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ABSTRACT

In this Perspective, we explore the instability of a meandering channel with variable width and curvature. The analysis employs the depth-
averaged formulations for the flow and sediment transport. Unlike the conventional instability analysis that considers mainly the bedload trans-
port, we consider the generic sediment transport including both the bedload and suspended load. The analysis addresses the variations of the
near-bank excess azimuthal velocity and the bed topography deviation with the meander wavenumber for different pertinent parameters, such
as Shields number, relative roughness number, channel aspect ratio, width-variation amplitude, and shear Reynolds number. The analysis
detects a resonance phenomenon for certain critical values of the pertinent parameters and explores the sensitivity of the resonant wavenumber
to the pertinent parameters. In a hydraulically smooth flow regime, the sediment suspension is found to play a stabilizing role. On the contrary,
in hydraulically transitional and rough flow regimes, the sediment suspension offers a destabilizing effect. The stability diagrams reveal that the
stable zone enlarges as the Shields number and relative roughness number increase, while it contracts with an increase in width-variation ampli-
tude. For a given shear Reynolds number in a hydraulically smooth flow regime, the stability diagram predicts various stable zones. By contrast,
for a given shear Reynolds number in hydraulically transitional and rough flow regimes, a unique stable zone exists.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0074974

I. INTRODUCTION

Natural streams are often classified into three distinct categories:
straight, meandering, and braided streams. Among them, a meander-
ing stream has attracted researchers for decades (Fig. 1). In general, a
meandering channel is recognized as a channel with a sinuosity more
than 1.5. The sinuosity quantifies the ratio of the curved distance to
the linear distance between the end points of a curve forming the
wavelength. The dynamics of a meandering channel is linked with the
flow and the sediment transport.1 The flow in a meandering channel is
featured by a helicoidal motion with a superelevated free surface. The
streamlines close to the free surface and the channel bed are directed
toward the outer and inner banks, respectively. Hence, the outer bank
is eroded continuously, and the eroded sediment is deposited at the
inner bank. The continuous erosion and deposition at opposite chan-
nel banks trigger the migration of a meandering channel. A plethora
of studies in the past explored the dynamics of curved channel
flows.2–12 In addition, comprehensive reviews on the topic are avail-
able in literature.13–15

The development of meandering was explored from two different
theories: bar instability theory16–19 and bend instability theory.2–9 The
former proposed that the formation of alternate bars in a straight
channel with non-erodible banks leads to the development of mean-
ders. Ikeda et al.2 identified that the bar theory is inadequate as they
do not allow the channel banks to deform. By relaxing the constraint
of non-erodible banks, they presented the bend instability theory to
investigate the stability of a small amplitude meandering channel with
respect to a straight channel. Parker et al.3 extended the mathematical
development of Ikeda et al.2 to obtain a nonlinear equation of bend
migration. They found that the lateral and downstream migration
rates amplify with the development of bend amplitude. Blondeaux and
Seminara4,5 reported a resonance phenomenon for critical magnitudes
of the relevant parameters. They reported that the growth of a bend is
linked with the resonance phenomenon. For channels with a small sin-
uosity, they noticed that the bar and bend instabilities occur at similar
wavelengths. For a small channel curvature, Seminara and Tubino8

presented a weakly-nonlinear theory of bend instability in the
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neighborhood of the resonant condition. They concluded that the
nonlinearities diminish the peak of the azimuthal velocity and bed
topography perturbations. Zolezzi and Seminara9 classified the chan-
nels with aspect ratios (i.e., ratio of channel half-width to flow depth)
smaller and larger than the resonant aspect ratio as the sub-resonant
and super-resonant channels, respectively. Moreover, they reported
that the small amplitude bed waves propagate downstream and
upstream for sub-resonant and super-resonant channels, respectively.
Seminara et al.20 employed the mathematical formulation of Zolezzi
and Seminara9 to investigate the planimetric evolution of meandering
channels. They found that the meanders migrate downstream and
upstream for sub-resonant and super-resonant channels, respectively.
In addition, they found that the upstream and downstream skewing
are associated with the sub-resonant and super-resonant channels,
respectively. Bolla Pittaluga et al.21 proposed a nonlinear bend instabil-
ity theory. They reported that the growth of meandering channels
diminishes with the amplification of their amplitude. Moreover, in
accordance with the linear instability results, they found that the chan-
nels may migrate downstream or upstream depending on the magni-
tude of the channel aspect ratio. Dey and Ali22 presented a
phenomenological theory regarding the onset of meandering of a
straight channel. They reported that the onset of meandering is linked
with the counter-rotational motions of turbulent eddies that trigger
alternate erosion and deposition of the channel banks. In another
attempt, Ali and Dey23 explored the effects of flow regime on the
hydrodynamic instability of a meandering channel. They studied the
azimuthal velocity perturbation, bed topography perturbation, bend

amplification rate, and meander propagation speed in different flow
regimes. In addition, they found the existence of resonance in different
flow regimes.

Several studies have explored the effects of spatial width variation
on the bend instability.24–28 In a straight channel, Repetto et al.24

investigated the role of spatial width variation toward the development
of channel bifurcations. They observed that the widest and narrowest
sections are subjected to deposition and erosion, respectively. Luchi
et al.25 reported the effects of spatial width variation on the dynamics
of meandering channels. Based on the field observations, they reported
that the frequency of the width variation is twofold that of the curva-
ture. Moreover, they argued that the variations of the amplitudes of
width and curvature are small parameters, and suggested the expan-
sion of the pertinent variables in terms of the variations of the ampli-
tudes of width and curvature. Furthermore, their theoretical analysis
revealed that the spatial width variation triggers the instability of
shorter bends with respect to constant width meanders. The role of
spatial width variation was further explored by Frascati and Lanzoni.26

Frascati and Lanzoni26 compared the analytical model with the bed
topography in a long reach of the Po River. They found that the ana-
lytical model properly describes the topography in wide, weakly
curved, and long river bends with weak width variation. Moreover,
Eke et al.27 investigated the coevolution of channel width and plan-
form in a meandering channel. They coupled the evolution of the
channel width to the channel migration by means of a separate sub-
model for the bank erosion and deposition. Their analysis revealed
that the ratio of the rate of migration of the eroding bank to that of the
depositing bank controls the mode of spatial width variation.
Considering the variable width, Monegaglia et al.28 presented a novel
planform evolution model. They observed that the pattern of planform
evolution of a meandering channel is dependent on the channel aspect
ratio. Moreover, they represented the coevolution of the autogenic
width variation and curvature by means of a temporal hysteresis cycle.
They found that the peak of the width variation occurs earlier than
that of the channel curvature.

From the literature survey, it is evident that significant efforts
have been made to explore the instability of meandering channels and
their planform evolution. The theoretical studies mainly considered
bedload as the only mode of sediment transport. The field study of
Constantine et al.29 reported that the annual migration rate of chan-
nels amplifies with an increase in the sediment load. The role of sedi-
ment suspension toward the instability of meandering channels
remains unexplored theoretically. Hence, the effects of the variations
in channel width and curvature on the bend instability in the presence
of sediment suspension are yet to be explored.

The present study aims at exploring the instability of a meander-
ing channel with variable width and curvature by considering the sub-
tle role of sediment suspension. The stability analysis is performed
considering a turbulent flow in a meandering channel with variable
width and curvature. The depth-averaged formulations for the flow
and sediment transport are employed. The analysis addresses the
effects of several key parameters, such as Shields number, relative
roughness number, channel aspect ratio, width-variation amplitude,
and shear Reynolds number, on the bend instability. In addition, the
study discloses the role of sediment suspension in different flow
regimes, namely, the hydraulically smooth, transitional, and rough
flow regimes.

FIG. 1. Photograph of a meandering stream. Courtesy: Vladimir Nikora, University
of Aberdeen, UK.
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This paper is arranged as follows: The mathematical formulation
is given in Sec. II. The perturbation solution is explained in Sec. III.
The results and discussion are presented in Sec. IV. Finally, conclu-
sions are drawn in Sec. V.

II. MATHEMATICAL FORMULATION

We consider an incompressible turbulent flow through an erod-
ible meandering channel with a variable width 2B�. Hereafter, a super-
script asterisk indicates a dimensional quantity. The channel is
composed of cohesionless uniform sediment of size d�. We employ an
intrinsic orthogonal curvilinear system of coordinates (s�, n�, z�),
where s� denotes the azimuthal distance along the channel centerline,
n� represents the coordinate orthogonal to s�, and z� measures the ver-
tical distance from a fixed reference level (Fig. 2). The origin of the
coordinate system lies on the channel centerline [see the dashed–
dotted line in Fig. 2(a)]. In Fig. 2(a), B�

0 and B�
max represent the reach-

averaged and maximum channel half-width, respectively, and the
channel banks are marked by solid lines. In addition, the dashed lines
indicate the channel banks for a constant width meander. Figure 2(b)
depicts an illustrative cross-section A1–A2 of the meandering channel.
The flow in a meandering channel is characterized by a spiral motion
owing to the effects of radial acceleration. The flow streamlines close
to the free surface are deflected toward the outer bank, while those
close to channel bed is directed toward the inner bank. Therefore, the
outer and inner banks are subjected to continuous erosion and deposi-
tion, respectively [Fig. 2(b)]. Moreover, the radial acceleration results
in a superelevation of the free surface toward the outer bank, as
sketched in Fig. 2(b). The local flow depth and the free surface eleva-
tion from the reference level are denoted by D� and H�, respectively,
and the undisturbed channel cross-section is shown by the dashed
line. The reach-averaged flow depth and velocity are considered to be
D�
0 andU

�
0 , respectively.

The notations assigned for the components of depth-averaged
flow velocity, bed shear stress, bedload flux, and suspended load flux
in (s�, n�) directions are (U�

s , U
�
n ), (T

�
s , T

�
n ), (Q

�
bs, Q

�
bn), and (Q�

ss, Q
�
sn),

respectively. The dynamics of a meandering channel is studied using
the shallow water approximation, as the spatial scale of meandering is
of the order of several channel widths. The meander planform evolves
on a much larger time scale with respect to the time scales related to
the flow and bed deformation. Hence, the quasi-steady assumption for
the flow can be employed. In large-scale morphodynamic models, the
literature supports the use of the depth-averaged continuity and
momentum equations. To proceed further, we define the following
dimensionless quantities:

s ¼
s�

B�
0

; n ¼
n�

B�
; D ¼

D�

D�
0

; H ¼
H�

F2D�
0

;

F ¼
U�
0

ðg�D�
0Þ

0:5 ; b ¼
B�
0

D�
0

; B ¼
B�

B�
0

; ðUs;UnÞ ¼
ðU�

s ;U
�
nÞ

U�
0

;

ðTs;TnÞ ¼
ðT�

s ;T
�
nÞ

qfU
�2
0

; ðUbs;UbnÞ ¼
ðQ�

bs;Q
�
bnÞ

ðDg�d�3Þ0:5
;

ðUss;UsnÞ ¼
ðQ�

ss;Q
�
snÞ

U�
0D

�
0

; and c ¼
ðDg�d�3Þ0:5

ð1� pÞU�
0D

�
0

;

(1)

where F is the unperturbed flow Froude number, g� is the acceleration
due to gravity, b is the channel aspect ratio, qf is the mass density of fluid,
D is the submerged relative density [¼ (qp/qf) – 1], qp is the mass density
of sediment particles, p is the sediment porosity, and c is the ratio of the
scale of the sediment flux to that of the flow flux. Furthermore, two cru-
cial parameters are introduced, namely, the curvature ratio � and the
amplitude of channel width variation d. They are defined as

� ¼
B�
0

R�
0

and d ¼
B�
max � B�

0

2B�
0

; (2)

where R�
0 is twofold the radius of curvature at the bend apex of the

channel centerline. Then, the dimensionless channel half-width and
curvature are defined as

BðsÞ ¼ 1þ dbðsÞ and CðsÞ ¼ C�ðs�ÞR�
0; (3)

where db(s) denotes the dimensionless deviation from the reach-
averaged channel half-width.

The depth-averaged momentum equations of the fluid phase in
s- and n-direction read25,26,28

Us
@Us

@s
þ Un

@Us

@n
þ
@H

@s
þ b

Ts

D
¼ �g10 þ dg01 þ �dg11 þ �2g20;

(4)

Us
@Un

@s
þ Un

@Un

@n
þ
@H

@n
þ b

Tn

D
¼ �h10 þ dh01 þ �dh11 þ �2h20;

(5)

respectively, where the terms g10, g01, g11, g20, h10, h01, h11, and h20
quantify the forcing effects owing to the curvature and width varia-
tions. Their algebraic expressions are given in Appendix A.

The depth-averaged continuity equation of the fluid phase is
expressed as25,26,28

@

@s
ðDUsÞ þ

@

@n
ðDUnÞ ¼ �� CDUn þ nC

@

@n
ðDUnÞ

� �

þ d n
db

ds
�
@

@n
ðDUsÞ þ b

@

@n
ðDUnÞ

� �

: (6)FIG. 2. Definition sketch of the physical system: (a) plan view and (b) cross-
sectional view.
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To study the stability and dynamics of meandering channels, the
momentum and continuity equations of the fluid phase are required
to be coupled with the continuity equation of the solid phase. The
depth-averaged continuity equation of the solid phase reads25,26,28

@Us

@s
þ
@Un

@n
¼�� CUn þnC

@Un

@n

� �

þ d n
db

ds
�
@Us

@n
þ b

@Un

@n

� �

; (7)

whereUs¼ cUbsþ Uss/(1 – p) and Un ¼ cUbnþ Usn/(1 – p).
To close the above system of equations, suitable closure relations

for the bed shear stress and sediment flux vectors are essential. We
express the bed shear stress vector as32

ðTs;TnÞ ¼ Cf ðU
2
s þ U2

nÞ
0:5ðUs;Un þ sÞ; (8)

where Cf is the friction coefficient and s is the contribution of the sec-
ondary flow to the radial bed shear stress. The s is expressed as9

s ¼ �
CDUs

bC0:5
f

k3 þ
k5

bC0:5
f

�
@D

@s

 !

þ
k4D

2

b2Cf

�
@

@s
ðCUsÞ

" #

; (9)

where k3, k4, and k5 are the coefficients. To estimate the friction coeffi-
cient Cf, we employ the Colebrook–White equation.30 This reads

1

ð8Cf Þ
0:5 ¼ �0:86 ln

ks

14:8D

� �1:1

þ
1

ð8Cf Þ
0:5 �

2:51

R

" #

; (10)

where ks¼ k�s /D
�
0 , k

�
s is the bed roughness height, R is the flow Reynolds

number (¼ 4 U�
s D

�/t), and t is the coefficient of kinematic viscosity of
fluid. We express the bed roughness height k�s in terms of the particle
size d� as k�s ¼ ad�, where a is an empirical coefficient equaling 2.5.31 In
this context, it is important to mention that the use of Colebrook–White
equation helps to estimate the friction coefficient over a broad range
of flow regimes. The flow regimes are classified as hydraulically smooth
(R� � 5), transitional (5<R� < 70), and rough flow regimes (R� � 70),
where R� is the shear Reynolds number. The R� is defined as

32

R� ¼
u�f k

�
s

t
; (11)

where u�f is the shear velocity.
The flow over an erodible channel-bed exerts hydrodynamic

force on the sediment particles. The Shields number H quantifies the
dimensionless fluid-induced bed shear stress. It is defined as32

H ¼
u�2f

Dg�d�
: (12)

Note that the shear Reynolds number R� and the Shields number
H can be readily coupled as R� ¼ a(HD3

�)
0.5, where D� is the particle

parameter [¼ d�(Dg�/t2)1/3]. Based on the properties of sediment par-
ticles and flow conditions, the particles are transported as bedload and
suspended load. Herein, we consider both the modes of sediment
transport. The particles are entrained into the flow when the Shields
number surpasses the threshold Shields number Hc. The determina-
tion of Hc requires an analysis of the complex force system acting on
the particles.33–36 In this formulation, we employ the Hc(D�) relation-
ships empirically proposed by Cao et al.37 (Appendix B). The sediment
suspension prevails when the Shields number exceeds its threshold
value Hs for the initiation of sediment suspension. The empirical
relations given by van Rijn38 are used herein to determine Hs

(Appendix B). In essence, the bedload remains the dominant mode of
sediment transport forHc <H <Hs. On the other hand, forH >Hs,
both the bedload and suspended load transport prevail.

The components of bedload flux vector in s- and n-direction are
expressed as25,28

Ubs ¼ U cos v 1�
1

2

1

bð1þ �nBCÞ
�
@g

@s

� �2
" #(

�
sin v

b2Bð1þ �nBCÞ
�
@g

@n
�
@g

@s

)

; (13)

Ubn ¼ U sin v 1�
1

2

1

bB
�
@g

@n

� �2
" #

; (14)

respectively, where g is the dimensionless local bed elevation (¼ F2H
� D), U is the resultant bedload flux intensity, and v is the angle
formed by the resultant bedload flux with the streamwise direction.
The v reads25,28

v ¼ sin�1 Tn

ðT2
s þ T2

nÞ
0:5 �

}

bBH0:5 �
@g

@n

" #

; (15)

where } is an empirical coefficient ranging from 0.5 to 0.6.39

Literature evidences that U is a monotonically increasing function of
the Shields number. In this formulation, we use the empirical formula
of Meyer-Peter andM€uller,40

U ¼ 8ðH�HcÞ
1:5
: (16)

It is worth mentioning that Ali and Dey41 obtained the exponent
(¼ 1.5) of Meyer-Peter and M€uller formula from the phenomenologi-
cal theory of turbulence.

To estimate the suspended load flux vector, we employ the
depth-averaged model of Bolla Pittaluga and Seminara.42 They pre-
sented a depth-averaged formulation for the suspended load flux vec-
tor in slowly varying flows based on the asymptotic expansion of the
exact solution of the advection-diffusion equation of sediment concen-
tration. They considered that the advective and unsteady effects are
negligible as compared to the gravitational settling and turbulent diffu-
sion. This mathematically reads

da ¼
U�
0D

�
0

w�
s k

� � 1; (17)

where w�
s is the terminal fall velocity of sediment particles and k� is

the meander wavelength. To determine w�
s , we employ the empirical

relation of Jim�enez andMadsen (see Appendix B).43 It is apparent that
da depends on the priori unknown k�. Hence, we consider another
small parameter dk as

44–47

dk ¼ da
k�

B�
0

¼
U�
0

bw�
s

: (18)

The suspended load flux vector reads42

ðUss;UsnÞ ¼ DðUs;UnÞw; (19)

where w is a function that can be expended as w ¼ w0þ dkw1þ O(d2k).
Here, w0 defines the function under the uniform flow condition and w1

takes into account the weak nonequilibrium effects owing to the spatial
variation of the flow field. The w0 andw1 are expressed as

42,44
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w0 ¼ n0K0; w1 ¼ K1D
Us

ð1þ �nBCÞ
�
@n0

@s
þ
Un

B
�
@n0

@n

� �

; (20)

where n0 is the depth-averaged suspended sediment concentration,
and K0 and K1 are the functions of pertinent physical parameters. The
n0 is expressed as

44

n0 ¼
1

1� a
naJ1 with J1 ¼

ð

1

a

a

1� a
�
1� z

z

� �f

dz; (21)

where a¼ a�/D�
0 , z¼ z�/D�

0 , a
� is the reference level, which demarcates

the bedload and suspended load transport, na is the reference concen-
tration, f is the Rouse number [¼ w�

s Sc/(ju
�
f )], Sc is the turbulent

Schmidt number (�1), and j is the von K�arm�an coefficient (�0.41).
To estimate a and na, we use the empirical relations of van Rijn (see
Appendix B).38 The function K0 appearing in Eq. (20) reads44

K0 ¼
C0:5
f

j
ð1� aÞ

J2

J1
þ K2

� �

: (22)

In the above, K2 and J2 are defined as
44

K2 ¼ 0:777þ
j

C0:5
f

and

J2 ¼

ð

1

a

ðln z þ 1:84z2 � 1:56z3Þ
a

1� a
�
1� z

z

� �f

dz: (23)

The function K1 in Eq. (20) is expressed as42,44

K1 ¼
C0:5
f

j

ð

1

a

n12ðln z þ 1:84z2 � 1:56z3Þdz � ln z0

ð

1

a

n12dz

2

6

4

3

7

5
; (24)

where n12 is a function and z0 is dimensionless zero-velocity level
(¼ z�0 /D

�
0). To determine n12, we solve the following differential equa-

tion subject to the boundary conditions: @n12/@z¼ 0 at z¼ a and n12
¼ 0 at z¼ 1:42

@n12

@z
þ f�1 @

@z
zð1� zÞ

@

@z

� �

n12

¼
ð1� aÞC0:5

f

jJ1
ln

z

z0
þ 1:84z2 � 1:56z3

� �

a

1� a
�
1� z

z

� �f

: (25)

Finally, we consider that the channel banks are impermeable to
flow and sediment fluxes. This mathematically reads25,26,28

Un � Us
@B

@s

� �
�

�

�

�

n¼61

¼ Ubn � Ubs
@B

@s

� �
�

�

�

�

n¼61

¼ Usn � Uss
@B

@s

� �
�

�

�

�

n¼61

¼ 0: (26)

III. PERTURBATION SOLUTION

We consider a regular sine-generated meander with curvature
and width oscillations as follows:28

CðsÞ ¼ C1e1 þ C3e3 þ c:c: and bðsÞ ¼ b2e2 þ c:c:; (27)

where C1, C3, and b2 are the complex constants, and c.c. represents the
complex conjugate. In Eq. (27), em¼ exp(imks) withm¼ 1 to 3, where
mk is the dimensionless meander wavenumber associated with the
mth harmonic and i denotes the imaginary unit [¼ (–1)0.5]. It is
important to mention that the width variation is considered to be in
phase with the channel curvature. We expand the pertinent variables
in terms of � and d as28

V¼V0þ�ðV1
10C1e1þV

3
10C3e3þc:c:ÞþdðV2

01b2e2þc:c:Þ

þ�2ðV2
20C

2
1e2þc:c:Þþ�dðV1

11
�C1b2e1þV

3
11C1b2e3þc:c:Þ; (28)

where V ¼ (Us, Un, H, D)
T, V0 ¼ (1, 0, H0, 1)

T, Vm
ij ¼ (Um

sij , U
m
nij, H

m
ij ,

Dm
ij )

T; subscripts (i, j) are (1, 0), (0, 1), (2, 0), and (1, 1) at orders �, d,

�2, and �d, respectively (in subsequent text also); superscript m (1 to
3) refers to the mth harmonic at any order of perturbation expansion
(in subsequent text also); and overbar denotes the conjugate of a com-
plex number. The bed shear stress and sediment flux vectors are also
expended. Substituting Eqs. (27) and (28) into Eqs. (4)–(7), we obtain
a set of ordinary differential equation for all unknowns at each order
of perturbation expansion as follows:

ðimkþ bt1Cf 0ÞU
m
sij þ imkHm

ij þ bCf 0ðt2 � 1ÞDm
ij ¼ f m1ij; (29)

dHm
ij

dn
þ ðimkþ bCf 0ÞU

m
nij ¼ f m2ij; (30)

dUm
nij

dn
þ imkðUm

sij þ Dm
ij Þ ¼ f m3ij; (31)

cU0 þ
w00

1� p

� �

dUm
nij

dn
þ imkt3cU0 þ

w00

1� p
imkð1þ t5Þ � dkm

2k2t7
� �

	 


Um
sij

cU0}

bH0:5
0

d2Dm
ij

dn2
� F2

d2Hm
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Dm
sij ¼ f m4ij;

(32)

where Cf0, U0, and H0 are the unperturbed friction coefficient, bed-
load flux intensity, and Shields number, respectively, t1–8 are the
coefficients given in Appendix C, and f mrij (r¼ 1 to 4) are the com-
plex forcing terms owing to the curvature and width variations.
Using Eqs. (29)–(32), we obtain the fourth-order linear ordinary

differential equation for the radial velocity perturbation at any
order,

d4Um
nij

dn4
þ=m

1ij

d2Um
nij

dn2
þ=m

2ijU
m
nij ¼ =m

3ij: (33)
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The above differential problem is associated with the following
boundary conditions:

Um
nij;

d2Um
nij

dn2

 !

�

�

�

�

n¼61

¼ 6ð=m
4ij;=

m
5ijÞ: (34)

In Eqs. (33) and (34),=m
qij (q¼ 1 to 5) are the coefficients depend-

ing on relevant physical conditions. The solution of Eq. (33) provides
the radial velocity perturbation at each order. Finally, substituting the
radial velocity perturbations in Eqs. (29)–(31), the azimuthal velocity
perturbation and the bed topography perturbation can be obtained.

IV. RESULTS AND DISCUSSION

It is recognized that only the laterally anti-symmetrical perturbation
of the azimuthal velocity with the fundamental longitudinal frequency is
linked with the bend instability.25 We find that solutions at orders O(�)
and O(�d) are anti-symmetrical. Hence, we study the behavior of the
excess azimuthal velocity Up (¼ U1

s10 þ dU1
s11) with dimensionless

meander wavenumber k on a semi-logarithmic scale (Figs. 3–7). The the-
oretical analysis reveals that the Up depends on the Shields number H,

relative roughness number ds (¼ d�/D�
0), channel aspect ratio b, width-

variation amplitude d, and shear Reynolds number R�.
Figure 3 presents the variations of the real part of excess azi-

muthal velocity Re(Up) with dimensionless meander wavenumber k
for different Shields numbers H. The solid and dashed lines describe
the results with and without sediment suspension, respectively (also in
subsequent Figs. 4–12). Note that the results are obtained at the chan-
nel outer bank (n¼ 1). It is apparent from Fig. 3 that for a given H,
Re(Up) does not vary significantly with k for k< 0.03 and k> 0.2. For
intermediate wavenumbers with H ¼ 0.2, 0.3, and 0.4 (without sedi-
ment suspension) and H ¼ 0.2 (with sediment suspension), the
Re(Up) increases with an increase in k reaching the maximum value,
and then diminishes to become a constant for k> 0.2. In the interme-
diate wavenumber range for H ¼ 0.3 and 0.4 (with sediment suspen-
sion), Re(Up) amplifies with k attaining a positive peak, and thereafter
decreases to a minimum. Subsequently, the Re(Up) dampens as the k
increases to become independent of k for k> 0.2. The positive peaks
of Re(Up)(k) curves appear to be sensitive to the Shields number. An
increase in Shields number signifies a decrease in particle size with an
enhanced sediment suspension. With an increase in H, the positive

FIG. 3. Re(Up) vs k for ds ¼ 0.005, b ¼ 20, d ¼ 0.1, R� ¼ 100 and different val-
ues of H (solid and dashed lines correspond to the results with and without sedi-
ment suspension, respectively).

FIG. 4. Re(Up) vs k for H ¼ 0.3, b ¼ 20, d ¼ 0.1, R� ¼ 100 and different values
of ds (solid and dashed lines correspond to the results with and without sediment
suspension, respectively).

FIG. 5. Re(Up) vs k for H ¼ 0.3, ds ¼ 0.005, d ¼ 0.1, R� ¼ 100 and different val-
ues of b (solid and dashed lines correspond to the results with and without sedi-
ment suspension, respectively).

FIG. 6. Re(Up) vs k for H ¼ 0.3, ds ¼ 0.005, b ¼ 20, R� ¼ 100 and different val-
ues of d (solid and dashed lines correspond to the results with and without sedi-
ment suspension, respectively).
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FIG. 7. Re(Up) vs k for H ¼ 0.3, ds ¼ 0.005, b ¼ 20, d ¼ 0.1 and different values
of R� (solid and dashed lines correspond to the results with and without sediment
suspension, respectively).

FIG. 8. Re(gp) vs k for ds ¼ 0.005, b ¼ 20, d ¼ 0.1, R� ¼ 100 and different val-
ues of H (solid and dashed lines correspond to the results with and without sedi-
ment suspension, respectively).

FIG. 9. Re(gp) vs k for H ¼ 0.3, b ¼ 20, d ¼ 0.1, R� ¼ 100 and different values
of ds (solid and dashed lines correspond to the results with and without sediment
suspension, respectively).

FIG. 10. Re(gp) vs k forH ¼ 0.3, ds ¼ 0.005, d ¼ 0.1, R� ¼ 100 and different val-
ues of b (solid and dashed lines correspond to the results with and without sedi-
ment suspension, respectively).

FIG. 11. Re(gp) vs k for H ¼ 0.3, ds ¼ 0.005, b ¼ 20, R� ¼ 100 and different val-
ues of d (solid and dashed lines correspond to the results with and without sedi-
ment suspension, respectively).

FIG. 12. Re(gp) vs k for H ¼ 0.3, ds ¼ 0.005, b ¼ 20, d ¼ 0.1 and different val-
ues of R� (solid and dashed lines correspond to the results with and without sedi-
ment suspension, respectively).
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peak of Re(Up)(k) curve increases. Therefore, a reduction in particle
size seems to play destabilizing role toward the bend instability. The
inclusion of sediment suspension leads to a higher value of the positive
peak of the Re(Up)(k) curves. Hence, we conclude that the sediment
suspension plays a destabilizing role in governing the bend instability.
It is also discernible that the Re(Up)(k) curves with and without sedi-
ment suspension almost overlap for smaller (k< 0.03) and larger
wavenumbers (k> 0.2). Therefore, it appears that the effects of sedi-
ment suspension are important in the intermediate wavenumber
range. For each H, a resonance phenomenon takes place. The reso-
nance is associated with the positive peak of the Re(Up)(k) curve. It is
interesting to explore the dimensionless wavenumber corresponding
to the positive peak of the Re(Up)(k) curve, called the resonant wave-
number kr. The kr(H) curves are shown in the inset of Fig. 3. The
kr(H) curves with and without sediment suspension exhibit similar
trend. The kr monotonically decreases with an increase in H.
Moreover, for a givenH, the kr without sediment suspension possesses
a higher magnitude than that with sediment suspension. Therefore,
the inclusion of sediment suspension shifts the resonance toward
smaller wavenumbers.

Figure 4 furnishes the variations of the Re(Up) with k for different
relative roughness numbers ds. As the H and R� are kept constant, an
increase in ds indicates a decrease in flow depth. Akin to Fig. 3, for a
given ds, the Re(Up)(k) curves remain nearly invariant with k for
k< 0.03 and k> 0.2. For the Re(Up)(k) curves with sediment suspen-
sion, the Re(Up) in the intermediate meander wavenumber range
increases with an increase in k reaching a positive peak and then
decreases to gain a minimum value. Thereafter, the Re(Up) increases
(i.e., reduction in absolute negative magnitude) with k attaining a con-
stant magnitude for k> 0.2. In the intermediate wavenumber range,
the behavior of Re(Up)(k) curves without sediment suspension is
somewhat different. In this case, the Re(Up) increases with k and then
diminishes reaching a constant magnitude for k> 0.2. It is evident
that for a given ds, the Re(Up)(k) curves display the resonance phe-
nomenon. The positive peak value of the Re(Up)(k) curve amplifies as
the ds increases. Hence, a reduction in the flow depth plays a destabi-
lizing role. It is also apparent that for a given ds, the Re(Up)(k) curve
with sediment suspension comprises a higher positive peak. This
observation ensures the destabilizing role of the sediment suspension.
The kr(ds) curves are shown in the inset of Fig. 4. The krmonotonically
increases with an increase in ds. This suggests that a reduction in flow
depth is to shift the resonance toward larger wavenumbers. It is worth
mentioning that this finding accords with the previous studies of
Seminara and Tubino8 and Ali and Dey.23 It is also explicit that the
kr(ds) curve with sediment suspension lies somewhat below the kr(ds)
curve without sediment suspension. Hence, the inclusion of sediment
suspension causes the resonance to shift toward smaller wavenumbers.

The variations of the Re(Up) with k for different channel aspect
ratios b are displayed in Fig. 5. It is obvious that for k< 0.03 and
k> 0.3, the Re(Up) remains almost independent of k. In the intermedi-
ate wavenumber range, for b ¼ 10 with sediment suspension and
b ¼ 10 and 20 without sediment suspension, the Re(Up) amplifies
with an increase in k to attain a positive peak. Then, it decreases to a
constant value for k> 0.3. In the intermediate wavenumber range, the
Re(Up) for b ¼ 20 and 30 (with sediment suspension) and b ¼ 30
(without sediment suspension) increases with an increase in k to attain
a positive peak and then reduces with a further increase in k to attain a

minimum value. Afterward, the Re(Up) again increases (i.e., reduction
in absolute negative magnitude) with k attaining a constant magnitude
for k> 0.3. For a given b, the positive peak value of the Re(Up)(k)
curve with sediment suspension always remains higher than that with-
out sediment suspension. This encapsulates the destabilizing nature of
sediment suspension. The kr(b) curves are furnished in the inset of
Fig. 5. The kr monotonically increases as the b increases. The trend of
kr(b) agrees with the study of Ali and Dey.23 The kr(b) curve with
sediment suspension lies above that without sediment suspension for
b < 15 and b > 25. The reverse is true for 15 < b < 25. Hence,
the inclusion of sediment suspension relocates the resonance
toward larger wavenumbers for b < 15 and b > 25. On the contrary,
for 15< b< 25, the effects of sediment suspension are to shift the res-
onance toward smaller wavenumbers.

Figure 6 shows the variations of the Re(Up) with k for different
width-variation amplitudes d. For a given d, the Re(Up) remains
almost constant with k for k< 0.03 and k> 0.3. For intermediate
wavenumbers, the Re(Up) with sediment suspension enhances with an
increase in k reaching a positive peak and thereafter diminishes to
attain a minimum value. Then, the Re(Up) again grows to reach a near
constant magnitude for k> 0.3. The behavior of Re(Up)(k) curves
without sediment suspension is slightly different. In the intermediate
wavenumber range, the Re(Up) without sediment suspension increases
with k to reach a positive peak. Thereafter, the Re(Up) decays with k
and becomes invariant with k for k> 0.3. The positive peaks of
Re(Up)(k) curves with sediment suspension remain higher than those
without sediment suspension. This observation reflects the destabiliz-
ing role of sediment suspension. Note that the Re(Up)(k) curves with d
¼ 0 correspond to a constant channel width. For a given k, the Re(Up)
amplifies as the d increases. Hence, the width variation favors the bend
instability. This observation is consistent with the study of Luchi
et al.25 The kr(d) curves are shown in the inset of Fig. 6. The kr(d)
curve with sediment suspension grows with an increase in d for d

< 0.04. However, it eventually becomes a constant for d > 0.04. On
the other hand, the kr(d) curve without sediment suspension grows as
the d increases. For d< 0.08, the kr(d) curve with sediment suspension
remains above that without sediment suspension, while the reverse
scenario takes place for d > 0.08. The sediment suspension causes
to shift the resonance toward larger and smaller wavenumbers for
d< 0.08 and d> 0.08, respectively.

It is interesting to explore the behavior of Re(Up) in different flow
regimes. To this end, Fig. 7 displays the Re(Up)(k) curves in hydrauli-
cally smooth (R� ¼ 3), transitional (R� ¼ 30), and rough (R� ¼ 100)
flow regimes. In a hydraulically smooth flow regime (R� ¼ 3), the
Re(Up) with sediment suspension decays with k for k< 0.07, while it
remains almost constant for k> 0.3. For intermediate wavenumbers,
the Re(Up) with sediment suspension grows with an increase in k to
attain a local maximum value and then diminishes to reach a mini-
mum value. Eventually, it attains a constant value for k> 0.3. The
Re(Up) without sediment suspension remains almost independent of k
for k< 0.01 and k> 0.3. In addition, for intermediate wavenumbers,
the Re(Up) increases with an increase in k reaching a positive peak and
then reduces with k to attain a minimum value. Thereafter, it becomes
independent of k for k> 0.3. In hydraulically transitional (R� ¼ 30)
and rough (R� ¼ 100) flow regimes, the Re(Up)(k) curves are nearly
identical. The Re(Up) remains independent of k for k< 0.01 and
k> 0.3. In the intermediate wavenumber range for R� ¼ 30 and 100,
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the Re(Up) with sediment suspension amplifies with an increase in k
to attain a positive peak. Thereafter, it reduces with k to reach a mini-
mum value and eventually grows with further increase in k to become
independent of k for k> 0.3. For R� ¼ 30 and 100, the Re(Up) without
sediment suspension in the intermediate wavenumber range enhances
with an increase in k attaining a positive peak and finally diminishes
with a further increase in k to become a constant for k> 0.3. For R�
¼ 30 and 100, the positive peak of the Re(Up)(k) curve amplifies with
the inclusion of sediment suspension. On the contrary, for R� ¼ 3, the
positive peak of the Re(Up)(k) curve diminishes with the inclusion of
sediment suspension. Hence, the sediment suspension plays a destabi-
lizing role in hydraulically transitional and rough flow regimes, while
it plays as a stabilizing role in a hydraulically smooth flow regime. The
kr(R�) curves are shown in the inset in Fig. 7. The kr with sediment
suspension increases with an increase in R� for R� < 25 remaining
independent of R� for R� > 25. On the other hand, the kr without sedi-
ment suspension grows with R� attaining a maximum at R� ¼ 3.
Thereafter, it lessens with a further increase in R�. The kr(R�) curve
without sediment suspension stays above that with sediment suspen-
sion. Hence, the sediment suspension tends to shift the resonance
toward smaller wavenumbers.

The evolution of bed topography has been studied extensively in
the field of morphodynamics.14,24,48 It is worth noting that the solutions
at orders � and �d are associated with the anti-symmetric pattern of
bed topography. Hence, we study the behavior of bed topography devia-
tion gp (¼ g110 þ dg111) with dimensionless meander wavenumber k,
where g110 ¼ F2H1

10 – D
1
10 and g111 ¼ F2H1

11 – D
1
11. Figure 8 displays the

variations of the real part of bed topography deviation with dimension-
less meander wavenumber k for different Shields numbers H. For a
givenH, the Re(gp) remains independent of k for k< 0.01. For k> 0.01,
the Re(gp) decreases with an increase in k to attain a negative peak.
Thereafter, it increases (i.e., reduction in absolute negative magnitude)
with a further increase in k to reach a positive peak. Afterward, the
Re(gp) decreases with k. It is apparent that an increase in H causes to
amplify the magnitude of positive and negative peaks. Hence, a reduc-
tion in sediment particle size destabilizes the process of bend instability.
It is also evident that the positive and negative peaks of the Re(gp)(k)
curves with sediment suspension possess higher magnitudes as com-
pared to those without sediment suspension. Note that an increase inH

causes to shift the resonance toward smaller wavenumbers.
The variations of the Re(gp) with k for different relative rough-

ness numbers ds are shown in Fig. 9. For a given ds, the behavior of
Re(gp)(k) curves are similar to those in Fig. 8. For a given H and R�,
an increase in ds represents a reduction in flow depth. It is noticeable
that the positive and negative peaks of Re(gp)(k) curves amplify as the
ds increases. Hence, a decrease in flow depth destabilizes the bend
instability. It also appears that an increase in ds causes the resonance
toward larger wavenumbers.

Figure 10 furnishes the Re(gp)(k) curves for different channel
aspect ratios b. For a given b, the Re(gp) is independent of k for
k< 0.01. For k> 0.01 with b¼ 10, the Re(gp) grows with an increase in
k and eventually becomes constant for k> 0.3. On the other hand, for
k> 0.01 with b ¼ 20 and 30, the Re(gp) diminishes with an increase in
k to reach a negative peak. Subsequently, it grows with a further increase
in k to attain a positive peak. Afterward, the Re(gp) decays with k. The
Re(gp) enhances with the channel aspect ratio. Akin to Figs. 8 and 9, the
destabilizing role of sediment suspension is apparent.

The Re(gp)(k) curves for different width-variation amplitudes d
are depicted in Fig. 11. For a given d, the trend of Re(gp)(k) curves is
similar to those in Figs. 8 and 9. The positive and negative peaks of the
Re(gp)(k) curves with sediment suspension amplify as the d increases.
On the other hand, for the Re(gp)(k) curves without sediment suspen-
sion, an increase in d causes the amplification and decay of negative
and positive peaks, respectively. Note that the curves with d¼ 0 repre-
sent the bed topography deviation for a constant channel width. Note
that the width variation strengthens the bend instability.

In Fig. 12, the variations of the Re(gp) with k in different flow
regimes are shown. In a hydraulically smooth flow regime (R� ¼ 3) with
sediment suspension, the Re(gp) increases with an increase in k for
k< 0.07. Then, it slowly diminishes with k to attain a local minimum
value. Thereafter, it increases with a further increase in k becoming inde-
pendent of k for k> 0.3. For R� ¼ 3 without sediment suspension, the
Re(gp) remains almost independent of k for k< 0.01. Then, it decreases
with an increase in k to reach a local minimum value. Thereafter, it
abruptly amplifies and decays with an increase in k to attain positive and
negative peaks, respectively. Afterward, it increases with a further increase
in k to reach a local maximum value and finally decays with k. Note that
in hydraulically transitional (R� ¼ 30) and rough (R� ¼ 100) flow
regimes, the Re(gp) is almost invariant with k for k< 0.01. Akin to Fig. 7,
the stabilizing role of sediment suspension is evident in a hydraulically
smooth flow regime. In addition, in hydraulically transitional and rough
flow regimes, the destabilizing nature of sediment suspension is apparent.

Figure 13 shows the variations of the dimensionless resonant
wavenumber kr with channel aspect ratio b. The kr(b) curves of several
investigators are also plotted for the comparison. To make the com-
parison in Fig. 13, the kr(b) curve of this study is obtained by neglect-
ing the effects of sediment suspension and width variation. The trend
of the kr(b) curve of this study agrees well with those of Blondeaux
and Seminara4 and Ali and Dey.23 However, for a given b, this study
underpredicts the kr. This may be attributed to the precise estimation
of the radial bed shear stress. Note that the kr(b) curves of Ikeda et al.

2

and Kitiandis and Kennedy49 overpredict the kr, because the resonance
was not identified in their studies.

An enhanced understanding of the bend instability can be
obtained from the stability diagrams of the excess azimuthal velocity.

FIG. 13. Kr vs b for H ¼ 0.3, ds ¼ 0.005, R� ¼ 100, and d ¼ 0.
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Figures 14–18 furnish the stability diagrams on the b(k) plane. In nat-
ural channels, sediment is transported as both bedload and suspended
load. Hence, the stability diagrams in Figs. 14–17 are obtained consid-
ering the effects of sediment suspension in addition to the bedload,
while Fig. 18 is obtained considering sediment transport as bedload
only. The stability diagram comprises the stable [Re(Up)< 0] and
unstable [Re(Up)> 0] zones.

Figures 14(a)–14(c) display the stability diagrams for different
Shields numbers H. The shaded and white zones denote the unstable
and stable zones, respectively (also in Figs. 15–17). The red line indi-
cates the neutral stability condition (also in Figs. 15–17). The stable
zone expands with an increase in H (i.e., decrease in particle size). A
close inspection of Fig. 14 reveals that an increase in H destabilizes
larger wavenumbers. This is in agreement with the study of Luchi
et al.25 The stable zone exists beyond a critical channel aspect ratio bk.
It is apparent that the bk reduces as the H increases. In Figs.
15(a)–15(c), the stability diagrams are furnished for different relative
roughness numbers ds. An increase in ds stabilizes the larger wave-
numbers. Moreover, with an increase in ds, the bk reduces. Figures
16(a)–16(c) depict the stability diagrams for different width-variation

amplitudes d. The stable zone shrinks significantly as the d increases.
The bk increases with an increase in d.

Figures 17(a)–17(c) show the stability diagrams in hydraulically
smooth (R� ¼ 3), transitional (R� ¼ 30), and rough (R� ¼ 100) flow
regimes, respectively. In a hydraulically smooth flow regime, three sep-
arate stable zones appear. The stable zones appear to move toward
larger wavenumbers as the b increases. Note that the concept of bk
breaks down in the stability diagram for R� ¼ 3. In hydraulically tran-
sitional (R� ¼ 30) and rough (R� ¼ 100) flow regimes, the stability dia-
grams characterize a unique stable zone. The stable zone for R� ¼ 100
appears to be smaller than that for R� ¼ 30. In addition, the bk for R�
¼ 100 is larger than that for R� ¼ 30.

The sensitivity of the stability diagrams to the effects of sediment
suspension is not apparent in Figs. 14–17. To this end, Fig. 18 depicts
the stability diagrams with and without sediment suspension. The
solid and dashed lines denote the neutral stability curves with and
without sediment suspension, respectively. The interior and exterior
zones of a given curve indicate the stable and unstable zones, respec-
tively. The inclusion of sediment suspension (solid line) causes the sta-
ble zone to amplify. Moreover, the stable zone is slightly shifted toward

FIG. 14. Stability diagrams for ds ¼ 0.005, d ¼ 0.1, and R� ¼ 100: (a) H ¼ 0.2, (b) H ¼ 0.3, and (c) H ¼ 0.4 (shaded and white areas represent the unstable and stable
zones, respectively).

FIG. 15. Stability diagrams for H ¼ 0.3, d ¼ 0.1, and R� ¼ 100: (a) ds ¼ 0.001, (b) ds ¼ 0.005, and (c) ds ¼ 0.01 (shaded and white areas represent the unstable and stable
zones, respectively).
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smaller wavenumbers. In the intermediate wavenumber range, the sedi-
ment suspension appears to stabilize a range of channel aspect ratio, and
subsequently critical aspect ratio bk reduces. This behavior is attributed to
the fact that the sediment suspension amplifies (reduction in negative
amplitude) the minima of the Re(Up)(k) curves (see Figs. 3–6).

It is interesting to further compare the key observations of this
study with those reported in the literature. The appearance of the reso-
nance phenomenon for critical values of the relevant parameters con-
firms the earlier observations.4,14,23–25 Importantly, this study discloses
that the sediment suspension switches the resonance toward smaller or
larger wavenumbers depending on the characteristic parameters.
Moreover, the observed behavior of the resonant wavenumber with the
Shields number, relative roughness number, and channel aspect ratio
agrees well with the study of Ali and Dey.23 Luchi et al.25 discovered that
the width variation reinforces the bend instability process. In this respect,
this study corroborates the observation of Luchi et al.25 In addition, for a
given width variation amplitude, this study reveals that the sediment sus-
pension further strengthens the bend instability process. It unveils that
the sediment suspension plays a vital role in the intermediate wavenum-
ber range. The stability diagrams reveal that the inclusion of sediment

suspension causes to enlarge the stable zone. In particular, an increase in
Shields number is found to destabilize larger wavenumbers, while an
increase in relative roughness number stabilizes larger wavenumbers.
These observations are in agreement with the study of Luchi et al.25

V. CONCLUSIONS

We explore the stability of a meandering channel with variable
width and curvature. The analysis is performed considering both
modes of sediment transport as bedload and suspended load. The var-
iations of the near-bank excess azimuthal velocity and bed topography
deviation with meander wavenumber are investigated for different val-
ues of Shields number, relative roughness number, channel aspect
ratio, width-variation amplitude, and shear Reynolds number. The sta-
bility diagrams are presented on the plane formed by the channel
aspect ratio and the wavenumber. The sensitivity of the stability dia-
grams to the pertinent parameters is also explored.

With regard to the near-bank excess azimuthal velocity, the posi-
tive peaks amplify with an increase in Shields number, relative rough-
ness number, channel aspect ratio, and width-variation amplitude.
However, they decay with an increase in shear Reynolds number when

FIG. 17. Stability diagrams for H ¼ 0.3, ds ¼ 0.005, and d ¼ 0.1: (a) R� ¼ 3, (b) R� ¼ 30, and (c) R� ¼ 100 (shaded and white areas represent the unstable and stable
zones, respectively).

FIG. 16. Stability diagrams for H ¼ 0.3, ds ¼ 0.005, and R� ¼ 100: (a) d ¼ 0, (b) d ¼ 0.1, and (c) d ¼ 0.2 (shaded and white areas represent unstable and stable zones,
respectively).
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the sediment is transported as bedload only. It is revealed that the role
of sediment suspension varies with the flow regimes. In a hydraulically
smooth flow regime, the positive peak of the near-bank excess azi-
muthal velocity diminishes with the inclusion of sediment suspension.
On the contrary, the inclusion of sediment suspension in hydraulically
transitional and rough flow regimes enhances the positive peak.
Hence, the sediment suspension plays a stabilizing role in a hydrauli-
cally smooth flow regime, while it plays a destabilizing role in hydrau-
lically transitional and rough flow regimes.

An increase in Shields number switches the resonance toward
smaller wavenumbers, while an increase in relative roughness number
and channel aspect ratio shifts the resonance toward larger wavenum-
bers. With the inclusion of sediment suspension, the resonance switches
toward larger wavenumbers for small and large channel aspect ratios.
The resonant wavenumber increases with an increase in width-variation
amplitude when the sediment is transported as bedload only. With the
sediment suspension, the resonant wavenumber initially increases as the
width-variation amplitude increases and eventually becomes indepen-
dent of the width-variation amplitude. The sediment suspension
switches the resonance toward larger and smaller wavenumbers for
small and large values of width-variation amplitude, respectively.
Without the sediment suspension, the resonant wavenumber increases
with an increase in shear Reynolds number attaining a peak and thereaf-
ter decays with a further increase in shear Reynolds number. With the
sediment suspension, the resonant wavenumber initially amplifies with
shear Reynolds number and eventually attains a constant value.

The positive and negative peaks of the near-bank bed topography
deviation amplify with an increase in Shields number, relative rough-
ness number, channel aspect ratio, and width-variation amplitude.
Without sediment suspension, the positive and negative peaks dimin-
ish as the shear Reynolds number increases. The sediment suspension
is found to play a stabilizing role in a hydraulically smooth flow
regime. On the other hand, in hydraulically transitional and rough
flow regimes, the sediment suspension has a destabilizing effect.

The stability diagrams reveal that the stable zone expands with
an increase in Shields number and relative roughness number. On the

contrary, an increase in width-variation amplitude results in a contrac-
tion of the stable zone. In a hydraulically smooth flow regime, the sta-
bility diagram characterizes different stable zones, while in
hydraulically transitional and rough flow regimes, a unique stable
zone appears for a given shear Reynolds number.

In essence, the study offers insights into the role of sediment sus-
pension in producing the instability in a meandering channel with var-
iable width and curvature. The analysis explores the role of Shields
number, relative roughness number, channel aspect ratio, width-
variation amplitude, and shear Reynolds number associated with the
instability process. It is worth mentioning that the precise role of sedi-
ment suspension toward the planform evolution of a meandering
channel with spatial width and curvature variations remains a key
aspect, which can be explored as a future scope of research.
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APPENDIX A: FORCING TERMS

The forcing terms appearing in Eqs. (4) and (5) are as follows:
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In the above, C1 and C2 read
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C2 ¼
DUn

bC0:5
f

CDUs k0 þ
k2

bC0:5
f

�
@D

@s

 !

þ
k1D

2

bC0:5
f

�
@

@s
ðCUsÞ
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where k0, k1, and k2 are the coefficients.

FIG. 18. Stability diagrams for H ¼ 0.3, ds ¼ 0.005, d ¼ 0.1, and R� ¼ 100 (solid
and dashed lines indicate the neutral stability curves with and without sediment sus-
pension, respectively).
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APPENDIX B: EMPIRICAL RELATIONS

Cao et al.37 proposed the following empirical relations for the
estimation of Hc:

Hcð0 < D� � 3:52Þ ¼ 0:1414D�0:345
� ;

Hcð3:52 < D� < 43:09Þ

¼ 0:324D�1:02
� ð1þ 2:04	 10�5D4:26

� Þ0:35;

HcðD� � 43:09Þ ¼ 0:045:

(B1)

To determine Hs, we use the empirical formulation of van
Rijn38 as follows:

u�fs

w�
s

ð1 < D� � 10Þ ¼
4

D�
;

u�fs

w�
s

ðD� > 10Þ ¼ 0:4; (B2)

where u�fs is the shear velocity at the threshold of sediment suspen-
sion. Having u�fs, the Hs can be estimated using Eq. (12). The
empirical formula of Jim�enez and Madsen43 is employed to deter-
mine w�

s ,

w�
s

ðDg�d�Þ0:5
¼ 0:954þ

20:48

D1:5
�

� ��1

: (B3)

To estimate na and a, we employ the following empirical rela-
tions of van Rijn:38

na ¼ 0:015
ds

a

H

Hc
� 1

� �

D�0:3
� ; (B4)

aðks < 0:01DÞ ¼ 0:01D; aðks � 0:01DÞ ¼ ks: (B5)

APPENDIX C: COEFFICIENTS T1–8

The coefficients t1–8 read
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where f0, na0, J10, J20, K10, and K20 are f, na, J1, J2, K1, and K2 at
unperturbed state, respectively. In Eq. (C1), J11 and J21 are the inte-
gral functions given as
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