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ABSTRACT

In this paper, we explore the instability of large-scale riverbed patterns, performing a linear stability analysis of a zero-pressure gradient free-
surface flow in a wide straight channel with an erodible bed. The local depth-averaged turbulence state is governed by two key parameters:
namely, the turbulent kinetic energy (TKE) and its dissipation rate. A depth-averaged flow model coupled with the transport equations of
the TKE and its dissipation rate and the particle transport model are developed to examine the formation of large-scale patterns. Both the
modes of particle transport as bedload and suspended load are considered herein, allowing for the extension of the conventional theories to
cover from hydraulically smooth to transitional flow regimes. The classical Exner equation of the bed evolution is modified in the presence
of suspended particles, whose concentration is coupled with the steady-state advection–diffusion equation. Applying a standard linearization
technique, the periodic perturbations in both streamwise and spanwise directions are imposed on the bed to find the dispersion relationship.
The stability maps for the growth rate of large-scale patterns are obtained as a function of streamwise and spanwise wavenumbers and of key
parameters associated with the flow and particles.
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I. INTRODUCTION

The instability of riverbed patterns has fascinated researchers
for more than 50 years.1–7 The instability primarily originates from
a subtle interaction between a carrier fluid and a loose erodible
bed at their interface. Riverbed patterns are grouped into three
major classes in terms of their characteristic streamwise wavelength,
such as small-scale, intermediate-scale, and large-scale patterns. The
small-scale patterns include ripples, whose characteristic wavelength
is proportional to the particle size. The intermediate-scale patterns
comprise dunes and antidunes, where the characteristic wavelength
scales with the flow depth. In addition, the large-scale patterns con-
sist of bars, whose typical wavelength is of the order of a channel
width.

Over the decades, researchers made significant progress in
understanding the mechanics of the formation of riverbed patterns
from the experimental evidence and theoretical approaches (see the
state-of-the-art reviews in Refs. 6 and 7). Kennedy1 and Engelund
and Fredsøe2 compiled the studies on the formation and the

instability of riverbed patterns. Additionally, Southard3 compiled
ample experimental and field observations to review the instabil-
ity of riverbed patterns from a broader perspective. In particular,
the instability of riverbed patterns has largely been studied from
an analytical perspective.1,2,4,6,7 The analytical approach is based on
some fundamental concepts of instability that eventually gave rise to
three distinct modeling strategies, such as the potential flow model,1

shallow water model,8,9 and rotational flow model.10–14 Since the
potential flowmodel is not capable of producing fluid-induced shear
stress at the bed, a phase lag distance is commonly introduced while
creating the instability. However, the shallow water model can effec-
tively resolve the drawback of the potential flow model because it
takes into account the frictional effects. In addition, the rotational
flow model offers a satisfactory estimate of the bed shear stress
that produces instability. Specifically, two separate patterns of insta-
bility were identified in a hydraulically rough flow regime.10 The
first pattern corresponds to ripples (wavelength scales with the bed
roughness height) and the second is related to dunes (wavelength
scales with the flow depth). With regard to the formation of riverbed
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patterns in the framework of the shallow water model, the depth-
averaged continuity and momentum equations were linearized to
seek the stable and unstable zones.8,9 Employing a rotational flow
model, the linear stability analysis of two-dimensional riverbed pat-
terns in a conventionally rough flow regime11 was extended to cover
smooth and transitional flow regimes.13 Moreover, the formation of
both two- and three-dimensional riverbed patterns was analyzed by
using the rotational flow model coupled with the bedload transport
model.11–14

The driving mechanism of the instability of riverbed patterns
was reported to be the phase lag between the particle flux and the
bed shear stress.6 In the near-bed flow zone, the phase lag depicts
a considerable variation.11 In fact, several relevant factors control
the phase lag; for instance, frictional effects, presence of suspended
particles, particle inertia, and gravity.2,7 Colombini11 pointed out
that in a bedload dominated channel flow, the fluid stress pertur-
bations causing the instability should be determined at the top of the
saltation layer (also called bedload layer) within which the bedload
transport prevails. This subtle modification has been proven to be a
key step in revisiting the linear theory of riverbed patterns.11

Here, we specifically focus on the instability of large-scale
riverbed patterns.15 Extensive survey on this topic was reviewed
recently by Crosato and Mosselman.16 The current state-of-the-art
of the instability of large-scale riverbed patterns offers an enriched
understanding of the evolutions of patterns and the relevant param-
eters that govern their stability. However, there remain a few key
concerns with regard to the instability mechanism from an analyti-
cal perspective. For intense bed shear stress, the fluid flow produces
a massive amount of suspended particles, which have a positive con-
tribution to the phase lag. In fact, the peak transport of suspended
particles occurs downstream of the location of the peak bed shear
stress.2 When the suspended load dominates the bedload, the pos-
itive contribution from suspended particles exceeds the negative
contribution from frictional effects. Moreover, the presence of sus-
pended particles can substantially alter the instability mechanism
of bars.17,18 The existing literature does not describe how the evo-
lution of large-scale riverbed patterns is sensitive to flow regimes.
Although the effects of flow regimes are well-known for small- and
intermediate-scale patterns,13 current analyses of three-dimensional
large-scale patterns are mostly limited to a conventionally rough
flow regime. In brief, the existing analytical models of large-scale
patterns are incapable of incorporating both the effects of flow
regimes and particle suspension.

In the present formulation, we develop a model that addresses
each of the above issues. In fact, these issues can be effectively
resolved by refining the conventional way of modeling the insta-
bility of large-scale riverbed patterns. In order to widely apply the
present theory, several numerical experiments are conducted wher-
ever feasible to capture the response of riverbed patterns to relevant
parameters. The mathematical formulation presents a linear stabil-
ity theory of turbulent flow over an erodible bed. Unlike the existing
models of linear stability of large-scale riverbed patterns, this study
models the instability by introducing the transport equations of the
turbulent kinetic energy (TKE) and its dissipation rate. Further-
more, the shear stress that drives the particle transport is considered
at the top of the saltation layer. Both the bedload and suspended
load are considered to be the modes of particle transport. The clas-
sical Exner equation of the bed evolution is revised by considering

the effects of particle suspension. In Sec. II, it is shown that the
mathematical analysis is not only applicable to a hydraulically rough
flow regime but also stretchable to smooth and transitional flow
regimes.

The rest of this paper is arranged as follows: In Secs. II and III,
the mathematical formulations for the flow and particle transport
are presented, respectively. The set of equations is linearized in
Sec. IV. The model results are discussed in Sec. V. Finally, conclu-
sions are drawn in Sec. VI.

II. MATHEMATICAL FORMULATION: FLOW MODEL

We consider a zero-pressure gradient free-surface flow of an
incompressible fluid in a wide straight channel. The flow is turbu-
lent. Hereafter, a star superscript represents a dimensional variable.
With respect to a Cartesian coordinate system (x∗, y∗, z∗), where
x∗, y∗, and z∗ represent streamwise, spanwise, and vertical distances,
respectively (Fig. 1), the flow domain at a given time t∗ is confined
to two wavy surfaces z∗ = R∗(x∗, y∗, t∗) and z∗ = R∗(x∗, y∗, t∗)
+ D∗(x∗, y∗, t∗). Here, D∗ is the local flow depth. The former wavy
surface is set at a reference level R∗, where the flow velocity obtained
from the classical logarithmic law ceases.

To make the variables dimensionless, we consider the triplet
formed by the undisturbed flow depth D∗0 , depth-averaged undis-
turbed streamwise velocity U∗0 , and mass density of fluid ρf . Hence-
forth, the variable with a subscript “0” represents the undisturbed
state. We introduce a set of dimensionless variables and the flow
Froude number Fr corresponding to the undisturbed state as

(x, y, z) ≙ (x∗, y∗, z∗)
D∗0

, (R,D) ≙ (R∗,D∗)
D∗0

, U ≙ U
∗

U∗0
,

T ≙ T
∗

ρfU
∗2
0

, and Fr ≙ U∗0

(gD∗0 )1/2 ,
(1)

where U = (U, V) is the local depth-averaged velocity vector, T is
the stress tensor, and g is the gravitational acceleration. The govern-
ing equations of fluid dynamics pertaining to the physical system,
as shown in Fig. 1, can be readily derived by depth-averaging the
time-averaged flow equations subject to suitable boundary condi-
tions. It is pertinent tomention that the depth-averaged assumptions
are justified in investigating the instability of large-scale patterns.15

FIG. 1. Conceptual sketch of the flow model. The reference level and the free
surface are denoted by z∗ = R∗(x∗, y∗, t∗) and z∗ = R∗(x∗, y∗, t∗) + D∗(x∗,
y∗, t∗), respectively. The D∗0 represents the undisturbed flow depth. The wavy
surface with a dashed line, defined by z∗ = B∗(x∗, y∗, t∗), indicates the top edge
of the saltation layer.
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For a steady flow, the depth-averaged continuity and momen-
tum equations read19

∂

∂x
(DU) + ∂

∂y
(DV) ≙ 0, (2)

U
∂U

∂x
+ V

∂U

∂y
+

1

Fr2
∂

∂x
(D + R) − 1

D

∂

∂x
(DTxx)

− 1

D

∂

∂y
(DTxy) −Qxx −Qxy +

Tbx

D
≙ 0, (3)

U
∂V

∂x
+ V

∂V

∂y
+

1

Fr2
∂

∂y
(D + R) − 1

D

∂

∂x
(DTyx)

− 1

D

∂

∂y
(DTyy) −Qyx −Qyy +

Tby

D
≙ 0, (4)

where Q includes the dispersion terms and Tb = (Tbx, Tby) is the
local bed shear stress vector. In order to close the above system,
the turbulent stresses are modeled by employing the K–ε turbulence
closure model that incorporates the eddy viscosity ν∗T in the model
formulation. Consequently, the turbulent stress tensor Tij takes the
form of

Tij ≙ νT(∂Ui

∂xj
+
∂Uj

∂xi
) − 2

3
δijK, (5)

where δij is the Kronecker delta function. In analogy with the
standard K–ε turbulence model, it is considered herein that the
local depth-averaged turbulence state is driven by two parameters,
such as the TKE, K, and its dissipation rate, ε. It is worth noting
that although the K–ε turbulence model is based on the isotropic
assumption of eddy viscosity, this specific assumption may have lit-
tle influence on the marginal stability of large-scale patterns.19 Based
on the dimensional ground, the eddy viscosity νT is linked with these
parameters via a proportionality constant cμ as follows:

νT ≙ cμK2

ε
. (6)

In the above, the proportionality constant cμ is considered to be

0.01.20 The turbulence parameters K and ε satisfy the following
transport equations:19

U
∂K

∂x
+ V

∂K

∂y
≙ ∂

∂x
( νT
σK

∂K

∂x
) + ∂

∂y
( νT
σK

∂K

∂y
) + PH + PKV − ε, (7)

U
∂ε

∂x
+ V

∂ε

∂y
≙ ∂

∂x
(νT
σε

∂ε

∂x
) + ∂

∂y
(νT
σε

∂ε

∂y
) + c1ε

ε

K
PH + PεV − c2ε ε2

K
,

(8)

where PH is the production rate of K resulting from interactions of
turbulent stresses with gradients of time-averaged horizontal veloc-
ity components on the xy plane, PKV and PεV are the production
rates of K and ε, respectively, arising from the vertical velocity gra-
dients in the near-bed flow zone, and (c1ε, c2ε, σK , σε) is a set of
coefficients in the standard K–ε turbulence model. Characteristic

values of these constants are taken as c1ε = 1.44, c2ε = 1.92, σK = 1,
and σε = 1.22.20 The PH , PKV , and PεV are formulated as follows:19

PH ≙ νT
⎡⎢⎢⎢⎢⎣
2(∂U

∂x
)2 + 2(∂V

∂y
)2 + (∂U

∂y
+
∂V

∂x
)2
⎤⎥⎥⎥⎥⎦
,

PKV ≙ 1

C
1/2
f

u3f

D
, and PεV ≙ c2εc

1/2
μ

a
1/2
0 C

3/4
f

u4f

D2
,

(9)

where the newly introduced dimensionless variables are the conduc-
tance coefficient Cf and the friction velocity uf . Note that a0 repre-
sents the eddy viscosity ν∗T scaled by the term u∗f D

∗. Furthermore, uf
can be expressed as

uf ≙ ∣Tb∣1/2 ≙ ∥Cf (U2
+ V

2)∥1/2. (10)

The local bed shear stress vector is formulated as a function of
dynamic pressure via the conductance coefficient. Therefore, the Tb

reads

Tb ≙ (Tbx,Tby) ≙ Cf (U2
+ V

2)1/2(U,V). (11)

It has been revealed that the comparison of theoretical stability
analysis with measurements requires the estimation of shear stress
that acts on a plane bed.15 It turns out that the contributions from
form-drag and channel sidewalls to the local bed shear stress vector
are vanishingly small. This suggests that the local bed shear stress is
to be modeled based on a quasi-zero-pressure gradient flow assump-
tion. The conductance coefficient Cf for a plane bed follows the
well-recognized Colebrook–White equation, since this has an excel-
lent agreement with a large corpus of experimental and field obser-
vations.21 Furthermore, the Cf can be related to Darcy–Weisbach
friction factor λb as

1

(8Cf )1/2 ≙
1

λ
1/2
b

≙ −0.86 ln( k∗s
arD∗

+
as

Re
λ
−1/2
b
) with Re ≙ 4U∗0 D

∗
0

υ
,

(12)
where k∗s is the bed roughness height, Re is the flow Reynolds num-
ber, and υ is the coefficient of kinematic viscosity of the fluid. In the
above, the constants ar and as, being representative of the hydrauli-
cally rough and smooth flow regimes, are considered to be 14.8
and 2.51, respectively.22 Note that although the above formulation
is strictly applicable to the transitional flow regime, it is stretchable
to smooth and rough flow regimes with a promising accuracy. In
this context, it is worth mentioning that the flow regimes are classi-
fied according to some characteristic ranges of roughness Reynolds
number Rek. Therefore, we set

Rek ≙ u∗f k
∗
s

υ
≙ Re(λb

8
)1/2ks, (13)

where the characteristic range of the transitional flow regime corre-
sponds to 5 < Rek < 70.

The effects of the dispersion terms in Eqs. (3) and (4) are simi-
lar to those of turbulent stresses because both signify gradients of the
momentum transport. It has been evidenced that the effects of dis-
persion terms in the depth-averaged equations are important when
secondary currents are no way negligible. Under such a circum-
stance, the importance of dispersion terms and turbulent stresses
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are of the same order of magnitude (at least quantitatively).19 Com-
putations and experimental observations have suggested that in the
depth-averaged formulation, the effects of dispersion terms can be
incorporated indirectly by enhancing the magnitude of the eddy
viscosity. In the present formulation, this may be achieved by con-
sidering a larger value of a0 [see Eq. (9)] than its traditional value.
The depth-averaged undisturbed eddy viscosity νT0 conventionally
follows νT0 = κuf 0/6, where κ is the von Kármán coefficient ( = 0.41).
This suggests that a0 is of the order of 0.1. Laboratory experiments
in wide channels reported a0 ≈ 0.15,19 while field measurements in
weak meandering rivers with moderate side-wall irregularities have
evidenced a0 ≈ 0.6.19 In the present analysis, the a0 is considered to
be 0.375 as an average value.

To close the system, additional formulation for the TKE is
required. The TKE is expressed as k∗(z∗) = (σ∗21 + σ∗22 + σ∗23 )/2,
where σ∗i is the ith turbulence intensity. A large set of experimen-
tal data from the available literature suggested that the σ∗i scaled by
the friction velocity u∗f follows an exponential distribution as

σ∗i
u∗
f

≙Mi exp(−Ni
z − R
D
), (14)

where Mi and N i are the empirical constants. For instance, Nezu23

reportedMi and N i (i = 1–3) asM1 = 2.3,M2 = 1.63,M3 = 1.27, and
N1 =N2 =N3 = 1. The above relationship has been found to provide
a rational estimation of the TKE in open-channel flows with both
rigid and mobile beds.24,25 In fact, Eq. (14) was proposed using the
turbulence closure model with an assumption of local equilibrium
of TKE, where the production of TKE is balanced by its dissipation
rate. Nikora and Goring26 proposed a logarithmic scaling for the ith
turbulence intensity squared in the equilibrium layer by applying
parameterization of the velocity spectra. They revised Eq. (14) as

⎛
⎝
σ∗i
u∗
f

⎞
⎠
2

≙Mi −Ni ln( z − R
D
), (15)

where the constants were obtained as M1 = 1.90, M2 = 1.19, M3

= 0.59, N1 = 1.32, N2 = 0.49, and N3 = 0.22.
Figure 2 shows the experimental data plots of dimensionless

TKE, k∗/u∗2f , as a function of dimensionless vertical distance, (z− R)/D. The experimental data correspond to three different flow
conditions, namely, high weakly mobile-bed, medium fixed-bed,
and low fixed-bed flows, as obtained by Nikora and Goring.27

In addition, logarithmic scaling of Nikora and Goring,26 Eq. (15)
(shown by the dotted line in Fig. 2), together with the empirical
formula of Nezu,23 Eq. (14), as a reference (shown by the dashed
line in Fig. 2), is plotted. It is worth mentioning that both the expo-
nential and logarithmic scaling relationships could not replicate the
behavior of TKE covering the entire flow depth. The underlying rea-
son is attributed to the local energy equilibrium assumption, which
fails very close to and away from the channel bed. In addition,
these formulations do not reflect the effects of relative roughness
dr (ratio of particle size d∗ to undisturbed flow depth D∗0 ) and flow
Reynolds number, which can significantly alter the fitted parame-
ters in Eqs. (14) and (15). Therefore, both the scaling relationships
require improvement in order to satisfactorily capture the exper-
imental data. In this study, an exponential scaling for the TKE is
considered over the entire flow depth. Therefore, the dimensionless

FIG. 2. Vertical distribution of dimensionless TKE. Experimental data of high
weakly mobile-bed (squares), medium fixed-bed (circles), and low fixed-bed (trian-

gles) flows are taken from the work of Nikora and Goring.27 Dotted line—prediction

of Nikora and Goring, 26 dashed line—empirical formula of Nezu23 for a rigid-bed
flow, and solid line—exponential scaling given by Eq. (16).

TKE takes the form of

k∗

u∗2
f

≙ AK exp(−AL
z − R
D
), (16)

where AK and AL are constants. The advantage of Eq. (16) over the
logarithmic scaling [Eq. (15)] is that unlike the logarithmic scaling,
Eq. (16) does not invite singularity at the reference level (z = R).
In the light of experimental observations (Fig. 2), it is found that
Eq. (16) (shown by the solid line in Fig. 2), with constants AK

= 4.78 and AL = 1.2, acts as a surrogate for the logarithmic scaling
in the range 0.1 < (z − R)/D < 1, whereas it provides an improve-
ment over the prediction of Nikora and Goring26 for (z − R)/D< 0.1. Note that the logarithmic scaling is not capable of addressing
the near-bed damping of TKE. However, experimental measure-
ments have evidenced that in the near-bed flow zone, particularly
for (z − R)/D < 0.1, the values of TKE for weakly mobile-bed flow
are larger than those for fixed-bed flow.27 Furthermore, in Fig. 2,
the comparison shows that the proposed exponential scaling for
(z − R)/D < 0.1 corroborates the empirical formula of Nezu.23 It is
worth noting that the prescribed values ofAK andAL, corresponding
to a high weakly mobile-bed, medium fixed-bed, and low fixed-bed
flows, can be considered to be of general validity as they comply
with the measurements, providing a direct estimation of the depth-
averaged TKE for the undisturbed state. However, with regard to the
linear stability analysis, it was found that a deviation (within ±50%)
from the prescribed values of AK and AL has little influence on the
marginal stability curves. Integrating Eq. (16), the depth-averaged
TKE can be obtained as

K ≙ Cf
AK

AL
∥1 − exp(−AL)∥, (17)
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wherein the TKE is directly linked with the conductance coefficient
and hence with the friction factor. The above formulation is useful
to determine the depth-averaged TKE for the undisturbed state.

III. MATHEMATICAL FORMULATION: PARTICLE
TRANSPORT MODEL

The granular bed is considered to be formed by uniform par-
ticles. Under this circumstance, when the bed shear stress exceeds
its threshold value for the initiation of particle motion, particles are
transported as bedload in rolling, sliding, and saltatingmodes within
a thin fluid layer called the saltation layer.22 In Fig. 1, the top edge
of the saltation layer is denoted by B∗. However, when the bed shear
stress is intensified, quite a few particles are entrained beyond the
saltation layer and are transported as suspended load in the suspen-
sion layer. In this situation, both the bedload and suspended load
transports prevail and the bed evolution is governed by their com-
bined effects. To formulate the particle transport model, we allow
both the bedload and suspended load transports, as sketched in
Fig. 3(a). Below, we briefly discuss their role toward the instability
mechanism.

In Fig. 3(a), the reference level R∗ is set slightly below the
summit of the bed particles. The datum z∗ = 0 is conventionally
positioned at a distance of d∗/4 below the summit of the bed par-
ticles.22 The shear stress distributions in the near-bed flow zone for
both rigid- and mobile-bed flows are illustrated in Fig. 3(b). For the
flow over a rigid bed of uniform roughness, the shear stress attains
its peak value T∗R at the reference level R∗ and, then, it reduces lin-
early with the distance along vertical [shown by the dotted line in
Fig. 3(b)]. Now, in the classical experiment of bedload transport, the
transport is allowed by feeding particles from the far upstream with
a rate that balances the capacity of flow to transport particles. The
shear stress strikingly drops down within the saltation layer [shown
by the solid line in Fig. 3(b)], which acts as an interface to separate
the suspended load in the upper layer from the bedload transport in

FIG. 3. Conceptual sketch of the particle transport model in the near-bed flow
zone: (a) bedload and suspended load transport and (b) shear stress distribution.
In (a), ER is the entrainment rate and DR is the deposition rate. In (b), the dotted
line represents the traditional shear stress distribution for a zero-pressure gradient
flow, while the solid line denotes the actual shear stress distribution in the presence
of particles. Note that the shear stress is dampened within the saltation layer, which
has a thickness h∗

b
. Here, T∗R and T∗B are the shear stresses at levels R∗ and B∗,

respectively, whereas T∗c is the threshold bed shear stress.

the lower layer. This reduction in shear stress arises due to the trans-
fer of energy from the time-averaged flow to the particles in order to
sustain the particle transport. Bagnold28 reported that when a certain
layer of particles is removed, the particles in the underlying layer
experience a dispersive pressure as a stabilizing resistance. There-
fore, the removal of particles layer by layer is caused by the interfacial
fluid shear stress until it is equal to the threshold bed shear stress T∗c
[Fig. 3(b)]. Note that the finer particles are essentially transported in
the suspension layer, where the flow dynamics is considered to be
marginally affected by the presence of particles.

Within the saltation layer, particles are transported in a series
of brief leaps. As evidenced by the measurements and also pointed
out by Colombini,11 the shear stress that drives the instability mech-
anism is estimated at the surface B∗. Consequently, in order to for-
mulate the bedload flux, theT∗B rather thanT∗R should be used, where
T∗B refers to the shear stress at level B∗. To implement the idea, we
express

TB ≙ TR(1 − B + R). (18)

The saltation height, denoted by h∗b , represents the distance
from the summit of bed particles to the edge of the saltation layer
[Fig. 3(a)]. Furthermore, the distance between the reference level R∗

and the datum z∗ = 0 is set equal to k∗s /30, where the bed roughness
height k∗s scales with the particle size d∗ as k∗s = 2.5d∗.29 Therefore,
we set

B − R ≙ hb + dr

6
. (19)

Experimental observations30 have evidenced that the saltation
height h∗b spans up to a few particle sizes depending on the mag-
nitude of the bed shear stress vector T∗b in the dimensionless form,
called the Shields number. It is

ΘR ≙ ∣T∗b ∣
ρf (s − 1)gd∗ , (20)

where s is the relative density ( = ρp/ρf ), ρp is the mass density of par-
ticles, and subscript “R” denotes the Shields number corresponding
to the bed shear stress at the reference level R∗.

In the present formulation, we consider two important features
of particle saltation, namely, the saltation height h∗b and the mean

particle velocity, V∗p . Ali and Dey31 compiled a large amount of
experimental data of dimensionless saltation height h∗b /d

∗ andmean

particle velocity V∗p /[(s − 1)gd∗]1/2 as a function of dimensionless
excess bed shear stress (ΘR/Θc) − 1, whereΘc is the threshold Shields
number. The experimental data31 of h∗b /d

∗ vs (ΘR/Θc)− 1 andV∗p /[(s− 1)gd∗]1/2 vs (ΘR/Θc) − 1 are plotted in Figs. 4(a) and 4(b), respec-
tively. From the experimental data trend, h∗b and V∗p are considered
to follow the power-law relationships as

h∗b
d∗
(ΘR > Θc) ≙ Ah(ΘR

Θc
− 1)Eh and V∗p

∥(s − 1)gd∗∥1/2 (ΘR > Θc)
≙ Av(ΘR

Θc
− 1)Ev , (21)

where the coefficients Ah and Av, and the exponents Eh and Ev are
set equal to 0.66, 1.61, 0.27, and 0.44, respectively. It is worth noting
that the prescribed values of Ah, Av, Eh, and Ev can be considered to
be of general validity as they comply with ample experimental data
compiled by Ali and Dey.31
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FIG. 4. (a) Dimensionless saltation height h∗
b

/d∗ vs dimensionless excess bed

shear stress ΘR/Θc − 1 and (b) mean particle velocity V∗p /[(s − 1)gd∗]1/2 vs

dimensionless excess bed shear stress ΘR/Θc − 1. Solid lines represent the
power-law relationships given by Eq. (21).

In Eq. (21), the Θc varies considerably from hydraulically
smooth to rough flow regimes. Detailed analyses of the estimation
of Θc can be found in the recent analytical studies32–34 and state-
of-the-art reviews.35,36 However, to formulate a suitable expression
for Θc without involving intricate analytical treatment, the viscous
length scale d∗v [=(s − 1)−1/3υ2/3g–1] is introduced. Thereafter, with
the Galileo number Ga, defined as

Ga ≙ (d∗
d∗v
)3 ≙ (s − 1)gd∗3

υ2
, (22)

a complete set of conditional relationships for Θc can be expressed
as follows:37,38

Θc(0 < Ga < 43.7) ≙ 0.141Ga−0.115,
Θc(43.7 < Ga < 79 998.5) ≙ 0.324Ga−0.34(1 + 2.04 × 10−5Ga1.42)0.35,

Θc(Ga > 79 998.5) ≙ 0.045.
(23)

A critical statistical analysis, performed by Dey and Ali,36 of
the experimental data of threshold of particle motion has evidenced
that Eq. (23) amongmany others provides the best prediction forΘc.
Furthermore, with ΘR and Ga, the flow Froude number Fr and the

roughness Reynolds number Rek can be expressed as

Fr ≙ [ΘR(s − 1)dr
Cf 0

]1/2 and Rek ≙ Ga1/2Θ1/2
R

ks

dr
. (24)

When the mean particle flux is uniform, rates of erosion and
deposition balance each other, suggesting that the granular bed
experiences a dynamic equilibrium in the form of neither degra-
dation nor aggradation. The bed deformation is obtained from the
Exner equation. In the presence of suspended particles, the classi-
cal Exner equation is modified to take care of the effects of sus-
pended load.39 Let ϕ(z) be the local concentration of suspended
particles within the suspension layer. We further define C as the
depth-averaged concentration of suspended particles over the entire
suspension layer with a thickness of R + D − B. The suspended load
flux can be readily obtained from the integration of the product of
the concentration of suspended particles and the velocity vector over
the suspension layer thickness.22 Under such a circumstance, the
particle mass conservation equation can be approximated as

(1 − ρ0)∂B
∂t
≙ − ∂

∂t
∥C(R +D − B)∥ − (∂Φbx

∂x
+
∂Φby

∂y
)

− Fr

(s − 1)1/2d3/2 {
∂

∂x
∥CU(R +D − B)∥

+
∂

∂y
∥CV(R +D − B)∥}, (25)

where ρ0 is the porosity of particles (volume of voids per unit total
volume) and Φb is the dimensionless bedload flux vector expressed
as

Φb ≙ Q
∗
b

∥(s − 1)gd∗3∥1/2 . (26)

In Eq. (26), Q∗b is the bedload flux vector (expressed in volume per
unit time and width). The time t∗ is made dimensionless by intro-
ducing a parameter QR that accounts for the characteristic scale of
the particle flux relative to that of the fluid flux as

t ≙ t∗U∗0
D∗0

QR, with QR ≙ ∥(s − 1)gd∗3∥
1/2

U∗0 D
∗
0

. (27)

It is worth noting that the first term on the right-hand side of
Eq. (25) vanishes in the present formulation because in the frame-
work of quasi-zero-pressure gradient steady flow, the saltation layer
thickness B − R remains invariant with time as the bed evolves.

The effects of local streamwise and spanwise slopes on the bed-
load flux are modeled by considering the effective shear stress vector
Teb that drives the particle motion. The Teb can be expressed as40

Teb ≙ (Tbx − ∣Tb∣β∂R
∂x

,Tby − ∣Tb∣β∂R
∂y
). (28)

The bedload flux vectorΦb is considered to align parallel to the
effective bed shear stress vector Teb. Recalling that the local velocity
vector U is also parallel to the local bed shear stress vector Tb, it
follows that

Φb ≙ (Φbx,Φby) ≙ Φb(cos χ − β∂R
∂x

, sin χ − β∂R
∂y
), (29)
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where

cos χ ≙ U

(U2 + V2)1/2 and β ≙ β0(Θc

ΘB
)β1 . (30)

In Eq. (30), χ is the angle that the near-bed velocity vector makes
with the streamwise direction, β is the slope factor, β0 and β1 are the
phenomenological parameters,40 andΘB is the Shields number to be
evaluated at the level B∗. The β0 can also be thought of as the ratio
of threshold particle mobility for the initiation of particle motion to
that of the cessation of bedload transport. In essence, β0 > 1. Specif-
ically, β0 = 0 refers to vanishing effects of the local slope and β0
=∞ signifies an infinitely large effect of the local slope. Herein, the
β0 is considered to be reciprocal of the coefficient of dynamic friction
μd.

41 The mean value of μd can be approximated as μd ≈ tan π/6.22
In addition, the β1 is set equal to 0.5.42 To close the physical sys-
tem, it requires an appropriate relationship between the bedload flux
Φb and the Shields number Θ. After the work of Meyer-Peter and
Müller,43 the Φb is considered to follow a “3/2” power-law with an
excess bed shear stress, ΘB − Θc, as

Φb(ΘB > Θc) ≙ Ab(ΘB −Θc)3/2, (31)

where the constant Ab is taken as 3.97 after the work of Wong and
Parker.44

Furthermore, to obtain the transport equation of suspended
particles, we consider the depth-averaged version of the advection–
diffusion equation within the suspension layer.19 Under a steady-
state condition, the advection–diffusion equation can be approxi-
mated as

∂

∂x
∥CU(R +D − B)∥ + ∂

∂y
∥CV(R +D − B)∥

≙ ∂

∂x
[ νT
SN
(R +D − B)∂C

∂x
] + ∂

∂y
[ νT
SN
(R +D − B)∂C

∂y
]

+ER −DR, (32)

where ER is the entrainment rate and DR is the deposition rate. The
difference ER −DR, being representative of the net exchange of parti-
cles through the interface between the saltation layer and the suspen-
sion layer [see Fig. 3(a)], vanishes under the equilibrium condition
as considered herein. To obtain the depth-averaged concentration of
suspended particles, the local concentration distribution ϕ(z) is inte-
grated within the suspension layer. For ϕ(z), the classical Rousean
formulation is revised by considering the depth-averaged form of
the classical parabolic distribution for the eddy viscosity. The con-
centration ϕ of suspended particles scaled by its reference value Ca

at the edge of the saltation layer reads45

ϕ

Ca
≙ exp∥−6Z(z − B)∥ with Z ≙ SNws

κuf
, (33)

where Z is the Rouse number that qualitatively measures the settling
velocity w∗s of suspended particles relative to the friction velocity
u∗f and SN is the turbulent Schmidt number (≈1). One of the major
drawbacks of the Rouse equation of the concentration of suspended
particles is that it produces a vanishing concentration at the free
surface.22 By contrast, Eq. (33) predicts a finite concentration of sus-
pended particles at the free surface. This observation is more likely
for natural rivers that carry finer particle fractions. Furthermore,

Eq. (33) offers a practical estimation of concentration of suspended
particles in a wide open-channel flow.22 With the above form of ϕ,
the depth-averaged concentration C turns out to be

C ≙ Ca

1 − exp[−6Z(1 − dr
6
− hb0)]

6Z(1 − dr
6
− hb0) . (34)

In Eq. (34), the reference concentration Ca at the edge of the
saltation layer can be found from the relationship ∣Q∗b ∣ = Cah

∗
bV
∗
p .

22

Using Eqs. (21) and (26), the Ca takes the form of

Ca ≙ Φb

AhAv
(ΘR

Θc
− 1)−(Eh+Ev). (35)

Furthermore, as the settling velocity w∗s depends on particle
size d∗, the three key numbers, such as the Rouse number Z, Shields
number Θ, and Galileo number Ga, can be linked together. To this
end, we recall the empirical relationship of Jiménez and Madsen.46

For natural sediment particles, it is expressed as

f (Ga) ≙ w∗s

∥(s − 1)gd∗∥1/2 ≙ (0.954 +
20.48

Ga1/2
)−1. (36)

The above formulation was developed for the particle size range
0.063 mm–1mm. However, it has been found that Eq. (36) produces
comparable predictions (with respect to other formulas) of the set-
tling velocity over the entire sand range (0.063 mm < d∗ < 2 mm).
Note that Eq. (36) was found to yield the best result for fine sand
with the nominal size range of 0.063 mm–0.25 mm, for which the
particles are likely to be transported as a suspended load.46 With the
above functional form, the Rouse number Z can be expressed as

Z ≙ f (Ga) SN

κΘ1/2
. (37)

IV. LINEARIZATION

Following the standard linearization procedure, the physical
system is solved in terms of normal modes. In the linearization, a
generic quantity can be expressed as

P(x, y, t) ≙ P0 + δP1(x, y, t), (38)

P1(x, y, t) ≙ AP11L(x, y, t) + c.c.

with

L ≙ exp∥i(nxx −Ωt)∥ exp(inyy), (39)

where δ is a small parameter, A is an arbitrary factor, c.c. stands
for complex conjugate, n is the dimensionless wave vector, and Ω
is the complex wave celerity. Note that with regard to the forma-
tion of large-scale riverbed patterns (e.g., river bars), the dimension-
less streamwise and spanwise wavenumbers, denoted by nx and ny,
respectively, can be expressed as

nx ≙ 2πD∗

l∗x
and ny ≙ 2πD∗

l∗y
≙ π

2ϑ
, (40)

where l∗x and l∗y are the streamwise and spanwise wavelengths,
respectively. In the above equation, the l∗y can be taken to be twice
the channel width ( = 4W∗, where W∗ is the channel halfwidth) so
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that ϑ defines the channel aspect ratio (ratio of channel halfwidth to
flow depth).

Using Eqs. (38) and (39), the conductance coefficient and the
eddy viscosity can be expanded as

Cf ≙ Cf 0{1 + ∥(s1 − 2)U11 + s2D11∥ALδ} +O(δ2), (41)

νT ≙ νT0∥1 + (s3K11 + s4ε11)ALδ∥ +O(δ2), (42)

where si is a set of coefficients. The undisturbed dissipation rate of
TKE can be estimated from Eq. (6) using the conventional formu-
lation for the undisturbed eddy viscosity as νT0 = κuf 0/6 and the
expression for the undisturbed TKE from Eq. (17).

Using the above relationships, the continuity and momentum
equations [see Eqs. (2)–(4)] at the leading order O(δ) produce the
following algebraic equations:

nxU11 + nyV11 + nxD11 ≙ 0, (43)

(inx + 2νT0n
2
x + νT0n

2
y + s1Cf 0)U11 + νT0nxnyV11

+ [inx( 1

Fr2
+
2K0

3
) + (s2 − 1)Cf 0]D11 +

inx

Fr2
R11 +

2

3
inxK11 ≙ 0,

(44)

νT0nxnyU11 + (inx + νT0n
2
x + 2νT0n

2
y + Cf 0)V11 + iny( 1

Fr2
+
2K0

3
)D11

+
iny

Fr2
R11 +

2

3
inyK11 ≙ 0. (45)

Applying the linearization procedure, it has been found that the
production rate term PH has no contribution to the linear stability
analysis, while the terms PKV and PεV are expanded as follows:

PKV ≙ Cf 0{1 + ∥(s1 + 1)U11 + (s2 − 1)D11∥ALδ} +O(δ2), (46)

PεV ≙ s5{1 + [(5
4
s1 +

3

2
)U11 + (5

4
s2 − 2)D11]ALδ} +O(δ2). (47)

Furthermore, the linearized transport equations of the TKE and
its dissipation rate [see Eqs. (7) and (8)] are obtained as

(s1 + 1)Cf 0U11 + (s2 − 1)Cf 0D11

−(inx + νT0
σK

n
2
x +

νT0
σK

n
2
y)K11 − ε11 ≙ 0, (48)

s5(5
4
s1 +

3

2
)U11 + s5(5

4
s2 − 2)D11 + c2ε( ε0

K0
)2K11

−(inx + νT0
σε

n
2
x +

νT0
σε

n
2
y + 2c2ε

ε0

K0
)ε11 ≙ 0. (49)

Moreover, in the present formulation, the saltation height is
considered to be a perturbed quantity so that the hb takes the form
of

hb ≙ hb0∥1 + s6(s1U11 + s2D11)ALδ∥ +O(δ2). (50)

The intensity of bedload flux can be expanded as

Φb ≙ Φb0∥1 + (s7U11 + s8D11)ALδ∥ +O(δ2). (51)

Therefore, the equations related to the bed evolution [see
Eqs. (19), (25), and (32)] at the leading order O(δ) yield

hb0s1s6U11 + hb0s2s6D11 + R11 − B11 ≙ 0, (52)

−(1 − ρ0)iΩB11 +Φb0β(n2x + n
2
y)R11

+ inx[s7Φb0 − s1s6s9hb0C0 + s9(1 − dr

6
− hb0)C0]U11

+ iny[Φb0 + s9(1 − dr

6
− hb0)C0]V11

inx∥s8Φb0 + s9(1 − s2s6hb0)C0∥D11 + inxs9(1 − dr

6
− hb0)C11 ≙ 0,

(53)

inx(1 − dr

6
− hb0 − s1s6hb0)C0U11 + iny(1 − dr

6
− hb0)C0V11

+ inx(1 − s2s6hb0)C0D11 + (1 − dr

6
− hb0)

×[inx + νT0
SN
(n2x + n

2
y)]C11 ≙ 0. (54)

It is worth mentioning that in the above linearized equations,
the complete set of coefficients si with i = 1–9 is expressed as

s1 ≙ 2(1 − Θ0

Cf 0

∂Cf

∂Θ
)−1, s2 ≙ 1

Cf 0

∂Cf

∂D
(1 − Θ0

Cf 0

∂Cf

∂Θ
)−1,

s3 ≙ 2

K0
, s4 ≙ − 1

ε0
, s5 ≙ c2εc

1/2
μ C

5/4
f 0

a
1/2
0

, s6 ≙ Θ0

hb0

∂hb
∂Θ

,

s7 ≙ Θ0

Φb0

∂Φb

∂Θ
s1, s8 ≙ Θ0

Φb0

∂Φb

∂Θ
s2, and s9 ≙ Fr

(s − 1)1/2d3/2r

. (55)

In Eq. (55), all the derivatives have been evaluated at the undis-
turbed state. The set of equations accompanying eight variables X

= (U11, V11, D11, R11, B11, K11, ε11, C11)
T can be expressed in the

matrix form of CX = 0, where C is the coefficient matrix. The elimi-
nation of variables from the set of equations provides a direct estima-
tion of the complex growth rate of the system. The resulting expres-
sion being complicated would take substantial space and therefore is
not furnished herein. However, this reflects a direct balance between
the stabilizing effects due to the gravity and the destabilizing effects
due to the particle transport aided by the bed shear stress. Fur-
thermore, the role of the depth-averaged turbulence-state is subtler,
since it is closely tied-up with the local bed shear stress vector.

With the above formulation, the growth rate of bed perturba-
tion ΩG can be readily obtained as a function of streamwise and
spanwise wavenumbers, nx and ny, and of three key entities, namely,
the Galileo numberGa, Shields numberΘ, and relative roughness dr .
The introduction of the Galileo number essentially reflects the role
of flow regime in accordance with Eq. (24) and that of the Rouse
number given by Eq. (37). The other two entities, Θ and dr , shed
light on the effects of the flow Froude number and friction factor,
respectively. The ΩG is expressed as

Ω
G ≙ Im(Ω)C1/2

f
. (56)
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V. RESULTS AND DISCUSSION

To discuss the results obtained from the linear theory, we per-
form four numerical experiments (Figs. 5–8). In these experiments,
we aim at exploring how the large-scale riverbed patterns evolve on
the wavenumber plane when the key parameters related to the flow
and particles vary over a wide range.

The first numerical experiment highlights the emergence of
instability in smooth and transitional flow regimes, as the ΘR/Θc

ratio increases (Fig. 5). To track smooth and transitional flow
regimes, the Galileo number is kept constant as Ga = 25. In a sub-
aqueous environment, this value of Ga corresponds to the particle
size of 0.115 mm, which typically represents the finer sand size. Note
that the ΘR/Θc ratio increases in each panel of Fig. 5, suggesting that
the roughness Reynolds number also increases in the corresponding
panel. Moreover, in each panel, the relative roughness is set equal to
dr = 0.005. It turns out that the dimensional flow depth is the same
in all the panels of Fig. 5. Since in each panel, the flow depth is kept
constant, the variations in the spanwise wavenumber, being scaled
with the depth to width ratio [see Eq. (40)], correspond to a change
in the channel width.

The stability maps for the first experiment are highlighted in
Fig. 5 on a logarithmic scale. The solid line indicates the marginal
stability curves, given byΩG = 0, and embraces the instability region
(ΩG > 0). Figure 5 clearly depicts the evolutions of bar instability,
as the ΘR/Θc ratio increases. For a small ΘR/Θc ratio [Fig. 5(a)],
the instability region appears to be similar to that of alternate pat-
terns of river bars.15 The instability region is approximately bounded
by nx ∈ (10−2, 8 × 10−1) and ny ∈ (10−2, 10−1), and the maxi-

mum amplification of the pattern corresponds to (nx, ny) ≈ (10−1,

1.2 × 10−1). The marginal stability curve indicates that beyond a

threshold spanwise wavenumber nyc, patterns are stable. This also
suggests that the channel aspect ratio must exceed its threshold value
for the formation of large-scale patterns, an observation being in
agreement with the classical theories of bar instability and the exper-
imental observations.15 As the flow strength increases [Figs. 5(b)
and 5(c)], the bar pattern tends to stretch with an additional lower
marginal stability curve close to shorter streamwise and span-
wise wavenumbers. The maximum amplification of patterns also
enhances toward longer wavenumbers, destabilizing the patterns for
lower channel aspect ratios. The growth rate of bed perturbation
appears to increase with the increase in the ΘR/Θc ratio.

Note that for a given Galileo number (or particle size), the
dimensional settling velocity obtained from Eq. (36) remains a con-
stant. As the Rouse number reflects the ratio of the settling velocity
to shear velocity [see Eq. (33)], with an increase in theΘR/Θc ratio in
each panel, it refers to a decrease in the Rouse number, resulting in
significant effects of particle suspension. Therefore, in the so-called
upper flow regime (flow Froude number >1), the instability patterns
change strikingly. Therefore, as the flow strength increases further,
the destabilizing effects become more encouraging, with a shift of
the maximum amplification of patterns toward longer wavenumbers
[Figs. 5(d)–5(f)]. However, the patterns having shorter wavenum-
bers become stable as the ΘR/Θc ratio increases because the lower
marginal stability curve tends to grow with an increase in the ΘR/Θc

ratio [Figs. 5(a)–5(f)]. This is attributed to the subtle effects of sedi-
ment suspension, destabilizing longer wavenumbers and stabilizing
shorter wavenumbers.

The second numerical experiment examines the stability maps
in a rough flow regime, as the ΘR/Θc ratio increases (Fig. 6). In the
experiment, the typical value of the Galileo number is taken as Ga
= 2.25 × 104, which corresponds to the particle size of 1.116 mm,

FIG. 5. Effects of the Shields number on the stability maps in smooth and transitional flow regimes (Ga = 25) for dr = 0.005: (a) ΘR/Θc = 2, (b) ΘR/Θc = 4, (c) ΘR/Θc = 6,
(d) ΘR/Θc = 10, (e) ΘR/Θc = 20, and (f) ΘR/Θc = 40. Color bars refer to the growth rate of bed perturbation ΩG, and solid lines (white) signify the marginal stability curves
(ΩG = 0).
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FIG. 6. Effects of the Shields number on the stability maps for a rough flow regime (Ga = 2.25 × 104) for dr = 0.005: (a) ΘR/Θc = 2, (b) ΘR/Θc = 4, (c) ΘR/Θc = 6, (d) ΘR/Θc

= 10, (e) ΘR/Θc = 20, and (f) ΘR/Θc = 40.

being representative of the very coarse sand size. In addition, the rel-
ative roughness is set equal to 0.005, as considered in Fig. 5. With
respect to the small ΘR/Θc ratio in smooth and transitional flow
regimes [Fig. 5(a)], the stability map in Fig. 6(a) reveals that the
instability region of bars slightly reduces. The qualitative variations
of bar instability with the ΘR/Θc ratio in Figs. 6(a)–6(f) appear to be
similar to those illustrated in smooth and transitional flow regimes
[see Figs. 5(a)–5(f)]. However, for a given ΘR/Θc ratio, the bar pat-
tern appears to be slightly more stable in a rough flow regime. The
reason is ascribed to the fact that for a given ΘR/Θc ratio in the bar
mode, the maximum amplification of patterns lessens in a rough
flow regime [for instance, compare Figs. 5(c) and 6(c)]. In conse-
quence, the instability region is reduced. Furthermore, for a given
ΘR/Θc ratio, the growth rate of bed perturbation in a rough flow
regime reduces compared to those in smooth and transitional flow
regimes. Moreover, the appearance of the lower marginal stability
curve in a rough flow regime is delayed when compared to those in
smooth and transitional flow regimes. For instance, in smooth and
transitional flow regimes, the lower marginal stability curve is evi-
dent for ΘR/Θc = 4 [Fig. 5(b)], whereas in a rough flow regime, it
does not appear for ΘR/Θc = 4 [Fig. 6(b)]. In fact, it is noticeable
once the ΘR/Θc ratio exceeds 6 [Figs. 6(d)–6(f)].

In this context, we remark that the classical theories15,17,18 have
not been able to draw the above conclusions because most of the
existing theories on the instability of large-scale riverbed patterns
are not capable of addressing simultaneously both the crucial effects
of flow regimes and particle suspension.

Note that in Figs. 5 and 6, the stability maps are analyzed for a
given relative roughness (dr = 0.005). However, a change in relative
roughness corresponds to a change in the friction factor, in accor-
dance with Eq. (12). Therefore, it is interesting to analyze the behav-
ior of stability maps in smooth, transitional, and rough flow regimes

when the relative roughness changes over a certain range. To this
end, we perform another two numerical experiments as furnished
below.

The third numerical experiment aims at exploring the stabil-
ity maps in smooth and transitional flow regimes (Ga = 25) as the
relative roughness dr increases (Fig. 7). The ΘR/Θc ratio is taken
as ΘR/Θc = 5. Since the particle size is kept as a constant (because
Ga is kept as a constant), with an increase in relative roughness,
it refers to a decrease in flow depth. The effects of relative rough-
ness on the stability maps are tested for six different values of dr
corresponding to a given ΘR/Θc ratio [Figs. 7(a)–7(f)]. For a small
relative roughness [Fig. 7(a)], the instability region is bounded by
the upper and lower marginal stability curves. However, as the rel-
ative roughness increases, the instability region appears to contract
[Figs. 7(b) and 7(c)]. The contraction is more apparent in the lower
limb of the marginal curve for nx ∈ (3 × 10−2, 6 × 10−2). The insta-
bility region appears to be tapered, as the maximum amplification
of the pattern has a tendency to shift toward longer wavenumbers
[Fig. 7(c)]. The growth rate of bed perturbation reduces as the rela-
tive roughness increases. As the relative roughness increases further
[Figs. 7(d)–7(f)], the instability region becomes more tapered, and
the patterns with shorter streamwise wavenumbers (say, nx ≈ 10−2)
become stable even for a shorter spanwise wavenumber range
ny ∈ (10−2, 2 × 10−2) (large channel aspect ratios). In addition,
the maximum amplification of patterns appears to shift toward
longer wavenumbers [in both streamwise and spanwise directions;
see Figs. 7(d)–7(f)].

The fourth numerical experiment sheds light on the stability
maps in a rough flow regime (Ga = 2.25 × 104) as the relative
roughness increases (Fig. 8). In the experiment, ΘR/Θc = 5 is con-
sidered as in Fig. 7. In general, the qualitative features of instability
in Fig. 8 are similar to those in Fig. 7. However, for a small relative
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FIG. 7. Effects of relative roughness on the stability maps in smooth and transitional flow regimes (Ga = 25) for ΘR/Θc = 5: (a) dr = 0.005, (b) dr = 0.01, (c) dr = 0.02, (d) dr

= 0.04, (e) dr = 0.06, and (f) dr = 0.08.

FIG. 8. Effects of relative roughness on the stability maps in a rough flow regime (Ga = 2.25 × 104) for ΘR/Θc = 5: (a) dr = 0.005, (b) dr = 0.01, (c) dr = 0.02, (d) dr = 0.04,
(e) dr = 0.06, and (f) dr = 0.08.

roughness, the marginal stability curves appear to be less contracted
compared to those in smooth and transitional flow regimes [for
instance, compare Figs. 7(b) and 8(b)]. The stability maps reveal
that the magnitude of the growth rate of bed perturbation in a rough
flow regime reduces compared to those in smooth and transitional
flow regimes [compare Figs. 7(b) and 8(b)]. As expected, the maxi-
mum amplification of patterns shifts toward longer streamwise and
spanwise wavenumbers with an increase in relative roughness [Figs.
8(d)–8(f)]. However, for a given relative roughness, the maximum

amplification of patterns in a rough flow regime diminishes com-
pared to those in smooth and transitional flow regimes [compare
Figs. 7(e) and 8(e)].

In essence, this study offers insight into the instability of large-
scale riverbed patterns. It is worth noting that the present analysis,
keeping in mind the open questions and research gaps as delin-
eated in the Introduction, is primarily focused on the instability of
large-scale patterns from a linear approach. The linear stability anal-
ysis offers a useful tool in order to predict the stable and unstable

Phys. Fluids 33, 015109 (2021); doi: 10.1063/5.0035893 33, 015109-11

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

patterns on the wavenumber plane over a wide practical range of
river flows. The model results can provide a preliminary guideline
in predicting the possible qualitative patterns in gravel-bed rivers
and rivers carrying high concentration of sediment suspension. In
this context, it is pertinent to mention that the nonlinear analysis
may be useful to anticipate the height perturbations of large-scale
patterns. In a recent attempt,18 a weakly nonlinear model was pro-
posed by applying the center manifold projection technique. The
sediment suspension acts to destabilize the large-scale patterns. In
particular, it influences both the wavenumber in a linear model and
the amplitude in a nonlinear model. The present study clearly shows
how the sediment suspension affects the bar instability in various
flow regimes. In this regard, to gain more insight into the instability
mechanism, a full nonlinear model including the effects of the flow
regime and various modes of sediment transport may be developed
as a future scope of research.

VI. CONCLUSIONS

In this study, the instability of large-scale riverbed patterns in a
wide straight channel is investigated wherein a linear stability anal-
ysis is carried out with the aid of a suitable flow model coupled with
the transport equations of the TKE and its dissipation rate and the
particle transport model. In this regard, the subtle effects of flow
regimes and particle suspension are taken into account. The stability
maps depict the evolution of riverbed patterns, depending on the
streamwise and spanwise wavenumbers, and the parameter space
associated with flow and particles.

In smooth and transitional flow regimes, for a given relative
roughness, the instability zone tends to stretch as the Shields number
increases, with an additional marginal stability curve close to shorter
wavenumbers. The maximum amplification enhances toward longer
wavenumbers, and the growth rate of bed perturbation increases
with an increase in the Shields number. In a rough flow regime,
for a given relative roughness and Shields number, the instability
region slightly reduces compared to those in smooth and transi-
tional flow regimes. However, the bar pattern becomes slightly more
stable in a rough flow regime. In a rough flow regime, the growth
rate of bed perturbation diminishes and the lower marginal stability
curve appears to be delayed when compared to those in smooth and
transitional flow regimes. In smooth and transitional flow regimes,
for a given Shields number, the instability region contracts with an
increase in relative roughness. The growth rate of bed perturbation
lessens and the maximum amplification of patterns shifts toward
longer wavenumbers as the relative roughness increases. The growth
rate of bed perturbation in a rough flow regime reduces compared
to those in smooth and transitional flow regimes. The maximum
amplification of patterns in a rough flow regime, for a given relative
roughness, reduces compared to those in smooth and transitional
flow regimes.

Although this study sheds light on the instability of three-
dimensional large-scale riverbed patterns, a crucial question is yet
to be addressed: how do the patterns evolve in a macro-rough-bed
flow? This requires particular attention because of the complex-
ity arising from the near-bed spatiotemporal heterogeneous flow.
Under such circumstances, the classical instability theories may not
be able to precisely mimic the fluid–particle interplay. To this end,

a concrete numerical model may be developed as a future scope of
research.
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NOMENCLATURE

ΘB Shields number corresponding to T∗B
Θc threshold Shields number
ΘR Shields number corresponding to T∗R
β slope factor
δ small parameter
δij Kronecker delta function
ε depth-averaged TKE dissipation rate
Φb dimensionless bedload flux vector
Ω complex wave celerity
ΩG growth rate of bed perturbation
κ von Kármán coefficient
λb Darcy–Weisbach friction factor
μd coefficient of dynamic friction
νT ν∗T/(U

∗
0 D
∗
0 )

ν∗T eddy viscosity
ρf mass density of fluid
ρp mass density of particles
ρ0 porosity of particles
σ∗i ith turbulence intensity
υ coefficient of kinematic viscosity of fluid
χ angle between near-bed velocity vector and streamwise

direction
ϑ channel aspect ratio
ϕ local concentration of suspended particles
a0 ν∗T/u

∗
f D
∗

B B∗/D∗0
B∗ top edge of the saltation layer
C depth-averaged concentration of suspended particles
Ca reference concentration
Cf conductance coefficient
d∗ particle size
dr d∗/D∗0
d∗v (s − 1)−1/3υ2/3g–1
D D∗/D∗0
D∗ local flow depth
DR deposition rate
D∗0 undisturbed flow depth
ER entrainment rate
Fr flow Froude number
g gravitational acceleration
Ga Galileo number
hb h∗b /D

∗
0

h∗b saltation height
k∗ TKE
ks k∗s /D

∗
0

k∗s bed roughness height
K depth-averaged TKE
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l∗x streamwise wavelength
l∗y spanwise wavelength
n wave vector [=(nx, ny)]
nyc threshold spanwise wavenumber
PH production rate of K arising from horizontal velocity

gradients
(PKV , PεV ) production rates of (K, ε) arising from vertical velocity

gradients
Q dispersion terms
Q
∗
b bedload flux vector

QR [(s − 1)gd∗3]1/2/(U∗0 D∗0 )
R R∗/D∗0
R∗ reference level
Re flow Reynolds number
Rek roughness Reynolds number
s relative density ( = ρp/ρf )
SN turbulent Schmidt number
t t∗(U∗0 /D

∗
0 )QR

t∗ time
T T

∗/(ρfU
∗2
0 )

T
∗ stress tensor

Tb T
∗
b /(ρfU

∗2
0 )

T
∗
b bed shear stress vector

TB T∗B /(ρfU
∗2
0 )

T∗B shear stress at B∗

T∗c threshold bed shear stress
Teb effective shear stress vector
Tij turbulent stress tensor

TR T∗R /(ρfU
∗2
0 )

T∗R shear stress at R∗

uf u∗f /U
∗
0

u∗f friction velocity

U U
∗/U∗0

U
∗ local depth-averaged velocity vector

U∗0 depth-averaged undisturbed streamwise velocity
V∗p mean particle velocity
ws w∗s /U

∗
0

w∗s settling velocity
W∗ channel halfwidth
(x, y, z) (x∗, y∗, z∗)/D∗0
x∗ streamwise distance
y∗ spanwise distance
z∗ vertical distance
Z Rouse number

Superscript

∗ dimensional variable

Subscript

0 undisturbed state of a variable
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