
Performance Optimization and Load-Balancing Modeling for
Superparametrization by 3D LES

Gijs van den Oord
Netherlands eScience Center
Amsterdam, the Netherlands

Maria Chertova
Netherlands eScience Center
Amsterdam, the Netherlands

Fredrik Jansson∗

Centrum voor Wiskunde en
Informatica

Amsterdam, the Netherlands

Inti Pelupessy
Netherlands eScience Center
Amsterdam, the Netherlands

Pier Siebesma
Delft University of Technology

Delft, the Netherlands

Daan Crommelin2

Centrum voor Wiskunde en
Informatica

Amsterdam, the Netherlands

ABSTRACT

In order to eliminate climate uncertainty w.r.t. cloud and convection

parametrizations, superpramaterization (SP) [1] has emerged as

one of the possible ways forward. We have implemented (regional)

superparametrization of the ECMWF weather model OpenIFS [2]

by cloud-resolving, three-dimensional large-eddy simulations. This

setup, described in [3], contains a two-way coupling between a

global meteorological model that resolves large-scale dynamics,

with many local instances of the Dutch Atmospheric Large Eddy

Simulation (DALES) [4], resolving cloud and boundary layer physics.

The model is currently prohibitively expensive to run over climate

or even seasonal time scales, and a global SP requires the alloca-

tion of millions of cores. In this paper, we study the performance

and scaling behavior of the LES models and the coupling code and

present our implemented optimizations. We mimic the observed

load imbalance with a simple performance model and present strate-

gies to improve hardware utilization in order to assess the feasibility

of a world-covering superparametrization. We conclude that (quasi-

)dynamical load-balancing can significantly reduce the runtime for

such large-scale systems with wide variability in LES time-stepping

speeds.

CCS CONCEPTS

· Applied computing → Earth and atmospheric sciences; ·

Computing methodologies → Multiscale systems; Massively

parallel algorithms; Massively parallel and high-performance simu-

lations.

KEYWORDS

Weather & climate simulation, Superparametrization, Multiscale

modeling, Load-balancing

∗Also with Delft University of Technology.
2Also with Korteweg-de Vries Institute, University of Amsterdam.

PASC ’21, July 5ś9, 2021, Geneva, Switzerland
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8563-3/21/07.
https://doi.org/10.1145/3468267.3470611

ACM Reference Format:

Gijs van den Oord, Maria Chertova, Fredrik Jansson, Inti Pelupessy, Pier

Siebesma, and Daan Crommelin. 2021. Performance Optimization and Load-

Balancing Modeling for Superparametrization by 3D LES. In Platform for

Advanced Scientific Computing Conference (PASC ’21), July 5ś9, 2021, Geneva,

Switzerland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

3468267.3470611

Introduction

One of the dominant uncertainties in current climate projections is

the estimation of cloud feedback; whereas it is certain that clouds

play a crucial role in the development of the Earth’s albedo and

therefore climate sensitivity, our global circulation models (GCM)

do not yet possess the resolution to represent realistically bound-

ary layer turbulence and convection that determine cloud fields

and emerging mesoscale organization [5]. Furthermore, there is

high demand for realistic meteorological forecasts at sub-kilometer

resolutions, ranging from flood risk assessment to the short-term

prediction of wind farm yields.

Properly resolving the turbulent overturning motion of air and

humidity within the atmospheric boundary layer requires grid res-

olutions typically of the order of 100 m, which is still orders of mag-

nitude beyond state-of-the art GCM’s and non-hydrostatic regional

weather models. Hence these models rely on a complex system of

process parametrizations, which gives rise to model uncertainties

and biases [6].

On the other end of the spectrum of model resolutions, the large

eddy simulations (LES) reside. At these scales, turbulence is well

represented due to self-similarity in the inertial sub-range, convec-

tive up- and downdrafts arise from explicitly resolved dynamics

and mesoscale phenomena such as cold pools emerge naturally. It

is, however, computationally not feasible to cover the globe with a

single LES.

One strategy to overcome this barrier is superparametrization

(SP) [1], a technique where GCM parametrizations have been re-

placed by independent sub-models within each grid column. The

basic idea is to force the sub-models by the GCM state and let them

re-distribute momentum, heat, and humidity vertically. The forcing

on the LES models has a relaxation period equal to the GCM time

step and acts purely with respect to the horizontal slab average ⟨q⟩,

fq (tn ) =
Q(tn ) − ⟨q(tn )⟩

∆t
, (1)

This work is licensed under a Creative Commons Attribution International 4.0 License.



PASC ’21, July 5–9, 2021, Geneva, Switzerland van den Oord et al.

where Q and q denote the corresponding prognostic state variables

in respectively the GCM and small-scale models. After progressing

the latter towards the arrival point of the global model, the models

are coupled via a local tendency proportional to the change in the

horizontally-averaged state,

Pn+1Q =

⟨q(tn + ∆t)⟩ − ⟨q(tn )⟩

∆t
(2)

The advantage of this approach is firstly practical: with moderate

adjustments to the weather model code we can replace its physics

parametrization scheme with a more realistic cloud-resolving sub-

model. Secondly, there are performance benefits as the LES models

can run completely independently śthey usually have periodic

boundary conditions in the horizontal domainś which drastically

limits inter-node communication1.

From a performance modeling perspective, it is expected (and

observed) that the resulting performance of the SP model is deter-

mined by the LES models, which have much smaller time steps than

the global model. It is therefore essential that the implementation of

SP allows the LES instances to run in parallel while the GCM awaits

the time stepping and determines the collective synchronization

point.

The purpose of this paper is to study the performance scaling

of this model with growing number of superparametrizing LES

instances, describe optimizations that we have implemented and

explore new strategies to reduce the time-to-solution or consumed

resources. Our parallel coupling implementation, load-balancing

strategy and performance modeling may apply to other multiscale

systems where micro-models run concurrently and independently

to simulate sub-grid features of a large-scale model.

Superparametrization of OpenIFS by DALES

In our setup [3], we have coupled the ECMWF OpenIFS code to

DALES through the coupling framework OMUSE [7]. This Python

package is based upon the AMUSE platform [8] which provides

automatic communication between a master Python script and the

model components [9], wrapped into Python classes. This interface

is nonrestrictive and provides the flexibility to implement the lock-

step procedure of SP. The OMUSE framework provides a number

of services to expedite coupled Earth system models, e.g. grid-data

structures, unit conversions and model state handling, and we will

use this acronym to refer to this entire software layer from here

on. Using Python as the coupling code language has enabled us to

obtain a scientifically sound coupling and dedicated diagnostics in a

relative short development period. Nevertheless, some unexpected

bottlenecks have emerged too, which we elaborate on later.

Our SP implementation of OpenIFS respects the sequential time

step splitting algorithm that governs the physics package2 of the

ECMWF model [10]. To reconcile this numerical scheme with SP

and maintain a parallel execution of the LES instances, we had to

split the OpenIFS time step into a part before the cloud scheme and

after. After exposing the fractional OpenIFS time steps and DALES

time steps as Python functions in OMUSE, as well as the appropriate

1Provided the LES MPI layouts do not cross nodes.
2In this context we define ’physics’ as all processes that are parametrized purely in
the vertical direction or within a cell, such as convection, boundary layer turbulence,
cloud physics, the surface scheme, orographic drag etc.

Algorithm 1: Superparametrization time step

1 while t < tf inal do

2 evolve global model with dynamics and pre-cloud

physics: Q → Q + D(t)∆t ;

3 for i in 1, . . . ,n do in parallel

4 compute large scale forcings fq (t) using eq. 1;

5 time step local models until t + ∆t : q → q(t + ∆t);

6 compute local physics tendency PQ (t + ∆t) using eq.

2;

7 apply SP tendencies: Q → Q + PQ∆t ;

8 evolve global model with post-cloud physics:

Q → Q(t + ∆t);

9 t → t + ∆t ;

getters and setters of prognostic fields and tendencies, we were

able to implement the algorithm 1 as a Python script that drives the

GCM model and LES instances over MPI. The parallel loop on the

third line of the algorithm was achieved by using the asynchronous

execution capabilities for remote functions in OMUSE.

Benchmark Cases

We have run the coupled model in multiple configurations and pre-

sented a scientific validation of the outcome against observations in

[3]. For the work below, four benchmark cases were used, listed in

table 1. Two of themwere run around the village of Cabauw (Nether-

lands) and two of them above the sub-tropical island of Barbados,

where trade winds and shallow convection yield large-scale cloud

systems that are notably hard to simulate correctly3. The Cabauw

case represents a typical spring day with land-surface fluxes driving

the development of the atmospheric boundary layer, but note that

these cases contain LES instances over both land and sea, whereas

the Barbados setup contains practically only DALES instances over

the ocean. The horizontal grid cell size for DALES is in all cases 200

m, which is about the minimal resolution within the ’inertial range’

and the vertical discretization contains 160 equidistant levels up to

4 km height.

In all of these cases, the OpenIFS grid has 511 spectral modes and

91 vertical layers and a reduced gaussian grid with 348528 points

and a corresponding horizontal grid spacing of about 40 km. The

SP time step has been chosen to be 15 minutes, corresponding to

the maximal recommended timestep of OpenIFS at this resolution.

SP load imbalance

The concurrent execution of LES instances appears to be quite

unbalanced in our benchmark cases. Figure 1a depicts the waterfall

plot of a few time steps of the Cabauw-200 run that displays a

particularly unbalanced situation. The large spread in the LES run

time distribution, which has been drawn in fig. 1b, can primarily

be attributed to the adaptive time step size: DALES has an explicit

time integration scheme which limits the time step by the CFL

condition. This results in instances with strong up- and downdrafts

3These locations also host to measurement campaigns, which is useful for assessing
the simulation outcome, but of no specific relevance here.



Performance Optimization and Load-Balancing Modeling for Superparametrization by 3D LES PASC ’21, July 5–9, 2021, Geneva, Switzerland

case Nxy les steps np

Cabauw-64 642 72 69 4

Cabauw-200 2002 42 193 8

Barbados-64 642 208 26 4

Barbados-200 2002 180 26 8

Table 1: Listing of the benchmark cases.Nxy denotes the hor-

izontal number of cells, ’les’ denotes the number of DALES

instances, ’steps’ the number of SP time steps, ’np’ the num-

ber of MPI tasks per DALES model.

and horizontal fluctuations being heavily limited in their time step.

Secondly, the thermodynamics and microphysics have a significant

impact on the DALES performance, and hence cloudy or rainy LES

simulations generally take more time to complete a single time step.

A global SP will require 0.34 million DALES copies and hence ten

thousands of cluster nodes, unless multiple instances share a single

CPU core, with a degraded DALES performance as a consequence.

One can think of several strategies to reduce the number of LES

instances, being either confinement to a limited SP region, as we

use for these benchmark cases, or coarsening the global model

grid, which in its turn degrades the accuracy of the large-scale

circulation4. In the remaining part of this analysis we will assume

that the number of available cores is sufficient to run the required

number of instances, and focus on improving the performance of

the coupled system.

The performance optimization of the SP setup has been subject of

previous research and the following strategies have been identified:

• Increase DALES performance. This is obviously the method

of choice, but has limited prospects since DALES is already

well-optimized.We have increased single-thread performance

by eliminating divisions and optimizing loop orderings.

• Decrease the LES grid extent and reduce the number of cells.

There is no reason to let the local models fill up the global

model grid cells horizontally, but this strategy is limited by

the scale of the emerging cloud patterns that need to be

represented by the local models.

• Use mean-state acceleration [11], which allows for shorter

run time than the full GCM time step. This method assumes

there is a time scale separation between the large eddies

and the mean state, allowing the resulting SP tendency to

be linearly extrapolated from the mean state after only a

fraction of the time steps. The technique slightly deteriorates

the accuracy of the SP in favour of shorter runtimes for the

DALES models [3].

• Use load-balancing to fill up the white space in fig. 1a. Since it

cannot be known initially which LES models will be slow or

fast5, a dynamical load-balancing strategy is needed, where

every SP time step we monitor the wall-clock times of the

instances and rebalance the amount of CPU cores (and MPI

tasks) they will be given. This assumes that the wall-clock

4And moreover, if one insists that all the LES instances cover global model grid cells
and retain a resolution of about 200 m, this strategy will effectively increase the number
of grid points per LES, making them run slower again.
5And this behavior may change during the simulation, e.g. as convection is developing
the instance time stepping may decelerate.

0 1000 2000 3000 4000 5000 6000

Wall-clock time (s)
D
A
L
E
S
in
st
an
ce

(a) Waterfall plot of four SP time steps. The blue bars denote the actual wall-
clock time of the LES instances.

0 500 1000 1500 2000 2500 3000 3500

Wall-clock time (s) per SP step

0

100

200

300

400

500

600

700

800

C
ou
n
t

Cabauw-200

Barbados-200

(b) Overall distribution of DALES wall-clock times of the SP time stepping
with a fitted Gamma distribution.

Figure 1: DALES ensemble timing data.



PASC ’21, July 5–9, 2021, Geneva, Switzerland van den Oord et al.

time Tn of a LES instance is good predictor for Tn+1. Fortu-

nately this is usually the case, as can be observed from fig.

2a and 2b.

An important technical aspect of the SP algorithm is the require-

ment that the LES instances start from their previous state: whereas

the forcings are discontinuous between SP time steps due to the

GCM update, the developed turbulent eddies encoded in the small-

scale LES state must be inherited. In the current framework, the

DALES instances keep their state in memory while the GCM pro-

gresses; assigning more resources to a slow DALES instance how-

ever requires a restart of the program from a serialized state. Al-

though this is a feature that the OMUSE framework does support,

DALES currently must always restart with the same number of MPI

processes as when the snapshot was made. Nevertheless we believe

overcoming this technical difficulty is very much feasible, though

not the purpose of this paper: we will suffice with a performance

model of DALES to study the overall benefits of a quasi-dynamical6

load-balancing strategy.

Coupler performance

Our efforts to optimize the SP coupled system have not been lim-

ited to the DALES code; we have obtained better performance and

scalability of the coupling code as well. This was necessary as the

coupling code and communication between Python script and LES

instances had become a major bottleneck after applying the above

optimizations. In our original implementation of the SP algorithm,

the computation and dispatching of the large-scale forcings and

retrieval of SP tendencies (line 4 and 6 in algorithm 1) had been part

of the serial Python code. As a result, many MPI messages were

being sent in a blocking way before and after the SP time stepping,

resulting in sub-optimal performance and poor scaling behavior of

the data exchanges.

In the new version of our SP implementation we have used the

asynchronous feature of OMUSE to parallelize the communication

of these forcings and tendencies. The former are being sent to all

LES instances in parallel whereas the latter are being retrieved

whenever the LES has finished time stepping, an attempt to hide

MPI latencies and prevent network congestion. As a result, the

coupling time has been reduced as can be seen from fig. 3. However,

increasing the number of LES models to 1000 reveals that there

is still a bottleneck in the implementation: setting the forcings

may result in many MPI send calls being issued from the node

executing the master script and we suspect that a collective MPI

routine7 would be a far better option here. We will ignore this

scaling problem in our considerations on load-balancing below

and assume that the communications with the LES instances is a

constant overhead on the time-to-solution.

DALES strong scaling

The DALES code is parallellized with MPI, with partitioning in

the horizontal directions of the grid8. The DALES time step con-

tains only a few inter-process communication points, which are

6We rebalance the work at SP time steps.
7Which is to our knowledge not (yet) part of the OMUSE framework.
8This is a common partitioning in atmospheric models because the vertical dimension
is treated vastly differently throughout the code.

0 500 1000 1500 2000 2500 3000

Tn [s]

0

500

1000

1500

2000

2500

3000

T
n
+
1
[s
]

Cabauw-200

Barbados-200

(a) Autocorrelation plot of the DALES wall-clock time Tn+1 at SP time step
n + 1 vs. the previous time step.

−300 −200 −100 0 100 200 300

Tn+1 − Tn [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

P
ro
b
ab
ili
ty

Cabauw-200

Barbados-200

(b) Distribution of the difference of consecutive wall-clock times of SP time
steps per LES instance, with a fitted Cauchy distribution.

Figure 2: DALES SP time step autocorrelation.



Performance Optimization and Load-Balancing Modeling for Superparametrization by 3D LES PASC ’21, July 5–9, 2021, Geneva, Switzerland

(a) Original sequential SP coupling implementation timings.

(b) Parallelized coupling optimization result.

Figure 3: Scaling of various algorithm components with the

number of superparametrized gridpoints, using the average

over 5 time steps and LES over (a growing region over) Bar-

bados, with a horizontal resolution of 64 × 64 grid cells.

the halo exchanges of its prognostic fields during horizontal advec-

tion/diffusion and collective communication for the fast Fourier

transform in the pressure equation solver. For our purpose, we are

only interested in DALES configurations with up to 200 × 200 cells

horizontally, and it is sufficient to consider the strong scaling of the

program within a single node of a compute cluster. The inter-node

communication overhead makes larger partitions at these resolu-

tions inefficient. In fig. 4 we fitted the DALES runtime on a single

node of the ECMWF Cray XC409 with a simple Amdahl scaling

9This machine has two 18-core Intel Xeon EP E5-2695 V4 Broadwell processors per
compute node.

0 5 10 15 20 25 30

Number of cores

102

103

104

D
A
L
E
S
ru
n
ti
m
e
(s
)

DALES 64 x 64

Perfect 64 x 64

DALES 200 x 200

Perfect 200 x 200

Figure 4: Strong scaling behavior of DALES for two resolu-

tions (642 and 2002 grid points horizontally) on a single node.

Samples were obtained with a 5-run average using integer

divisors of the grid resolution in each dimension.

[12],

T (N ) ∝ (1 − p) + p/N (3)

where we fitted p = 0.89 to be the parallel fraction of the code and

the proportionality factor is the single-thread wall-clock time T (1)

which depends upon the DALES grid resolution. We assume this

constant is universal across our simulations. Its potential limiting

factors are halo exchanges, collectives during the solution of the

pressure equation and local load imbalances in thermodynamics

and microphysics. The former two are dependent upon DALES

configuration (which is identical for all our instances), the latter is

negligible due to periodic boundary conditions.

Exploring Dynamic Load Balancing

The aim of this section is to explore possible benefits of dynamic

load balancing for the SP system by optimizing the number of CPU

cores used by each of the DALES instances. We will assume that

all other technical bottlenecks have been cleared and the SP time

stepping of the slowest LES instance dominates the time-to-solution.

Furthermore, we will make the following assumptions:

(1) It is always possible to find a configuration of DALES MPI

tasks such that no instance has to run across multiple nodes.

We constrain the simulated load-balancing to disallow more

than 36 cores for a single DALES instance śthe number of

cores per node at the machine where we have collected our

timing dataś but ignore the problem of placing the processes

efficiently.

(2) Load-balancing and process placement algorithms take a

negligible amount of time compared to the SP time stepping.

In reality, a restart of the entire system does introduce some

overhead.

(3) Assigning more MPI tasks for certain DALES instances does

not significantly impact the communication time with the



PASC ’21, July 5–9, 2021, Geneva, Switzerland van den Oord et al.

master Python script. This is a safe assumption considering

every DALES will be localized within a single node.

(4) The performance of a DALES instance is independent of the

DALES models it is sharing a compute node with, even if the

number of processed grid cells becomes inhomogeneously

distributed amongst MPI tasks. This assumption ignores the

fact that a memory-bound code like DALES is heavily de-

pendent upon L3 cache usage and thus will feel the presence

of other instances on the CPU, but it does not make a lot

of sense to model this penalty whilst the process placement

problem has not been solved.

To explore the impact of load-balancing we apply the scaling rule

eq. 3 to the four benchmark cases presented above to optimize

the SP wall-clock time, which we assume to be the slowest LES.

The algorithm consists of an iterative hypothetical reallocation

of resources, reassigning a core from the currently fastest LES to

the slowest one until the predicted run time decreases no more.

This yields a configuration that can be applied to the measured

wall-clock time of the next time step. We denote the result with the

persistence assumption, as it is based upon the hypothesis that the

performance will be a good predictor for the next time step. The

perfect load-balancing is the theoretical maximum, constructed by

using the actual measured timings of the next time step as input.

The results are listed in tab. 2 and reveal a picture where load-

case spers [%] sper f [%]

Cabauw-64 17.94 25.51

Cabauw-200 11.01 15.49

Barbados-64 1.30 4.94

Barbados-200 2.60 6.44

Table 2: Hypothetical load balancing of 4 SP simulations:

spers denotes the speedup achieved by assuming persistent

wall-clock time of LES instances, sper f denotes the maximal

achievable speedup with perfect prediction.

balancing can play a significant role depending on the case at hand.

For the Cabauw cases, the tail of the distribution is long and the

bulk of the models have short run times (see fig. 1a). A speedup of

about 18% seems feasible, and this is rather close to the perfect load-

balancing because the LES run-times are well predictable, which

can be seen from the time series in fig. 5 as well. In the Barbados

cases however, the instances are much more lumped together and

load-balancing speedup is at best limited to a disappointing 7%. We

believe this is due to the fact that the models are all located above

sea, with similar surface fluxes, and driven by a rather uniform trade

wind. This will result in a homogeneous CFL condition across the

DALES models and less potential for load-balancing to accelerate

extremely slow instances.

To draw conclusions beyond the test cases at hand, we can treat

the LES run times as an ensemble of independent Markov chains

that evolve according to the Cauchy distribution ρ, centered at zero,

with scale parameter τ fitted in fig. 2b,

Tn+1 = Tn + ∆ , ρ(∆) =
1

πτ

[

τ 2

τ 2 + ∆2

]

(4)

0 25 50 75 100 125 150 175 200

SP time step

0

5

10

15

20

25

30

35

40

S
p
ee
d
u
p
[%

]

Perfect balancing

Persistence assumption

Figure 5: Time series of the expected speedup for the

Cabauw-64 case, listing both the maximal achievable

speedup (perfect prediction) and the gain for the persistence

assumption.

The assumption that the LES wall-clock time depends only on its

previous state is not exactly valid because the LES models are forced

by a transient large-scale circulation that eventually influences their

step size and thermodynamic complexity. Furthermore we note that

the scale τ of the distribution in eq. 4 is not universal and depends

on the test case at hand: the Barbados cases display a slightly wider

distribution than the Cabauw runs, especially comparing against

the variance of the distribution of LES run-times themselves. Fi-

nally, the distribution is in reality skewed in extreme cases, very

slow LES instances tend to accelerate and very fast ones to slow

down due to limited wind forcings and surface fluxes. Nevertheless,

we believe that the independent ensemble is a sufficient approx-

imation to assess the impact of load-balancing for large number

of LES instances. For this it is essential to mimic the long tail of

the distributions of SP wall-clock times well, such that the slowest

LES has a realistic run time. The PDF of DALES run times has been

fitted with a gamma distribution (see fig. 1b),

ρ(T ) =
xk−1e−x

θΓ(k)
, x =

T

θ
(5)

where θ is a typical time scale that determines the standard devia-

tion together with the dimensionless shape parameter k . With the

case τ [s] k θ [s]

Cabauw-64 16.91 2.12 309.90

Cabauw-200 10.99 2.29 256.83

Barbados-64 3.87 100.63 3.24

Barbados-200 35.26 116.78 19.42

Table 3: Fitted parameters fromeqs. 4 and 5 for two test cases

at two resolutions.

fitted parameters listed in tab. 3 we are able to sample an initial

set of run times for any number of DALES models and progress

this set using eq. 4. During this we reject sampled SP times beyond

10σ of the original fitted distribution to avoid artificially high run



Performance Optimization and Load-Balancing Modeling for Superparametrization by 3D LES PASC ’21, July 5–9, 2021, Geneva, Switzerland

102 103 104

Nr. of DALES instances

2000

2500

3000

3500

4000

4500

Ti
m

e-
to

-s
ol

ut
io

n 
[s

]

Original
Perfect balancing
Persistence assumption

(a) Total wall-clock time per step.

27 28 29 210 211 212 213 214 215 216

Nr. of DALES instances

0

10

20

30

40

50

60

S
p
ee
d
u
p
[%

]

Persistence assumption

Perfect balancing

(b) Speedup due to load-balancing.

Figure 6: Synthetic Cabauw-64 based performance with in-

creasing number of LES instances.

times and resulting load-balancing speedup, and also reject jumps

in runtime larger than 10τ , which are considered unrealistic. As a

starting distribution, we choose the Cabauw-64 fitted PDF because

we expect this density to represent the global SP ensemble better

than the Barbados case; in a global cover with tens of thousands

of LES instances, the large variability among the DALES models

will result in a long tail of slow instances and a large reservoir of

fast models. The resulting timings are shown in fig. 6a. The origi-

nal timings increase as more LES models are considered because

extremely slow instances are more likely to occur. The effect of

load-balancing significantly reduces this growth and its relative

impact rises too, with an asymptotic speedup around 50%, which

is only about 10% lower than the maximal achievable acceleration,

shown in fig. 6b. We note, however, that the increasing run time

disqualifies the Cabauw-64 global extension as a viable forecasting

system as it takes more than an hour to progress the model over a

GCM time step of 15 minutes. Nevertheless, we expect the reported

speedup to persist under optimizations of the LES code ś at least

as long as the time step size in the explicit integration is limited by

the CFL number and the strong scaling is not degraded.

Finally we point out that the above results depend upon the paral-

lel efficiency p of the DALES code of eq. 3; increasing the parameter

to e.g. 0.99 raises the speedup listed in tab. 2 to resp. 20% and 18%

for the Cabauw-64 and Cabauw-200 cases; for the Barbados cases

however, the parameter p does not impact the speedup significantly.

Hence we expect that also after quasi-dynamical load-balancing

has been implemented, it remains beneficial to invest in the scaling

optimization of DALES, at least for cases with sufficient spread in

the run-times.

Conclusion and Outlook

We have given a detailed description of the various factors that

determine the performance of a SP of OpenIFS by a large number of

independent LES instances. The scaling of the application has been

improved by optimizing single-threaded performance of DALES

and increasing parallelism in the coupling routines. We pointed out

the load imbalance which occurred especially in our ’Cabauw’ runs

over the Netherlands, and which we believe to exist in a global SP

too. A thought experiment based upon the strong scaling of DALES

and the observed distribution and autocorrelation has revealed a

significant impact of dynamically balancing the load of each proces-

sor. In practice this can be achieved by restarting the system with a

balanced number of MPI tasks for the LES instances. However, a

more important task in our current implementation is the scaling of

the routine that sends the forcings to all DALES instances. Because

this happens at a synchronization point in our code, MPI latencies

cannot be hidden and this task quickly becomes a bottleneck for

large number of LES instances. We believe a collective MPI call

could resolve this issue quite easily, which will be part of a future

effort. Another option could be to redesign the system to not have

a master script at all, and apply the forcings from the OpenIFS MPI

tasks in a non-blocking fashion. In such an implementation all unit

conversions would have to be carried out in the Fortran library

interfaces of the two components.

Even with all of the above optimizations in place, a global SP

of the 40 km resolution OpenIFS will need a tremendous amount

of resources to achieve a time-to-solution that is shorter than the

simulated time range. The performance advantage of SP (over say a

global LES) is the fact that neighboring instances do not communi-

cate with each other every time step. The other burden however, the

limited LES time step, cannot entirely be mitigated by SP because

the global model acts as a synchronization point for all small-scale

models and hence the system is bound by the LES with the largest

average time-to-solution over the SP time step. In this sense, SP by

variable time-stepping LES models remotely resembles local time

stepping in the GCM [13] and the predictive load-balancing acts as

a work scheduler.

We note that quasi-dynamical load-balancing could be used to

optimize a setup with more LES instances than available CPU cores

as well. This however requires a task queue approach to the parallel

loop in the algorithm 1 and job scheduling provided within the

Python coupling code, because a naive overloading of the available

resources in OMUSE will lead to multiple MPI tasks sharing a single

core, degrading the DALES performance significantly. A possible



PASC ’21, July 5–9, 2021, Geneva, Switzerland van den Oord et al.

strategy could consist of a generic non-preemptive multiprocess

scheduler dynamically distributing the LES instances, where the re-

quested number of cores and estimated execution time śdetermined

by the load-balancerś are input parameters to the scheduler. Such

a worker queue method requires a restart for every LES at the be-

ginning of their SP time loop, possibly incurring I/O and process

creation penalties. If this overhead can be kept sufficiently small,

we are convinced this approach may well lead to superior scaling

(to the above estimation) for all core counts. Another approach is to

consider the multiprocess scheduling as part of the cost function of

the static optimization problem of the load balancing, and minimize

the predicted makespan of every SP time step under the constraint

that the processes of a single LES model have to be confined to a

single compute node. Plenty of policies have been proposed that

handle the NP-hard problem of finding the most efficient schedule

[14]; the oversubscribed, load-balanced SP presents an interesting

application of these algorithms and may be the subject of future

research.

Finally, we point out that a multiscale model with many small-

scale models will generally have synchronization points between

them. Whenever these sub-models display sufficient variability in

their time-to-solution, a relatively good strong scaling and sufficient

autocorrelated run-times, the SP pattern applies and quasi-dynamic

load-balancing on a predictive basis can improve the performance

of the entire system. In such cases the Monte Carlo generation

of synthetic wall-clock times described above may provide an in-

dication of the expected speedup, and give an estimation of the

hardware resources required for running experiments.

Acknowledgments

This work was supported by the Netherlands eScience Center

(NLeSC) under grant no. 027.015.G03. Furthermore, we acknowl-

edge the use of ECMWF’s computing and archive facilities in the re-

search reported here. Also SURFsara provided computing resources.

Plots in this paper were created with matplotlib [15].

REFERENCES
[1] W. W. Grabowski, łCoupling cloud processes with the large-scale dynamics

using the cloud-resolving convection parameterization (CRCP),ž Journal of the
Atmospheric Sciences, vol. 58, no. 9, pp. 978ś997, 2001.

[2] G. Carver et al., łThe ECMWF OpenIFS numerical weather prediction model
release cycle 40r1: description and use cases,ž in preparation to be submitted to
GMDD, 2019.

[3] F. Jansson, G. van den Oord, I. Pelupessy, J. H. Grönqvist, A. P. Siebesma, and
D. Crommelin, łRegional superparameterization in a global circulation model
using large eddy simulations,ž Journal of Advances in Modeling Earth Systems,
vol. 11, no. 9, pp. 2958ś2979, 2019.

[4] T. Heus, C. C. van Heerwaarden, H. J. J. Jonker, A. Pier Siebesma, S. Axelsen,
K. van den Dries, O. Geoffroy, A. F. Moene, D. Pino, S. R. de Roode, and J. Vilà-
Guerau de Arellano, łFormulation of the Dutch Atmospheric Large-Eddy Simula-
tion (DALES) and overview of its applications,ž Geoscientific Model Development,
vol. 3, no. 2, pp. 415ś444, 2010.

[5] A. Arakawa, łThe cumulus parameterization problem: Past, present, and future,ž
Journal of Climate, vol. 17, no. 13, pp. 2493ś2525, 2004.

[6] S. Bony and J.-L. Dufresne, łMarine boundary layer clouds at the heart of tropical
cloud feedback uncertainties in climate models,ž Geophysical Research Letters,
vol. 32, no. 20, 2005.

[7] I. Pelupessy, B. van Werkhoven, A. van Elteren, J. Viebahn, A. Candy, S. Portegies
Zwart, and H. Dijkstra, łThe oceanographic multipurpose software environment
(OMUSE v1.0),ž Geoscientific Model Development, vol. 10, no. 8, pp. 3167ś3187,
2017.

[8] Pelupessy, F. I., van Elteren, A., de Vries, N., McMillan, S. L. W., Drost, N., and
Portegies Zwart, S. F., łThe astrophysical multipurpose software environment,ž
A&A, vol. 557, p. A84, 2013.

[9] G. van den Oord, F. Jansson, I. Pelupessy, M. Chertova, J. H. Grönqvist, A. P.
Siebesma, and D. Crommelin, łA python interface to the dutch atmospheric
large-eddy simulation.ž submitted to SoftwareX, 2019.

[10] A. Beljaars, G. Balsamo, P. Bechtold, A. Bozzo, R. Forbes, R. J. Hogan, M. Köhler, J.-
J. Morcrette, A. M. Tompkins, P. Viterbo, and N. Wedi, łThe numerics of physical
parametrization in the ecmwf model,ž Frontiers in Earth Science, vol. 6, p. 137,
2018.

[11] C. R. Jones, C. S. Bretherton, and M. S. Pritchard, łMean-state acceleration of
cloud-resolving models and large eddy simulations,ž Journal of Advances in
Modeling Earth Systems, vol. 7, no. 4, pp. 1643ś1660, 2015.

[12] G. M. Amdahl, łValidity of the single processor approach to achieving large
scale computing capabilities,ž in Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, AFIPS ’67 (Spring), (New York, NY, USA), pp. 483ś485,
ACM, 1967.

[13] M. Baldauf, łLocal time stepping for a mass-consistent and time-split advection
scheme,ž Quarterly Journal of the Royal Meteorological Society, vol. 145, no. 718,
pp. 337ś346, 2019.

[14] Kasahara and Narita, łPractical multiprocessor scheduling algorithms for efficient
parallel processing,ž IEEE Transactions on Computers, vol. C-33, pp. 1023ś1029,
Nov 1984.

[15] J. D. Hunter, łMatplotlib: A 2d graphics environment,ž Computing In Science &
Engineering, vol. 9, no. 3, pp. 90ś95, 2007.


	Abstract
	References

