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ABSTRACT

The linear stability of “sliding Couette flow” of a Newtonian fluid through the annular gap formed by two concentric cylinders having a ratio
of inner to outer cylinder radii, β, and driven by the axial motion of the inner cylinder is studied in the low Reynolds number (<1) regime.
The inner wall of the outer cylinder is lined by a deformable neo-Hookean solid layer of dimensionless thickness H. This flow configuration
is encountered in medical procedures such as thread-injection and angioplasty, where the inserted needle is surrounded by the deformable
wall of blood vessels. In stark contrast to the configuration with rigid cylinders, we predict the existence of finite- and short-wave linear
instabilities even in the creeping-flow limit, driven by the deformable nature of the outer cylinder. Interestingly, these instabilities exist for
arbitrary β, and even for non-axisymmetric perturbations, in parameter regimes where the flow is stable for the configuration with a rigid
outer cylinder. For the finite-wave instability, the axisymmetric mode is the most critical mode of the instability, while the non-axisymmetric
mode with azimuthal wavenumber n = 4 is the critical mode for the short-wave instability. By replacing the outer rigid boundary surrounding
the deformable wall by an “unrestrained” stress-free boundary, we demonstrate that the flow becomes significantly more unstable. Thus, the
present study shows that sliding Couette flow with a deformable wall can be linearly unstable at an arbitrarily low Reynolds number, in direct
contrast to the stability of the same configuration with a rigid cylinder.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0026362., s

I. INTRODUCTION

Sliding Couette flow, also referred to as thread annular flow,
consists of a fluid between the annular gap formed by two concentric
cylinders of different radii and is driven by the relative motion of the
inner cylinder in the axial direction, as shown schematically in Fig. 1.
This flow configuration is encountered in industrial processes such
as wire coating,1 pipe linings,2 and manufacturing of optical fibers.3

Recently, there has been a renewed interest in studying the stability
of this flow due to its relevance to medical procedures such as thread
injection4–7 and angioplasty.8 These studies, however, assumed the
outer cylindrical boundary to be a rigid-walled cylinder. However,
in the biological context, the deformable nature of the vessel wall can
play an important role in introducing qualitatively new instabilities.
With this motivation, the present work presents a comprehensive
account of the stability of sliding Couette flow with a deformable
outer boundary.

For the case of a rigid outer cylinder, the linear stability of
sliding Couette flow was first studied by Preziosi and Rosso,9 who
predicted the flow to be linearly stable. Later, Gittler10 predicted the
existence of the instability when the inner cylinder to outer cylin-
der radii ratio is less than 0.1415 at Reynolds number (Re) of O(106)
for axisymmetric disturbances. Walton,4–6 motivated by applica-
tions in the thread-injection procedure, studied both the linear and
non-linear stability of annular Poiseuille–Couette flow. These stud-
ies confirmed the existence of a linear instability for axisymmet-
ric disturbances predicted by Gittler.10 Furthermore, their analy-
ses predicted non-axisymmetric modes to be more unstable than
axisymmetric disturbances in the non-linear regime for the annu-
lar Poiseuille–Couette flow. However, linear and non-linear stability
analyses of sliding Couette flow by Deguchi and Nagata7 predicted
axisymmetric disturbances to be the most unstable mode. In order
to understand the role of the transient growth of the disturbances in
the destabilization of the flow, Liu and Liu11 carried out a non-modal
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FIG. 1. Side view schematic of the flow geometry. The inner cylinder moves at
a steady dimensionless speed Γ. The fluid is present in the annular gap r i ≤ r

≤ ro, while the deformable solid is present in ro ≤ r ≤ ro + H. At r = ro + H, the
deformable solid is perfectly bonded to a rigid solid.

stability analysis of sliding Couette flow. Their analysis predicted a
non-modal growth of disturbances at Reynolds numbers lower than
that predicted by the linear stability analysis, and it was shown to
be present even when the inner cylinder to outer cylinder radii ratio
was greater than 0.1415.

Previous studies related to the stability of sliding Couette flow
have hitherto considered rigid-walled cylinders.5–7,9–12 However, in
the case of the medical applications such as angioplasty, this analysis
clearly needs to be generalized to account for the deformable walls
present in blood vessels. It is now well established that deformable
walls can introduce instabilities even in the creeping-flow limit.13,14

In addition, in industrial processes such as wire coating and man-
ufacturing of optical fibers, the instabilities in the flow need to be
controlled, as such instabilities may result in unintended manufac-
turing defects in the finished product. In such cases, a deformable
wall can be introduced in order tomanipulate the instabilities.15 Pre-
vious studies on plane Couette flow past a deformable surface in
the creeping-flow limit predict two classes of the instabilities, viz.,
finite-wave and short-wave modes.13,14,16 The finite-wave instability
is characterized by a critical wavenumber (kc) <1 and dimension-
less top-plate velocity (Γc) <2 in the present non-dimensionalization
scheme, as explained in Sec. III. This instability is driven by the
shear work done by the fluid on the deformable surface at the fluid-
deformable solid interface. The short-wave instability has its origin
in the discontinuity of the non-zero first normal stress difference
across the fluid–deformable-solid interface. The short-wave insta-
bility is predicted when neo-Hookean14 or Mooney–Rivlin17 models
are used for the deformable solid, since these models predict non-
zero first normal stress difference. The short-wave instability is char-
acterized by kc > 1 and Γc > 2 in the present non-dimensionalization
scheme. In stark contrast to the instability of plane Couette flow
past a deformable wall even in the creeping-flow limit, pressure-
driven flows in channel and pipe configurations with a deformable
wall are stable in the same limit.16,17 Recent work in the area of
flow past deformable solid surfaces has examined different facets
of instabilities including stratified flow18 in deformable channels,
non-Newtonian flows,19,20 resonant unstable modes in viscoelastic
fluids,21 and finally the role of an unrestrained deformable boundary
in inducing new modes of instability.22

Despite the presence of deformable walls in the medical pro-
cedures, as described above, its role on the stability of the sliding

Couette configuration has not been examined in the existing litera-
ture. The objective of this work is, therefore, to provide a compre-
hensive understanding of the role of wall deformability on sliding
Couette flow by extending the aforementioned earlier efforts per-
taining to rigid walls to a configuration with deformable walls. In this
regard, we consider two different configurations: in the first config-
uration, the annular gap is surrounded by a deformable wall, which
itself is rigidly bonded to an outer cylinder. This is the configuration
that has been extensively studied in the previous literature.23 While
this configuration might be relevant to laboratory experiments,24

in the biological context, the deformable vessel walls are “unre-
strained,” not being rigidly bonded to an outer cylinder. While the
former configuration with a rigid outer cylinder allows for a rigor-
ous mathematical formulation, the latter unrestrained configuration
does not allow for the same. However, by using stress-free bound-
ary conditions to mimic the unrestrained boundary, the qualitative
effects of an unrestrained boundary on the stability of sliding Cou-
ette flow can be understood well. Following the earlier work of Refs.
14 and 16, we use the neo-Hookean constitutive relation to model
the deformation in the wall for the case where the deformable wall
is rigidly bonded to the outer cylinder. For the unrestrained case,
we use a simplistic linear elastic model for the deformable wall. We
show that, despite the cylindrical configuration involved, the sliding
Couette flow with a deformable wall is predicted to become unstable
even in the creeping-flow limit, in stark contrast to pressure-driven
flow in a deformable tube.16 We further show that the unrestrained
nature of the boundary can make the flow significantly more unsta-
ble compared to the rigidly bonded configuration. The rest of the
paper is organized as follows. The base state and linearized per-
turbed state equations are derived in Sec. II. The results obtained
are presented and discussed in Sec. III. The salient conclusions of
the present work are presented in Sec. IV.

II. PROBLEM FORMULATION

We consider a Newtonian fluid of density ρ∗ and viscosity μ∗

flowing through the annular gap between two cylinders, where the
superscript ∗ denotes a dimensional quantity. The inner cylinder is
of radius r∗i and moves with steady velocity V∗ relative to the sta-
tionary outer cylinder of inner radius r∗o . The inner wall of the outer
cylinder is lined with a neo-Hookean solid of shear modulus G∗ and
thickness HR∗. The schematic of the flow geometry under consid-
eration in terms of the dimensionless variables is shown in Fig. 1.
Following the earlier studies of Deguchi and Nagata7 and Liu and
Liu,11 we non-dimensionlize lengths by R∗ ≙ (r∗o − r∗i )/2, velocities
by V∗, and pressure and stresses by μ∗V∗/R∗. The velocity field in
the fluid is given by v = (vr , vθ, vz) with vr , vθ, and vz being the com-
ponents in the r, θ, and z directions, respectively. The dimensionless
governing equations for the fluid are

∇ ⋅ v ≙ 0, (1)

Re(∂v
∂t

+ (v ⋅ ∇) v) ≙ −∇p +∇2
v, (2)

where Re = ρ∗V∗R∗/μ∗ is the Reynolds number. We denote β
≙ r∗i /r∗o such that dimensionless radii of the inner and outer
cylinders are, respectively, ri = 2β/(1 − β) and ro = 2/(1 − β).
The boundary conditions applicable to the configuration are as fol-
lows. At r = ri, the no-slip boundary condition implies v̄z ≙ 1, where
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an overbar implies a base-state quantity. Since the deformable solid
is perfectly bonded to the rigid solid at r = ro +H, it can only deform
but will not move with the solid; thus, the assumption of no-slip
implies v̄z ≙ 0 at r = ro. To obtain the base state, we assume steady,
fully developed flow

v̄z ≙ log(r(1 − β)/2)
log(β) . (3)

The overbar on vz in the above equation and henceforth indicates
the base state quantity unless otherwise stated.

For the deformable wall, we use the neo-Hookean model and
Lagrangian-three-state (L3) formulation for the deformable solid
proposed by Patne et al.25 to formulate the coupled problem. The
L3 formulation essentially involves treating the solid in a Lagrangian
framework, while the fluid is treated in the Eulerian framework with
consistent base-state and interface conditions.25 Let us consider a
representative solid particle having coordinates X = (R, Θ, Z) in the
undeformed base state. The material point in the solid undergoes
displacement due to the fluid flow past it, thus its position vector is
x̄ ≙ (r̄, θ̄, z̄). The deformed and undeformed state coordinates of the
representative solid particle are related by x̄(X) ≙ X + ūx(X), where
ūx(X) is the displacement vector. The inner cylinder moves in the
z direction and we assume negligible displacement in the radial and
azimuthal directions. The assumption is reasonable because of the
absence of the pressure gradient in the base flow and incompressibil-
ity of the solid. Thus, for fully developed flow, ūx(X) ≙ (0, 0, ūz(R)).
The incompressibility condition is given by det(F̄) ≙ 1, where
F̄ ≙ ∂x̄

∂X
is the base state deformation gradient. Using the non-

dimensionalization scheme described above, the base state Cauchy
stress tensor σ̄ and the momentum equation for the solid are

σ̄ ≙ −p̄sI + 1

Γ
F̄ ⋅ F̄T , (4)

∇X ⋅ P̄ ≙ 0. (5)

Here, P̄ ≙ F̄
−1 ⋅ σ̄ is the base state first Piola–Kirchoff stress tensor

and p̄s is the base state pressure in the solid. The above equations are
to be solved by using following boundary conditions. At the fluid-
deformable-solid interface (r = ro), normal stress continuity implies
a constant pressure field in the deformable solid, while tangential
stress continuity gives the deformation gradient. At r = ro +H, since
the deformable solid is perfectly bonded to a rigid solid, thus ūz ≙ 0.
Following the procedure developed by Patne et al.,25 the base state
deformation of the solid in terms of the deformed state coordinates
is

ūz ≙ Γ log(r̄/(ro +H))
log(β) . (6)

Here, Γ = μ∗V∗/(G∗R∗) is the dimensionless velocity of the inner
cylinder. The parameter Γ can also be interpreted as the ratio of the
viscous stress in the fluid to the elastic stress in the deformable solid.

On the above base state, we impose infinitesimally small
axisymmetric and non-axisymmetric perturbations. In the case of
a deformable wall, we track the representative particle in the per-
turbed state that has position vector x(x̄) ≙ x̄ + u

′(x̄), where prime
over any quantity signifies a perturbed state quantity and u′(x̄) is the
perturbed state displacement of the particle. The deformation gradi-
ent to map the particle position from the deformed base state to the

perturbed state is F′ ≙ ∂x

∂x̄
. Thus, the total deformation gradient, F,

to map the particle position from the undeformed base state to the
perturbed state is

F ≙ ∂x

∂X
≙ ∂x

∂x̄
⋅ ∂x̄
∂X
≙ F′ ⋅ F̄. (7)

By using the deformation gradients defined above, the governing
equations for the deformable wall in the perturbed state are

det (F′) ≙ 1, (8)

σ ≙ −psI + 1

Γ
F ⋅ FT , (9)

Re
∂
2
u

∂t2
≙ ∇x̄ ⋅ P. (10)

Here, P = (F′−1 ⋅ σ) and σ are, respectively, the perturbed state first
Piola–Kirchoff stress tensor and Cauchy stress tensor. After lineariz-
ing the above governing equations about the base state, we substitute
normal modes of the following form:

(v′r , v′θ, v′z , p′)(r, θ, z) ≙ (ṽr , ṽθ, ṽz , p̃)(r)e(ikz+inθ−ikct), (11)

(u′r ,u′θ,u′z , p′s)(r̄, θ̄, z̄) ≙ (ũr , ũθ, ũz , p̃s)(r̄)e(ikz̄+inθ̄−ikct), (12)

where over-tilde indicates the eigenfunction of the corresponding
quantity. After using the normal modes, the linearized perturbed
state governing equations for the fluid become

Dṽr +
ṽr

r
+
in

r
ṽθ + ikṽz ≙ 0, (13)

−Dp̃ + (D2
+
1

r
D − 1 + n2

r2
− k2) ṽr − 2in

r2
ṽθ ≙ Re∥ikṽr(v̄z − c)∥,

(14)

− in
r
p̃ + (D2

+
1

r
D − 1 + n2

r2
− k2) ṽθ + 2in

r2
ṽr ≙ Re∥ikṽθ(v̄z − c)∥,

(15)

−i k p̃ + (D2
+
1

r
D − n2

r2
− k2) ṽz ≙ Re∥ikṽz(v̄z − c) +Dv̄zṽr∥,

(16)

where D = d/dr. Similarly, for the deformable solid, the linearized
perturbed state governing equations become

Dũr +
ũr

r
+
in

r
ũθ + ikũz ≙ 0, (17)

(D2
+
1

r
D + 2ikDūzD − 1 + n2

r2
+
ik

r
Dūz + ikD

2
ūz

−k2 − k2(Dūz)2)ũr − 2in

r2
ũθ − ΓDp̃s ≙ −k2c2ReΓũr , (18)

(D2
+
1

r
D + 2ikDūzD − 1 + n2

r2
+
ik

r
Dūz

+ ikD
2
ūz − k2 − k2(Dūz)2)ũθ + 2in

r2
ũr − inΓ

r
p̃s

≙ −k2c2ReΓũθ, (19)

(D2
+
1

r
D + 2ikDūzD − n2

r2
+
ik

r
Dūz

+ ikD
2
ūz − k2 − k2(Dūz)2)ũz − ikΓp̃s ≙ −k2c2ReΓũz , (20)
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where D ≙ d/dr̄. The above governing equations are to be solved by
using the following boundary conditions. At r = ri, the rigid bound-
ary is present, thus no-slip and impermeability of the fluid at the
inner cylinder surface implies

ṽr ≙ 0, ṽθ ≙ 0, ṽz ≙ 0. (21)

At r = ro, the continuity of the velocity and stresses at the fluid-
deformable-solid interface gives

ṽr ≙ −ikcũr , (22)

ṽθ ≙ −ikcũθ, (23)

ṽz + (Dv̄z)r≙ro ũr ≙ −ikcũz , (24)

Dṽz + ikṽr + (D2
v̄z)r≙ro ũr

≙ 1

Γ
(ik(Dūz)r≙ro +D)ũz + 1

Γ
(ik + (Dūz)r≙roD)ũr , (25)

(D − 1

ro
)ṽθ + in

ro
ṽr ≙ 1

Γ
(D − 1

ro
+ ik(Dūz)r≙ro)ũθ

+
in

Γro
ũr , (26)

− p̃ + 2Dṽr ≙ −p̃s + 1

Γ
(2D + 2ik(Dūz)r≙ro)ũr − T

Γ
(1 − k2)ũr . (27)

Here, ()r≙ro signifies the evaluation of the base state quantities at
r = ro. The parameter T = T∗/(GR) is the dimensionless interface
tension with T∗ as the dimensional interface tension. At r = ro
+H, since the deformable solid is perfectly bonded to the rigid solid,
disturbances must vanish,

ũr ≙ 0, ũθ ≙ 0, ũz ≙ 0. (28)

The above system of differential equations and boundary conditions
are applicable to an arbitrary unidirectional flow in a cylindrical
geometry subjected to non-axisymmetric disturbances and driven by
the movement of a surface. To solve the above system of the differ-
ential equations and boundary conditions for the eigenvalue c, we
use the pseudo-spectral method as discussed below.

FIG. 2. Variation of the eigenspectrum with the number of collocation points at
Re = 10, β = 0.5, Γ = 4, k = 0.5, H = 7, T = 0, and n = 1. The least stable
eigenvalues converge well with the change in the number of collocation points
showing that for Re < 10, N = 50 is sufficient to analyze the stability of the flow.

A. Numerical methodology

In the pseudo-spectral method,26,27 we expand the dynam-

ical quantities in terms of the Chebyshev polynomials as f̃ (y)
≙ ∑m≙N

m≙0 amTm(y), where f̃ (y),m,N,Tm(y), and am are, respectively,
the fluid or solid eigenfunction, number of the Chebyshev polyno-
mial, the highest degree of the polynomial in the series expansion
or the number of the collocation points, the mth Chebyshev poly-
nomial, and the coefficient of themth Chebyshev polynomial. Thus,
we need to evaluate the series expansion at N collocation points to
evaluate the series coefficients am and/or to obtain the eigenvalue c.
The discretized matrices then form the eigenvalue problem of the
following form:

c
2
Ce + cBe +Ae ≙ 0, (29)

where A, B, and C are the discretized matrices and e is the eigen-
vector. Next, we use the polyeig MATLAB routine to solve the
above eigenvalue problem. To filter out the spurious modes in the
numerically computed spectrum, the spectrum is obtained forN and

TABLE I. Least stable eigenvalues kc (rounded off to the eighth significant figure) reported by the previous studies for the
rigid outer cylinder agree well with the results from the numerical formulation of the present work obtained for Γ = 10−6,
T = 0, and H = 0.01.

(n, k) (η, Re) N kc

Liu and Liu (2012) (3, 3) (1/3, 1000) 50 0.192 321 43 – 0.123 780 71i
Preziosi and Rosso (1990) (3, 3) (1/3, 1000) 30 0.192 3 – 0.123 8i
Present work (3, 3) (1/3, 1000) 50 0.192 322 06 – 0.123 782 36i
Present work (3, 3) (1/3, 1000) 75 0.192 319 68 – 0.123 782 40i

Liu and Liu (2012) (0, 0.6546) (0.1, 3.60 × 106) 150 0.629 806 89 – 0.000 002 01i

Deguchi and Nagata (2011) (0, 0.6546) (0.1, 3.60 × 106) 140 0.629 808 33 – 0.000 002 02i

Present work (0, 0.6546) (0.1, 3.60 × 106) 125 0.629 806 82 – 0.000 001 98i

Present work (0, 0.6546) (0.1, 3.60 × 106) 150 0.629 806 89 – 0.000 002 02i
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N + 2 collocation points, and the eigenvalues are compared with
a specified tolerance (e.g., 10−4). The genuine eigenvalues are con-
firmed by changing the number of collocation points by 25 and
observing the variation of the predicted eigenvalues. If the eigen-
value does not change up to the sixth significant figure, we then use
the same number of collocation points to predict the critical param-
eters. In the present work, N = 75 is found to be sufficient to predict
the most unstable converged eigenvalue within the parameter range
studied here.

III. RESULTS AND DISCUSSION

A. Validation

To validate our numerical method, we compare the eigenval-
ues reported in the literature with those predicted by the present

numerical procedure. Since previous studies7,9,11 considered sliding
Couette flow through an annulus having a rigid wall, here we con-
sider Γ = 10−6 andH = 0.01, which effectively replace the deformable
wall with a rigid wall. Table I shows very good agreement between
the present work and previous studies for the least stable eigenvalue
thereby validating the numerical methodology utilized in the present
work. Table I also leads to a conclusion that with the increase in
Re, the number of collocation points required for the convergence
of the eigenvalues also increases. For Re < 1000, N = 75 is suffi-
cient to resolve the spectrum and the eigenvalues are accurate up
to five significant figures. In the present study, we are concerned
about the stability of the flow for Re < 1; thus, N = 75 is suffi-
cient to resolve the spectrum. Figure 2 illustrates the change in the
spectrum with respect to the increase in the number of collocation
points.

FIG. 3. Variation of cr and ci of the most unstable (or least stable) mode at Re = 0, H = 7, T = 0, and n = 0. [Panels (a) and (c)] illustrate the variation of the growth rate of
the disturbances with the wavenumber while [panel (b)] shows the wave speed of the disturbances with the growth rate. This panel demonstrates the switching of the most
unstable mode from the finite-wave mode to the short-wave mode at k ∼ O(1). This figure shows the existence of the finite-wave instability in the creeping-flow limit since ci

> 0 for 0.09 < k < 0.5.
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FIG. 4. Neutral stability curves (i.e., envelopes with ci = 0) in the Γ–k plane for the finite-wave mode at Re = 0, T = 0, and H = 7. [Panels (a) and (b)], respectively, show the
effect of variation in β and n on the finite-wave instability. The region on the concave side of the curves is unstable.

B. Creeping-flow limit

To begin with, it is useful to estimate the Reynolds num-
ber regimes encountered in the medical procedures alluded to in
the Introduction. These applications involve fluid flows at a rela-
tively low Reynolds number (Re = ρ∗V∗R∗/μ∗), where ρ∗,R ≙ (r∗o− r∗i )/2,V∗, and μ∗ are the density, half annular thickness, veloc-
ity, and viscosity, respectively, which can be estimated as follows.
The typical diameter of the blood vessel diameter is estimated to be
∼25 mm, ∼5 mm, and ∼5 mm, respectively, for the human aorta,
arteries, and veins.28 The guide wire has a diameter of ∼1 mm. The
thickness of the blood vessel walls is ∼2 mm, ∼1 mm, and ∼0.5 mm,
respectively, for the human aorta, arteries, and veins.28 Thus, half
annulus thickness R∗ is ∼6 mm for the aorta and ∼1 mm for arter-
ies and veins. For blood flow through blood vessels, the density of
blood is ρ∗ ∼ 103 kg/m3 and the limiting viscosity of the blood
is μ∗ ∼ 0.01 Pa s.29 The velocity of the guide wire in the case of
angioplasty is ∼0.01 m/s.5,6 Using these estimates, we determine the
Reynolds number to be O(1) in these applications and thus restrict
our discussion below to this regime.

Kumaran et al.13 first predicted the existence of the finite-wave
instability in the plane Couette flow past a linear viscoelastic solid,
which was later experimentally observed by Kumaran andMuralikr-
ishnan.30 The predicted finite-wave instability is characterized by the
critical dimensionless speed of the moving plate <1 and the critical
wavenumber <1. Since the plane Couette flow considered by Ref. 13
is a limiting case of sliding Couette flow in the limit of the narrow
annular gap, we expect the existence of the finite-wave instability for
the present flow geometry in the narrow-gap limit.

Figure 3 shows the existence of the finite-wave instability in
the ci vs k plot for Γ > 1. It must be noted that in our study, the
length scale is R∗ ≙ (r∗o − r∗i )/2, but for Kumaran et al.,13 the equiv-
alent length scale is (r∗o − r∗i ). Thus, we arrive at the relation Γ =
2ΓK , where ΓK is the dimensionless shear rate for the plane Couette

flow defined in the study of Kumaran et al.13 This indicates that in
the present case, the finite-wave instability must exist for the critical
dimensionless speed of the moving cylinder (Γc) < 2. As shown in
Fig. 3(a), Γc < 2 is in agreement with the prediction of Kumaran et
al.13 However, as shown in Fig. 3(c), with the increase in the annu-
lar gap, i.e., the decrease in β, Γc exceeds the characteristic Γc < 2
limit for the existence of the finite-wave instability. The existence of
Γc > 2 for the finite-wave instability is a consequence of the increas-
ing annular gap from a very small annular gap limit expected for
plane Couette flow. Thus, the finite-wave instability predicted for

FIG. 5. Variation of ci of the most unstable (or the least stable) mode at Re = 0,
H = 0.5, β = 0.8, T = 1, and n = 0. This figure shows the existence of the short-wave
instability in the creeping-flow limit.
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FIG. 6. Neutral stability curves in the Γ–k plane for the finite-wave mode at Re = 0, T = 1, and H = 0.5. [Panels (a) and (b)], respectively, show the effect on the short-wave
instability due to the variation in β and n.

the plane Couette flow is somewhat stabilized due to the increase
in the annular gap width. The higher annular gap is important since
as the guide wire of the catheter in angioplasty moves through dif-
ferent sizes of blood vessels, the annular gap varies, which effectively
makes the conclusions based on the plane Couette flow insufficient.
This implies that to draw meaningful conclusions about the stability
of the fluid flows encountered in themedical procedures, the stability
analysis of sliding Couette flow is important.

To understand the effect of the variation in β and n on the
finite-wave instability, we plot neutral stability curves in Fig. 4.
These curves show that for the finite-wave instability, kc < 1 but

Γc can exceed two depending on β and n. Thus, the instability
predicted here can be understood to be the continuation of the
instability for the plane Couette geometry to sliding Couette geom-
etry. Furthermore, as shown in Fig. 4(b), the finite-wave mode
corresponding to axisymmetric disturbances is the most unsta-
ble one. In fact, for H = 7, β = 0.6, and n > 1, the finite-wave
mode is linearly stable. We also point out an interesting con-
trast of the present prediction of instability in the creeping-flow
limit for sliding Couette flow with the prediction of stability of
finite-wave modes in pressure-driven flow in a deformable tube.16

While both the geometries involve a cylindrical tube lined with a

FIG. 7. [Panels (a) and (b)], respectively, show the variation of the critical parameters with β for the finite-wave instability at Re = 0, T = 0, and H = 7. The axisymmetric mode
is the critical mode for the finite-wave instability.
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deformable wall, the presence of a pressure gradient in the latter
configuration appears crucial in making the finite-wave mode flows
stable in the creeping-flow limit.

Gkanis and Kumar,14 for the first time, performed a linear
stability of the plane Couette flow past a neo-Hookean solid. The
necessity to employ the neo-Hookean model arises because of the
presence of the finite base state deformations when the flow is unsta-
ble. The study of Gkanis and Kumar14 predicted the existence of a
short-wave instability characterized by kc > 1 and Γc > 2 in terms of

the present non-dimensionalization scheme. The short-wave insta-
bility arises because of the discontinuity in the first normal stress
difference across the fluid-deformable-solid interface that is propor-

tional to ( dūz
dr̄
)2. For a neo-Hookean solid, the first normal stress

difference exists in any shearing deformation; it is expected that the
short-wave instability will be present in the present flow configu-
ration as well. Other studies involving pressure-driven flows past
the deformable surface17,31–33 have confirmed the presence of the

short-wave instability.
Figure 5 illustrates the presence of the short-wave instability in

sliding Couette flow for the axisymmetric disturbances. The neutral
stability curves for the short-wave instability for two representative
values of β are shown in Fig. 6(a). As expected, for the short-wave

instability, kc > 1, Γc > 2. Although, Fig. 5 shows Γc > 5, but for

T = 0 and β = 0.95, the critical shear rate is Γc ∼ 2, which is in

agreement with the results for plane Couette flow.14 In the previ-
ous studies involving cylindrical flow geometries such as Hagen–
Poiseuille flow through a neo-Hookean tube,17,25,33 the short-wave

instability has never been studied for the non-axisymmetric distur-
bances. For the first time, here, we analyze the stability of the effect
of the non-axisymmetric disturbances on the short-wave instability.
Interestingly, for the short-wave instability, as shown in Fig. 6(b),

the non-axisymmetric mode for n = 4 is the critical mode of the
instability. This shows the importance of studying the stability
of sliding Couette flow subjected to the non-axisymmetric distur-
bances.

From Fig. 4(b) for β = 0.6, we concluded that axisymmetric per-
turbations are the critical mode of the instability for the finite-wave

instability. However, this trendmay change for a higher gap between

the cylinders due to the variation of the thickness of the fluid layer.
Figure 7(a) shows the variation of Γc with β for increasing n. In agree-
ment with Fig. 4(b), Fig. 7(a) shows that the axisymmetric mode is
the critical mode for the finite-wave instability for the arbitrary value
β. Furthermore, as β → 1, the axisymmetric and non-axisymmetric
modes converge to the Γc value for the plane Couette flow. This indi-
cates that when the fluid layer thickness is very small, axisymmetric
and non-axisymmetric modes are destabilized simultaneously. As
shown in Fig. 7(a), since axisymmetric disturbances are the critical
mode, henceforth we will study only the axisymmetric modes for the
finite-wave instability.

Following earlier studies13,14,30,31,34 on the stability of the fluid
flow past deformable surfaces, here we study the variation of the
critical parameters with H for the finite-wave instability shown
in Fig. 8. The critical parameters show the scaling ∼1/H for H
> 5, which is also one of the characteristic feature of the finite-
wave instability. In addition, we find that increasing β has a desta-
bilizing effect on the finite-wave instability, in agreement with
Fig. 7(a).

FIG. 8. Variation of the critical parameters with H for Re = 0, T = 0, and n = 0. For
high H, kc , Γc ∼ 1/H.

Similar to the finite-wave instability, Fig. 9 shows the varia-
tion of Γc with β for H = 0.5. Unlike the finite-wave instability, for
the short-wave instability, the critical mode is the non-axisymmetric
mode n = 4, in agreement with the results of Fig. 6(b). Interest-
ingly, decreasing β has a stabilizing effect on both axisymmetric and
non-axisymmetric disturbances, but the former is stabilized faster
than the latter. This relatively faster stabilization of the axisymmet-
ric modes makes the non-axisymmetric mode with n = 4 the critical
mode for the short-wave instability. As β→ 1, Γc for the axisymmet-
ric and non-axisymmetric modes asymptote to Γc for plane Couette
flow. Thus, similar to the finite-wave disturbances, the axisymmetric
and non-axisymmetric short-wave disturbances are triggered simul-
taneously when the annular gap is sufficiently small. Furthermore,

FIG. 9. Variation of the critical parameters with β for Re = 0, T = 1, and H = 0.5. The
non-axisymmetric mode with n = 4 is the critical mode for the short-wave instability.
The results are obtained for a fixed k = 20 since for the short-wave instability, the
variation in critical parameters beyond k = 20 is found to be negligible.
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the difference between the critical parameters widens as β decreases.
To conclude, the axisymmetric mode is the critical mode for the
finite-wave instability, while the non-axisymmetric mode (n = 4) is
the critical mode for the short-wave instability.

The short-wave mode of perturbations for n = 4 are shown
in Fig. 10 at marginal stability parameters. The perturbations are
normalized by the maximum absolute value of the corresponding
eigenfunctions. In Fig. 10(a), at r = 0, which translates to r = ri in
physical space, v′z vanishes, as required by the boundary conditions
at the moving cylinder. This is likewise true for u′z , where the dis-
turbances must vanish at r = ro + H, which corresponds to r = 0 in
Fig. 10(b). The fluid-deformable solid interface is present at r = 1 in
both panels of Fig. 10.

The short-wave instability arises due to the existence of the
first normal-stress difference exhibited by the neo-Hookean solid.
The non-axisymmetric mode corresponding to n = 4 will lead to
a twisting-type of motion at the fluid-deformable solid interface,
as illustrated in Fig. 10. We expect that a constructive interaction
between the twisting motion introduced by the non-axisymmetric
mode and the first normal stress difference gives rise to a lesser Γc
for the n = 4 mode. However, the non-axisymmetric modes corre-
sponding to higher n might cause a destructive interaction between
the twisting motion and the first normal stress difference, thereby
increasing Γc. It must be noted that the first normal stress difference
is indeed important since the axisymmetric mode is the most unsta-
ble mode for the finite-wave instability for which the first normal
stress difference does not play a major role.

C. Effect of inertia (Re ≠ 0)

The preceding discussion corresponds to the stability of the
flow in the creeping-flow limit. In this section, we study the
effect of the increase in inertia on the finite-wave and short-wave
instabilities. As shown in Fig. 11, increasing inertia has a small

stabilizing effect on the finite-wave instability, while a destabiliz-
ing effect on the short-wave instability. In the case of finite-wave
instability, the stabilizing effect increases with decreasing β. How-
ever, for the short-wave instability, the destabilizing effect of the
increasing inertia is independent of β. It must be noted that the
wall and inviscid modes of the instability reported in the litera-
ture17,30,32–34 related to the flow past deformable surfaces are sta-
ble for Re < 1. Thus, for small Re (<1), the stability of the flow is
determined by the finite-wave and short-wave instabilities discussed
above.

D. Role of an unrestrained boundary at r = r o + H

As mentioned in the Introduction, in medical procedures such
as angioplasty and thread injection, the blood vessel plays the role of
the outer deformable cylinder, and these are not rigidly bonded to
an outer rigid cylinder. In such cases, to mimic the physiologically
relevant conditions, we replace the boundary conditions [Eq. (28)]
with stress-free boundary conditions. A rigorous treatment of this
configuration using the neo-Hookean model is mathematically and
computationally cumbersome. Thus, in what follows, we use the
linear elastic model for the deformable solid layer to illustrate the
qualitative effects of an unrestrained boundary. The use of the linear
elastic model for the present problem can be justified as follows.

For H ≥ 2, the study of Gkanis and Kumar14 on the plane Cou-
ette flow past a neo-Hookean solid shows that the results obtained
from linear elastic and neo-Hookean models are in excellent agree-
ment. However, for H < 2, for plane Couette flow past a deformable
solid, Γc is sufficiently high such that deviations appear in results
obtained by linear elasticity compared with a neo-Hookean model.
However, this is not an issue in the present analysis since the finite-
wave instability predicted here for H < 1 exists at low values of Γ
(<0.1) for which linear elasticity and more advanced models such
as the neo-Hookean model are in good agreement.14,32,35 Therefore,

FIG. 10. The normalized short-wave perturbations for the fluid and deformable solid at Re = 0, T = 1, n = 4, Γ = 9.9, k = 5, and H = 0.5 for the marginally stable short-wave
mode c = −0.038 215. Here, v′z ≙ Re[ṽzeikz] [panel (a)] and u′z ≙ Re[ũzeikz] [panel (b)]. For convenience, the axes for the fluids and the deformable solid have been
normalized to the interval [0, 1]. The length of the domain in the z direction is equal to a wavelength (2π/k) of the perturbations. The plots illustrate the twisting motion induced
by the non-axisymmetric mode for n = 4.
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FIG. 11. [Panels (a) and (b)], respectively, show the variation of the critical parameters with Re for the finite-wave (n = 0, T = 0, and H = 7) and short-wave (n = 4, T = 1, and
H = 0.5) instabilities. Inertia has a stabilizing effect on the finite-wave instability, while a destabilizing effect on the short-wave instability.

linear elasticity is deemed sufficient to describe the dynamics of the
deformable solid layer and hence to study the linear stability of the
present system for the unrestrained boundary.

In practice, the unrestrained deformable annular cylinder is
tethered at the two ends. For this case, a tangential stress at the fluid-
deformable solid interface will then lead to a deformation field that
varies with the axial direction in the deformable wall. However, a
rigorous consideration of such a configuration necessitates a global
stability analysis. The case of steady flow with induced pressure in
the deformable wall has been studied by Shankar and Kumaran.36

Recently, Mandloi and Shankar22 studied a pressure driven plane
Poiseuille flow through a deformable channel with one unrestrained
boundary. Here, we assume that the deformation developed in the
deformable walls is negligible, and, hence, the use of a linear elastic

FIG. 12. Variation of Γc with β for Re = 0, T = 0, and β = 0.6. The finite-wave mode
due to the unrestrained boundary at r = ro + H becomes unstable at much lower
Γc than for a restrained boundary.

model is justified. Thus, the present analysis is an attempt to demon-
strate the qualitative role of unrestrained vessel walls in introducing
instabilities.

The governing equations for the linear elastic solid can be read-
ily obtained from Eqs. (18)–(20) by substituting Dūz ≙ 0. A sim-
ilar substitution in the fluid–solid interface conditions (25)–(27)
results in the corresponding interface conditions for a linear elas-
tic solid. While, the boundary conditions (28) at r = ro + H due to
the unrestrained condition become

1

Γ
Dũz +

ik

Γ
ũr ≙ 0, (30)

1

Γ
(D − 1

ro +H
)ũθ + in

Γ(ro +H) ũr ≙ 0, (31)

−p̃s + 2

Γ
Dũr ≙ 0. (32)

The pseudo-spectral code is then modified accordingly to compute
the eigenvalues and carry out the subsequent analysis.

The unrestrained boundary reduces the critical parameter Γc to
O(10−4) or even lower, depending on the length and thickness of
the deformable cylinder, as shown in Fig. 12. The wavelength of the
unstable mode is determined by the length of the deformable cylin-
der (L) since the most unstable modes correspond to k → 0. Thus,
in the medical procedures where H ∼ O(0.1) and Γc is very low, the
predicted instability is expected to be relevant.

IV. CONCLUDING REMARKS

In the present study, we showed using a linear stability analysis
that sliding Couette flow of a Newtonian fluid in the gap between
two concentric cylinders with a deformable wall is unstable even in
the creeping-flow limit and at a very low Reynolds number (Re <
1). This is in direct contrast with sliding Couette flow with rigid
walls, which is linearly unstable only for β < 0.1415 and Rec ∼O(106).
Sliding Couette flow exhibits finite-wave and short-wave instabilities
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even in the creeping-flow limit as a consequence of the deformable
wall. Furthermore, the axisymmetric mode is the critical mode for
the finite-wave instability since critical dimensionless velocity (Γc)
required for it is lower than that for the non-axisymmetric modes.
However, for the short-wave instability, the non-axisymmetricmode
with n = 4 is the critical mode. The increase in the gap between
the two cylinders (or the decrease in β) has a stabilizing effect on
both classes of the instabilities. The increase in inertia, however, has
stabilizing and destabilizing effects, respectively, on finite-wave and
short-wave instabilities.

To mimic the flows involved in medical procedures, we also
considered an unrestrained deformable wall that predicts the finite-
wave instability at much lower Γc compared to the restrained config-
uration. Overall, the stability characteristics of sliding Couette flow
with a deformable wall are drastically different from those for the
corresponding configuration with a rigid wall. Our results, there-
fore, suggest that in practical applications involving sliding Couette
flow, the deformability of the wall is expected to play a vital role
in determining the stability of the system. Important questions of
relevance to the future work include a spatiotemporal analysis to
explore the possibility of absolute instability in this configuration, as
well as a non-modal stability analysis to understand the possibility
of transient growth in regimes where the flow is stable.
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The data that support the findings of this study are available
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