.7 -26.5 12.9

M25 15.5 15.4 17.4 22 14.92 13.56

ML5 -70 -70 -71.8 -71.9 70.41 62.52

M41 -42.5 -19.9 -40.1 -14.3 -44.86 -20.38

M15 35.6 11.3 35.7 9.4 34.32 9.03

M53 -18.0 -26.1 -25.1 -29.9 -19.42 -24.35

M52 -15.0 -18.0 -11.7 -22.2 -14.49 -16.39
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6.3 72 bus equivalent Indian outhern grid

For most of the practical systems, the information from the previous state will be

available. Such information can be used as initial point for performing state es-

timation. In this case study, we have presented the results for a practical 72 bus

equivalent 400/230/220kV Indian southern grid system comprising of 15 gener-

ating stations, 36 transformers, 49 transmission lines and 18 shunt reactors. The

single line diagram along with the geographical map is shown in Fig.3. Total load

on the system is 7480MW and 1834MVAR with generation capacity of 9420MW

and 4250MVAR.

Figure 3: Practical 72-bus equivalent 400/220 kV Indian southern grid system

The proposed approach was tested for different cases and it was observed

to converge successfully. One of the main reasons for indicating this set of results

is to show the accuracy when there are no limits on ∆x and performing only one

iteration. Such a technique can be helpful for performing dynamic security analysis

where computational time is a major constraint. Results obtained by the proposed

approach under such condition are also found to be reasonably accurate. Injection

and flow measurements are given as inputs to state estimator with a random error

in each measurement. The results are indicated in Table 4 and Table 5 for those

measurements which have maximum and minimum deviations.

S
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Table 4: Results for 72 bus system after single iteration

Meter True Value Measured Value Estimated Value

MW MVAR MW MVAR MW MVAR

1 1548.6 81.3 1502.142 79.674 1548.6 82.6

2 550 26.5 533.5 25.97 538.9 27.4

3 550 86.2 533.5 84.476 545.2 91.1

4 390 5.4 378.3 5.292 382.1 17.2

5 190 51.3 184.3 50.274 186.2 55.3

6 500 -64.4 485 -63.112 490.2 -64.7

7 200 -150.2 194 -147.196 196.1 -155.9

8 600 -35 582 -34.3 600 -31.8

9 400 76.7 388 75.166 397.6 76.5

10 180 13.8 174.6 13.524 179.8 13.7

11 570 10.8 552.9 10.584 573.8 10.6

12 760 293.8 737.2 287.924 760.3 293.3

13 380 76.9 368.6 75.362 389.3 74.6

14 380 204.8 368.6 200.704 379.9 205

15 380 124.5 368.6 122.01 372.7 125.2

16 -71 15.7 -68.87 15.386 -69.7 15.6

17 -336 -75.5 -325.92 -73.99 -329.2 -76.2

18 -3.3 -20 -3.201 -19.6 -3.3 -20

19 -323.6 -165.1 -313.892 -161.798 -323.6 -165.1

20 -62.2 -43.2 -60.334 -42.336 -62.3 -43.2

21 -107.2 -34.9 -103.984 -34.202 -107.2 -34.9

28 -77.4 -53.3 -75.078 -52.234 -76.7 -54.6

29 -40.8 -25.3 -39.576 -24.794 -40.8 -25.3

30 -225.2 -5.2 -218.444 -5.096 -224.1 -6.1

31 -494.4 2.5 -479.568 2.45 -494 10.1

35 -266.1 -55.3 -258.117 -54.194 -263.5 -53.7

36 -263.8 -169.9 -255.886 -166.502 -265.5 -171.9

37 -154.2 -88 -149.574 -86.24 -154.1 -88.1

38 -446.4 -72.1 -433.008 -70.658 -445.3 -73.2

39 -210.7 -87.8 -204.379 -86.044 -210 -87.6

40 -230 -62.5 -223.1 -61.25 -237.4 -56.7

41 -326 -137.7 -316.22 -134.946 -326 -137.6

42 -39.7 -12.5 -38.509 -12.25 -36.9 -13.7

43 -309.1 -79.3 -299.827 -77.714 -303.2 -79.9
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Table 5: Results for 72 bus system after single iteration

Meter True Value Measured Value Estimated Value

MW MVAR MW MVAR MW MVAR

48 -94.2 -57.8 -91.374 -56.644 -94.3 -57.9

49 -165 -26 -160.05 -25.48 -165.9 -24.2

52 -170 -10 -164.9 -9.8 -170 -10.3

53 -251.8 -80 -244.246 -78.4 -247.3 -89.7

54 -162.3 -116.7 -157.431 -114.366 -172.1 -129.4

65 -412.1 -82.2 -399.737 -80.556 -415.7 -82.5

66 -172.8 -45 -167.616 -44.1 -185.9 -47.6

68 -122.8 -53.2 -119.116 -52.136 -76.8 -61.5

69 -314.3 80.6 -304.871 78.988 -313.5 86.4

71 -7.3 12.8 -7.081 12.544 -7.3 12.8

72 0 0 0 0 0.3 -0.1

Using the previous state information helps in significantly reducing the ex-

ecution time. From the practical 72 bus system results, it can be observed that

reasonable estimates are obtained after single iteration. Hence, this approach can

be useful for dynamic security analysis where execution time is a major constraint.

Sample 3 bus system presented indicates that the proposed approach is efficient in

handling those cases for which WLS does not converge.

7 Conclusion

An efficient PSSE formulation using linear programming approach is presented.

The formulation is devoid of weights which cause ill conditioning. The present

approach has the following advantages:

• The minimization problem is free from weightages, which is the main cause

for the numerical instability in conventional methods.

• Applications to large systems shows consistent convergence.

• Computationally efficient as the approach converges in only a few iterations.

• As the case with most LP approaches, this approach is also efficient in dealing

with bad data.

Simplex method was adopted to solve the linear programming problem.

Further efficient methods can be developed to solve the LP problem using tech-

niques such as interior point and the push-pull technique.
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Appendix A

The bounded optimization problem in (8) can be converted into standard LP form

as follows

min vs(x) = cT [∆x]

sub to H[∆x] ≤ bmax

and ∆xmin ≤ ∆x ≤ ∆xmax

(18)

let ∆xmin
k −∆xmax

k = hk

and ∆xk −∆xmin
k = ∆yk

(19)

The new problem becomes

min vs(x) = cT [∆y]+ cT [∆xmin]

sub to H[∆y] ≤ bmax −gm

and 0 ≤ ∆y ≤ hk

(20)

where gm = H[∆xmin] (21)

Appendix B

The expressions for each of the above types of measurements are given in this sec-

tion. The general two-port π-model for the network branches (transformers and

transmission lines) is shown in Figure 4.

g
ij b ij

g
si si

g
sj sj

Bus jBus i

+ bj +jb

Figure 4: π-model of a network branch

From the available admittances of network elements, Ybus is formed. Gi j and

Bi j represent the i jth elements of real and imaginary parts of Ybus respectively.

The real and reactive power injected at bus i is given by (22)
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Pcalculated
i = Vi ∑

j∈i

V j(Gi j cosδi j +Bi j sinδi j)

Qcalculated
i = Vi ∑

j∈i

V j(Gi j sinδi j −Bi j cosδi j)
(22)

The real and reactive power flow between bus i and j is given by (23)

Pcalculated
i j = V 2

i (gsi +gi j)−ViV j(gi j cosδi j +bi j sinδi j)

Qcalculated
i j = −V 2

i (bsi +bi j)−ViV j(gi j sinδi j −bi j cosδi j)
(23)

The elements of the Jacobian H corresponding to injection measurements

has the structure of Ybus and are given by (24) and (25)

dPi

dδi
= −V 2

i Bii +
n

∑
j=1

ViV j(−Gi j sinδi j +Bi j cosδi j)

dPi

dδ j
= ViV j(Gi j sinδi j −Bi j cosδi j)

(24)

dQi

dVi
= −ViBii +

n

∑
j=1

Vj(Gi j sinδi j −Bi j cosδi j)

dQi

dV j
= Vi(Gi j sinδi j −Bi j cosδi j)

(25)

The elements of the Jacobian H corresponding to flow measurements has

the structure of yprim and are given by (26) and (27)

dPi j

dδ i
= ViV j(gi j sinδi j −bi j cosδi j)

dPi j

dδ j
= −ViV j(gi j sinδi j −bi j cosδi j)

(26)

dQi j

dVi
= −V j(gi j sinδi j −bi j cosδi j)−2Vi(bi j +bs j)

dQi j

dV j
= −Vi(gi j sinδi j −bi j cosδi j)

(27)

15

Dhadbanjan and Vanjari: LP Approach for State Estimation Using Upper Bound Optimization

Brought to you by | University of Arizona

Authenticated

Download Date | 5/27/15 5:39 PM



8 References

[1] NERC, “Final report on the august 14, 2003 blackout in the united states and

canada: Causes and recommendations,” tech. rep., U. S. - Canada Power Sys-

tem Outage Task Force, April 2004.

[2] R. E. Larson, W. F. Tinney, and J. Peschon, “State estimation in power sys-

tems part i: theory and feasibility,” IEEE Trans. on PAS., vol. PAS-89, no. 3,

pp. 345–352, 1970.

[3] R. E. Larson, W. F. Tinney, and J. Peschon, “State estimation in power systems

part ii: implementation and applications,” IEEE Trans. on PAS., vol. PAS-89,

no. 3, pp. 353–362, 1970.

[4] A. Monticelli, C. A. F. Murrari, and F. F. Wu, “A hybrid state estimator: solv-

ing normal equations by orthogonal transformations,” IEEE Trans. on PAS.,

vol. PAS-104, no. 12, pp. 3460–3468, 1985.

[5] F. C. Aschmoneit, P. N. M., and A. E. C., “state estimation with equality

constraints,” in Tenth PICA Conference Proceedings, pp. 427–430, May 1977.

[6] J. W. Gu, K. A. Clements, G. R. Krumpholz, and P. W. Davis, “The solution

of ill-conditioned power system state estimation problems via the method of

peters and wilkinson,” in PICA Conference Proceedings, pp. 239–246, May

1983.

[7] F. F. Wu, W.-H. E. Liu, and S.-M. Lun, “Observability analysis and bad data

processing for state estimation with equality constraints,” in LEEE PES Winter

Meeting, 1987.

[8] A. Simoes-Costa, , and V. H. Quintana, “A robust numerical technique for

power system state estimation,” IEEE Trans. App. and Syst., vol. 100, pp. 691–

698, Februray 1981.

[9] A. Gjelsvik, S. . Aam, and L. Holten, “Hachtels augmented matrix method - a

rapid method improving numerical stability in power systcm static state esti-

mation,” IEEE Trans. Power App. and Syst., vol. PAS-104, November 1985.

[10] L. Holten, A. Gjelsvik, V. Aam, F. F. Wu, and W.-H. E. Liu, “Comparision of

different methods for state estimation,” IEEE Trans. on Power Systems, vol. 3,

no. 4, pp. 1798–1806, 1988.

[11] A. Monticelli, “Electric power system state estimation,” Proceedings of IEEE,

vol. 88, no. 2, pp. 262–282, February 2000.

[12] M. Irving, R. Owen, and M. J. H. Sterling, “Power system state estimation

using linear programming,” Proc. Inst. Electr. Eng., vol. 125, pp. 879–885,

1978.

[13] K. K. Lo and Y. M. Mahmoud, “A decoupled linear programming tech-

nique for power system state estimation,” IEEE Trans. on Power Systems,

vol. PWRS-1, pp. 154–160, February 1986.

16

International Journal of Emerging Electric Power Systems, Vol. 11 [2010], Iss. 3, Art. 2

DOI: 10.2202/1553-779X.2464

Brought to you by | University of Arizona

Authenticated

Download Date | 5/27/15 5:39 PM



[14] A. Abur and M. Celik, “Least absolute value state estimation with equality and

inequality constraints,” IEEE Trans. on Power Systems, vol. 8, no. 2, pp. 680–

686, 1993.

[15] B. C. Clewer, M. R. Irving, and M. J. H. Sterling, “Robust state estima-

tion in power systems using sparse linear programming,” IEEE Proceedings,

vol. 132, no. 3, pp. 123–131, 1985.

[16] D. G. Luenberger, Linear and Nonlinear Programming. Springer Science,

2005.

[17] E. D. Andersen and knud D. Andersen, “Presolving in linear programming,”

Mathematical Programming, vol. 71, pp. 221–245, 1995.

[18] A. J. Wood and B. F. Wollenberg, Power generation, operation, and control.

John wiley & sons, 1996.

Biographies

D Thukaram(SM88) received the B.E. degree in electrical en-

gineering from Osmania University, Hyderabad, India, in 1974,

the M.Tech. degree in integrated power systems from Nagpur

University, Nagpur, India, in 1976 and Ph.D.degree from the

Indian Institute of Science, Bangalore, in 1986. Since 1976, he

has been with Indian Institute of Science as a Research Fellow

and Faculty in various positions, and currently he is a Professor.

His research interests include computer-aided power system

analysis, reactive power optimization, voltage stability, distribution automation, and

AI applications in power systems.

V Seshadri Sravan Kumar received the B.Tech. degree in

electrical and electronics engineering from Jawaharlal Nehru

Technological University, Andhra Pradesh, India, in 2008. He

is currently pursuing his M.Sc.(Engg.) degree at Indian Institute

of Science, Bangalore. His research interests include real-time

monitoring of power systems, power system state estimation,

computer aided power system analysis and AI techniques appli-

cations to power systems.

17

Dhadbanjan and Vanjari: LP Approach for State Estimation Using Upper Bound Optimization

Brought to you by | University of Arizona

Authenticated

Download Date | 5/27/15 5:39 PM


	International Journal of Emerging Electric Power Systems
	Linear Programming Approach for Power System State Estimation Using Upper Bound Optimization Techniques
	Linear Programming Approach for Power System State Estimation Using Upper Bound Optimization Techniques
	Abstract


