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Abstract

Using first-principles density functional theory, the zone-center phonon spectrum,mode oscillator
strengths andRaman tensor coefficients are computed for the relaxor ferroelectric Na1/2Bi1/2TiO3

(NBT) inR3c phase. Subsequently, these quantities are used to compute the Infrared (IR) reflectivity
andRaman intensity spectrum. TheE symmetrymodes at 246, 296, 580 cm−1 andA1 symmetry
modes at 256, 266, 568 cm−1 are found to have high oscillator strengths. The computed Raman
coefficients are also found to be significant for aforementionedA1modes. The computed IR
reflectivity andRaman spectra are expected to provide benchmark first-principles theroertical results
for the symmetry assignment of experimental spectra ofNBT inR3c phase.

1. Introduction

Complex oxides are highly promisingmaterials for numerous technological applications [1–8]. They also
exhibit wide spectrumof fascinating properties whichmake them attractive for interesting fundamental
scientific investigations [9, 10]. Some of these properties are ferroelectricity,magnetism, high-temperature
superconductivity, colossalmagnetoresistance, andmultiferroicity [11–13]. Overmany years, lead-based
piezoelectric oxides near themorphotropic phase boundary (MPB) have been extensively studied and exploited
inmany devices such as sensors, actuators, accelerometers, etc. However, due to toxic nature of lead, interest has
been shifted towards the development of high performance lead-free and environment friendly piezoelectrics in
last one decade [14–16]. In recent years, Na1/2Bi1/2TiO3 (NBT) and its solid solutions have attracted a great deal
of attention as alternative lead-free piezoelectric compounds [17–24]. TheNBT is interesting relaxor perovskite
(ABO3) inwhich theA-site is equally shared by two different cations. It undergoes several phase transitions in the
temperature range from5 to 900 K [25] and shows unusual dielectric and ferroelectric properties [26, 27]. The
cation disorder in theNBT at theA-site (Na/Bi) has been suggested to be themost likely reason for its relaxor
behavior. The prototype high temperature cubic phase ( ¯ )Pm m3 ofNBTundergoes a phase transition to
tetragonal polar phase ( )P bm4 at∼820 K [28]. The phase transition involves combination of two three-
component order parameters which transform according to +M3 irreducible representation at theMpoint and
the polar G-

4 ( )F u1 irreducible representation at theΓ point of the Brillouin zone of parent cubic structure [29–
33]. The freezing of these order parameters results in in-phase TiO6-octahedra tilting (a0a0a+) and spontaneous
polarization in tetragonal structure. The tetragonal phase further undergoes a phase transition at∼593 K to
polar rhombohedral phase. This phase transition can also be described using two order parameters transforming
according to +R4 irreducible representation at the R point and the polar G-( )F u4 1 irreducible representation at the
Γ point of the Brillouin zone of cubic structure. The order parameters freezing causes equal anti-phase TiO6-
octahedra tilting (a -a -a -

) about all crystallographic axes and spontaneous polarization [31]. At room
temperature, theNBT crystallizes in aforementioned rhombohedral structure and exhibits spontaneous
polarization (P≅38 μCcm−2) along the 3-fold [111] direction and relatively a large coercive field (∼70 kV
cm−1). Though the remnant polarization is comparable to that in prototypical ferroelectricmaterials, the large
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coercive field inNBTmakes its piezoelectric properties undesirable. Nonetheless, the piezoelectric properties of
NBT and its solid solutions can be improved by cation substitution at theA andB-sites as demonstrated in
several recent reports [34–36]. Significant improvement in piezoelectric behavior inNBTbased solid solutions
around theMPB region has also been demonstrated. Besides having important technological applications, the
NBT system is also interesting for scientific investigations as the origin of its various intrinsic properties and their
structure-property correlations have not been explored in detail so far. Over past several years, Infrared (IR) and
Raman vibrational spectroscopic techniques have beenwidely used to investigate various structural and
dynamical aspects in oxide systems. These techniques are particularly useful and advantageous in providing
precise information of ionic configurations and local distortions in the crystal structure [37–41]. In last several
years, several experimental Raman studies of single crystal and ceramicNBThave been reported [42–48]. On the
other hand, except thework reported by Petzelt et al, no experimental IR study ofNBThas been reported to the
best of our knowledge [33].Moreover, on the theoretical front, reported studies of room temperature
rhombohedral phase ofNBT are scarce. In particular, no theoretical study of IR andRaman intensity spectra of
NBThas been reported to the best of our knowledge. In this article, we present afirst-principles study of IR
response andRaman intensities ofNBT (R3c phase)within the framework of density-functional theory. In
particular, we compute and analyze IR reflectivity, Raman tensor coefficients andRaman spectrum.

This article is organized as follows. Theoretical analysis is reviewed in section 2with details of IR reflectivity
andRaman intensity spectrum calculations in sections 2.1 and 2.2 respectively. The density functional
computationalmethodology is presented in section 2.3. The results are discussed and analyzed in section 3.
Finally, the conclusions are presented in section 4.

2. Theoretical details

2.1. IR response

The frequency dependent complex dielectric permittivity tensor of amaterial in terms of phononmode
contributions can be expressed as [49–51].
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where eab
¥ is the electronic dielectric permittivity tensor, e abm, is the contribution ofmth IR-active phonon

mode to dielectric response, abSm, is the oscillator-strength of themthmode, W0 is the primitive cell volume, gm
is the damping coefficient and wm is the angular frequency ofmth optical phononmode. The oscillator strength

ab( )Sm, can be further expressed in terms of the Born effective charge tensors t ab( )*Z , and the eigendisplacements
tb( ( ))Um as [49]:
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The eigenvectors satisfy normalization conditionwith themass factor tM ,which indicates themass of ion t .
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The dielectric permittivity function along the direction q̂

can be obtained as [49]:
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As discussed in section 4, the optical phononmodes inNBT are polarized along the z-axis (A1) and in the x–y
plane (E). The contribution of thesemodes to dielectric permittivity function can be obtained using equation (5).

Finally, the reflectivity of optical radiation normal to the surface can be expressed as:
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The electric field of the radiation is assumed to be along the optical axis q̂

of the crystal.
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2.2. Raman spectrum

In crystals, the Raman scattering refers to the inelastic light scattering by the normalmodes of vibrations. The
Raman scattering intensities can be computed following theoretical background developed byG. Placzek and
others. In this approach, the intensities can be expressed in terms of variations in electronic (high-frequency)
dielectric permittivity e w¥ ( ) due to phonons [52–54]. In case of single crystals, the Raman intensity associated
withmodem, polarization along g, and field along b can be expressed as [54, 55]:
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where wm is the angular frequency ofmth phononmode, wi is the angular frequency of the incident radiation, 
is the Plank constant, kB is the Boltzmann constant,T is the temperature and a is the Raman susceptibility
tensor defined as:
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where tg( )Um is the eigenvector of the dynamicalmatrix, tM is themass of atom t, W0 is the volume of the unit
cell, tgab ( )Rm is the derivative of high-frequency dielectric constant eab

¥( )with respect to the displacement
tg( )um of atom t inmthmode in g direction.
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For powder or polycrystals, the integral intensity is averaged over the possible directions of the crystallites
[52, 54]
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If a polarized laser beam and a scattered radiation analyzer is used, then for the backscattering and 90° geometry,
the Raman intensity for the powder can be expressed as [52, 56, 57]
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where || and^ correspond to polarized and unpolarized light respectively. The total intensity for themthmode
can be expressed as
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Finally, the Raman spectrum can be plotted using the Lorentzian line shape as
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where Gm is the damping coefficient of themthmode.

2.3. Computationalmethodology

The calculations are performedwithin the framework of density functional theory as implemented in the
ABINIT package [58, 59]. The exchange-correlation energy is approximatedwithin local-density approximation
(LDA) [60]. The norm-conserving pseudopotentials generated using Troullier–Martins approach are used to
approximate electron-ion interactions [61]. TheKohn–Shamwave functions are expanded in planewave basis
with kinetic energy cutoff of 50Hartree. A 8×8×8Monkhorst-Pack k-pointmesh is employed for the
Brillouin zone sampling. The ions are relaxed until the largest force on each ion becomes less than 0.01 eVÅ−1.
Self-consistency in calculations is achieved until the total energies are converged to 10−6 eV/cell. Born-effective
charge tensors, zone-centered phonon frequencies and linear optical susceptibility are computedwithin a

3

Mater. Res. Express 3 (2016) 125501 MKNiranjan



variational approach to density functional perturbation theory [59]. Finite differences are used to compute
derivatives of the linear optical susceptibility with respect to atomic displacements.

3. Results and discussion

As discussed earlier, NBT crystallizes at room temperature in non-centrosymmetric rhombohedral structure
withR3c space group symmetry. In our calculations, theNBTunit cell consists of ten atoms, whereinNa andBi
ions are ordered in a cell doubled along [111] axis of the perovskite structure. The z axis coincides with the 3-fold
[111] axis. The calculated lattice constants, angle (α) and atomic positions (x, y, z) are listed in table 1 and are in
good agreement (within 1%–2%)with reported experimental and theoretical values.

The zone-center optical phononmodes of theR3c phase ofNBT in the absence ofA-site disorder can be
expressed according to irreducible representation, G = ÅA E9 91 [33, 62]. However, in presence ofA-site
disorder, the irreducible representation ismodified to G = Å ÅA E A4 9 51 2 [33]. The optical non-degenerate
A1 and doubly degenerate Emodes are polarized along the z-axis and in the x–y plane respectively. TheA1 and E
opticalmodes are both Raman and IR active. On the other hand, non-degenerateA2modes are silent. The
computed frequencies of transverse (TO) and longitudinal (LO) opticalmodes withA1 and E symmetry are listed
in table 2. Figure 1 shows a comparison of computed frequencies in the present workwith reported experimental
Ramanmode frequencies [42, 47]. The computed values are in good agreement with previously reported
experimental values. The difference between the computed and experimentalmode frequencies can be partially
attributed to the absence of disorder at theA-site in the theoreticalmodel and the limitations of local density
approximation in describing the exchange-correlation functional. The differencemay also be due to recently
reported coexistence ofmonoclinicCC phasewith rhombohedralR3c phase in theNBT at the room
temperature [63–65]. This coexistences of two phases has been suggested to be due to specific chemical ordering
ofNa andBi ions at theA-site in theNBT [66]. Furthermore, the low frequencymode at∼50 cm−1 in
experimental Raman spectrumofNBT is suggested to be that belonging to themonoclinicCC phase. Itmay be
noted that the computedmode frequencies correspond to temperature at 0 Kwhereas experimental values are
obtained from room temperature (300 K)Raman spectrum. Themode frequencies are expected to decrease by

Table 1.Computed (LDA) and experimental lattice constant ao (Å), angleα (in degrees), and structural para-
meters ofNa1/2Bi1/2TiO3 inR3c phase.

a0 a xNa Bi xTi xO yO zO

Calc. This work 5.678 59.58 0.2740 0.0069 0.1736 0.3280 0.7395

Ref. [48] 5.421 59.50 0.2707 0.0117 0.1827 0.3140 0.7441

Exp. Ref. [48] 5.4987 59.80 0.2611 0.0063 0.2070 0.2866 0.7496

Ref. [25] 5.5051 59.80 0.2627 0.0063 0.2093 0.2933 0.7496

Table 2.Computed (LDA) frequencies (cm−1) and
symmetry assignments of TO and LOmodes inNa1/
2Bi1/2TiO3 inR3c phase.

Modes ν(cm−1) Modes ν(cm−1)

E(TO1) 143 A1(TO1) 134

E(LO1) 149 A1(LO1) 135

E(TO2) 159 A1(TO2) 162

E(LO2) 161 A1(LO2) 172

E(TO3) 226 A1(TO3) 256

E(LO3) 227 A1(LO3) 262

E(TO4) 246 A1(TO4) 266

E(LO4) 277 A1(LO4) 314

E(TO5) 296 A1(TO5) 318

E(LO5) 359 A1(LO5) 372

E(TO6) 376 A1(TO6) 395

E(LO6) 404 A1(LO6) 403

E(TO7) 409 A1(TO7) 417

E(LO7) 442 A1(LO7) 432

E(TO8) 554 A1(TO8) 568

E(LO8) 557 A1(LO8) 731

E(TO9) 580 A1(TO9) 767

E(LO9) 751 A1(LO9) 770
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∼3–4 cm−1with the increase in temperature from0 to 300 K. The variation ofmode frequencies with
temperaturemay be due to anharmonic contributions resulting from thermal expansion and phonon–phonon
coupling [67].

As can be seen in table 2, the largest splitting between LO andTOmodes (LO8-TO8 and LO9-TO9) is
computed to be∼170 cm−1 and is indeed significant. However, the computed values of LOmode frequencies
are likely to be less accurate than those for TOmodes due to limitations of LDA approximation [68]. The LO-TO
splitting depends on electronic dielectric permittivity which is generally overestimated in LDA approximation.
As can be seen in table 2 and figure 1, the Ramanmodes ofNBT are overlapped together and appear as four
major bands in the frequency range of 130–170 cm−1, 230–440 cm−1, 550–580 cm−1 and 730–850 cm−1. The
computed eigenvectors reveal that Bi atoms participate only in the lowest frequencymodes in the range of
134–160 cm−1. High frequencymodes in the range 403–770 cm−1 are primarily associatedwith the vibrations of
oxygen atoms. TheNa-O andTi-O vibrations dominate in themodes in the frequency range of 160–395 cm−1

respectively. Next we show, the real and imaginary parts of complex dielectric permittivity function as function
of frequency infigure 2. The damping constant equal to∼10 cm−1 is used for allmodes. Figure 2 shows the
primary absorption peaks lying in the frequency range of 220–430 cm−1 and 550–580 cm−1. Further, the
strongest absorption peak can be seen to be centered at∼250 cm−1. The components of optical dielectric tensor
e¥( ) parallel and perpendicular to 3-fold [111] axis are computed to be 7.08 and 7.75. The average value of e¥

comes out to be 7.52 and is obtained by taking one-third of the trace of dielectric tensor. The computed
magnitude is overestimated as compared to reported experimental values∼5.62–6.71 [69]. The LDA computed
values of optical dielectric tensor components are expected to be overestimated by∼ 10%. The error is due to
underestimated values of bandgaps and hence screeningwhich in turnmay be attributed to lack of polarization
dependence in the exchange-correlation functional [70, 71]. However, itmay be noted that several quantities
such as optical phonon frequency at the zone center, whichmay critically depend on dielectric screening, are
computed to a better accuracy using LDA than the value of optical dielectric constant e¥( ) [71, 72]. Using
equation (1), the static dielectric tensor components parallel and perpendicular to 3-fold [111] axis are
computed to be 30.2 and 36.4 respectively. The computed oscillator strengths ofA1(TO) andE(TO)modes are
listed in table 3. TheE symmetrymodeswith frequencies 246 cm−1, 580 cm−1, 296 cm−1 andA1 symmetry
modeswith frequencies 568 cm−1, 256 cm−1, 266 cm−1 are found to have high oscillator strengths.

Thefigure 3 shows the IR reflectivity spectra calculated using equation (6). The IR spectra at normal
incidence on [001] and [100]NBT surfaces are shown infigures 3(b) and (c) respectively. The average reflectivity
spectrum is shown infigure 3(a). As evident, the IR spectrum exhibits characteristics patterns common tomany
perovskite oxides [51, 73]. As can be seen, the spectrum consists of fourmajor bands. The low-frequency band is
located below∼160 cm−1. The second band consistsmodes with frequencies in the range∼230–450 cm−1. The
modes in the range of∼550–600 cm−1 and∼700–850 cm−1 form third and fourth band. The computed IR
spectrum is in qualitative agreement with the experimental IR spectrumpresented in [33]with regard to
frequency positions as well as peak intensities. The disagreement between theoretical and experimental IR
spectrummay be attributed to several factors. In equation (6), the damping factor of∼10 cm−1 is used for all
modes.However, in case of perovskites, the damping factormay varywithmode frequencies in the range of
5–50 cm−1 [51]. Furthermore, all IR-activemodes are used in summation in equation (6). In our calculations,

Figure 1.Experimental frequencies of Ramanmodes inR3c phase ofNa1/2Bi1/2TiO3 cited from (a) [48] (b) [47] (c) computed LO- (d)

computed TO- phononmodes frequencies at the center of Brillouin zone of rhombohedralR3c phase ofNa1/2Bi1/2TiO3.

5

Mater. Res. Express 3 (2016) 125501 MKNiranjan



theA2modes, which are IR silent, are not identified due to absence of disorder at theA-site. On the experimental
front, it is generally difficult to observe full IR spectrum as themodes having low oscillator strengthmay not be
detected. Furthermore,modeswhich are close in frequency and are heavily dampedmay not be resolved
unambiguously. Thus, only few oscillators are generally required tofit the experimental spectrum.

Next, we compute Raman tensor coefficients andRaman intensity spectrum. TheRaman susceptibility
tensors ofA1 andEmodes are given as [61, 74]:
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The absolute values of computed Raman coefficients are listed in table 3. As can be seen, the Raman
coefficientmagnitudes are significant forA1 symmetrymodeswith frequencies 256, 266 and 568 cm−1. The
Raman spectrumof polycrystal NBT computed using equations (13)–(16) and damping constant G( )m

Figure 2.Real and imaginary part of dielectric permittivity as function of frequency forNa1/2Bi1/2TiO3 inR3c phase.

Table 3.Computed (LDA) values of IR oscillator strength tensor coefficients ´ -( )a u10 .5 andRaman
coefficients ´ -( )10 5 of the TOmodes inNa1/2Bi1/2TiO3 inR3c phase.

Oscillator strength Raman coefficients

Modes =S Sxx yy Szz Poly-crystalline a 2 b 2 c 2 d 2

A1(TO1) 0 1.48 0.99 0.48 1.84

E(TO1) 11.21 0 7.47 0.47 1.22

E(TO2) 2.16 0 1.44 0.24 0.28

A1(TO2) 0 16.34 10.89 0.18 1.62

E(TO3) 4.55 0 3.03 0.15 0.81

E(TO4) 123.41 0 82.27 1.84 0.04

A1(TO3) 0 86.3 57.53 0.75 20.93

A1(TO4) 0 50.55 33.7 5.02 18.01

E(TO5) 63.46 0 42.31 2.13 4.72

A1(TO5) 0 6.36 4.24 0.67 0.77

E(TO6) 21.20 0 14.13 5.71 0.58

A1(TO6) 0 5.85 3.90 1.92 2.18

E(TO7) 4.47 0 2.98 1.57 4.49

A1(TO7) 0 6.52 4.35 0.09 7.72

E(TO8) 14.67 0 9.78 1.61 0.07

A1(TO8) 0 137.55 91.7 11.09 76.97

E(TO9) 131.44 0 87.63 6.90 7.13

A1(TO9) 0 0.71 0.47 0.03 0.75
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∼10 cm−1 is shown infigure 4 and comparedwith the experimental spectrum [48, 75]. Further, the computed
spectra ofNBT in ( )x zz y and ( ) ¯z xy z configurations and their average are shown in Figures 5(a)–(c). Itmay be
noted that the pure ( )A TO1 and ( )E TO modes can be detected in ( )x zz y and ( ) ¯z xy z configurations
respectively. The relative Raman intensities of phononmodes are listed in table 4. As can be seen infigure 4 and
figure 5, the intensity peaks are centered atmode frequencies 140, 262, 296, 376, 408 and 569 cm−1. Figure 4
shows significant higher intensity forA1modes ( ( )x zz y configuration) centered at 262 and 569 cm−1. Though
the computedRaman spectrum is in reasonable agreementwith experimental spectrum [42, 47, 48], several
factorsmay contribute to differences between them. For instance, the observedRaman spectra can be quite
sensitive to the degree of cation disorder whichmay result in excitations of phonons at wavevectors in the entire
Brillouin zone [76]. Additional Raman lines in the experimental spectrum can also be due to nanoscale
chemically ordered domains in disorderedmatrices of oxides. Furthermore, asmentioned earlier, the

Figure 3.Computed IR reflectivity spectra forNa1/2Bi1/2TiO3 inR3c phase.

Figure 4.Theoretical (solid blue) and experimental (dash-dot red) [48, 75]Raman intensity spectra of polycrystallineNa1/2Bi1/2TiO3

inR3c phase.
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Figure 5.Computed Raman intensity spectra of single crystal Na1/2Bi1/2TiO3 inR3c phase for (a) ( )x zz y configuration (b) ( ) ¯z xy z
configuration (c) average intensity.

Table 4.Computed (LDA) and experimental [48, 75] relative Raman
intensities of phononmodes inNa1/2Bi1/2TiO3 inR3c phase.

Theory Exp.

Modes ν(cm−1) I I0 Modes ν(cm−1) I I0

A1 134 0.27

E 143 0.22

E 159 0.05

A1 162 0.13

E 226 0.08

E 246 0.10

A1 256 0.66 — 246 0.51

A1 266 0.87 — 285 1.00

E 296 0.26

A1 318 0.05

E 376 0.24 — 323 0.31

A1 395 0.11

E 409 0.15

A1 417 0.10 — 484 0.17

E 554 0.05

A1 568 1.00 — 576 0.82

E 580 0.25

A1 767 0.01 — 756 0.12

— 831 0.14

8

Mater. Res. Express 3 (2016) 125501 MKNiranjan



coexistence ofmonoclinicCC phase with rhombohedralR3c phases inNBT at room temperaturemay also
contribute to additional lines in the experimental Raman spectrum.

4. Conclusions

The oscillator strengths of zone-center phononmodes, Raman tensor components, IR reflectivity andRaman
intensity spectrum are computed for room temperatureR3c phase of relaxor ferroelectric Na1/2Bi1/2TiO3

(NBT)with in the framework offirst-principles density functional theory. TheE symmetrymodeswith
frequencies 246, 296, 580 cm−1 are found to have high oscillator strength. Further, theA1modes at 256, 266,
568 cm−1 are found to have high oscillator strengths aswell as high values of Raman coefficients. The computed
IR reflectivity andRaman spectra can be used as benchmarkfirst-principles theroertical results for the symmetry
assignment of experimental spectra ofNBT inR3c phase. The present work is expected to further stimulate
theoretical and experimental studies of IR andRaman response ofNBT.
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