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The phenomenological theory of turbulence (PTT) remains a long-standing and fascinating theory

in turbulence research. In this review article, we highlight the state-of-the-science of the impact of

the PTT on the pragmatic approach to fluvial hydraulics, explored over recent decades, discussing

the salient and the subtle roles that the turbulence plays in governing many physical processes. To

acquire a theoretical explanation of this pragmatic approach necessitates an intuitive thought that can

bring together the background mechanisms of all the physical processes under one law—a thought

that is capable of finding their inextricable links with the turbulent energy spectrum. We begin here

with emphasizing the spectral and the co-spectral origin of the well-recognized laws of the wall,

the resistance equation, and the turbulence intensities by portraying the typical momentum transfer

mechanism of eddies in a turbulent flow. Next, we focus on the scaling laws of key fluvial processes

derived from the perspective of the PTT, enlightening their physical insight and ability to judge

how far the so-called empirical formulas can be used with confidence. The PTT has been able to

disclose the origin of several primeval empirical formulas that have been used over many years

without having any theoretical clarification and confirmation. Finally, we make an effort to describe

some unsolved issues to be resolved as a future scope of research. Published by AIP Publishing.

https://doi.org/10.1063/1.5025218

I. INTRODUCTION

Nobel Laureate Werner Heisenberg, on his death-bed, was

reported to have uttered, “When I meet God, I am going to ask

him two questions: Why relativity? And why turbulence? I

really believe he will have an answer for the first.” This state-

ment makes it clear that our knowledge of turbulence remains

rather incomplete. Turbulence oversees a lot of physical phe-

nomena on our planet and beyond. It manifests a wide range

of scales in which the large-scales, commensurate with the

scale of the physical domain, possess most of the turbulent

kinetic energy, whereas their descendant small-scales dissi-

pate most of the turbulent kinetic energy by fluid viscosity.

A central trait in the understanding of turbulence is the exis-

tence of Richardson’s cascades of excitations, which evolve in

five dimensions,1 from large to small scales or vice versa. A

persistent concept in the phenomenology of turbulence is the

small-scale universality, evidenced by the groundbreaking the-

ories, laboratory measurements, and numerical simulations.2–8

Despite a milestone of turbulence theories, predictive model

for a wall-shear flow remains a challenging task due to several

complexities.9

In fluvial hydraulics, turbulent flow plays a subtle role to

govern a variety of natural phenomena, which have a profound,

a)Author to whom correspondence should be addressed: skzeeshanali@
iitkgp.ac.in

b)sdey@iitkgp.ac.in

although subtle, impact on geomorphology, engineering, cli-

mate dynamics, and many others. These phenomena evolve

in space and time, involving several scaling laws that are

important from the perspective of education, research, and

practice. Many primitive empirical formulas, available in stan-

dard textbooks of fluvial hydraulics, authenticated by extensive

laboratory and field measurements appear to have served many

purposes over several decades. In fact, the pragmatic approach

to fluvial hydraulics dates back to the celebrated resistance for-

mulas, as given in the book by Dey.10 Although these formulas

overlie the empirical foundation, they have been used over

many years without searching for a sagacious explanation from

the perspective of the phenomenological theory of turbulence

(PTT). Rapid advances made in the turbulence research, espe-

cially in recent decades, have unraveled this important aspect.

One of the outstanding achievements was to find the missing

link between the shear stress and the turbulent energy spec-

trum.11 This link has explained many unsolved problems, for

instance, the origin of the well-recognized laws in a wall-shear

flow.

The application of the PTT in recent years has become a

rule of thumb to seek the origin of the scaling laws involved

in various physical processes in a fluvial system, particularly

when the sediment particles accompany the turbulent flow.

The scaling laws provide an insight into the physical phe-

nomena, where the turbulence leaves its profound signature.

Such scaling laws derived from the perspective of the PTT pro-

vide a genuine ground to check the veracity of the empirical
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formulas and can build a promising synergy between the theory

and the practice. The derivation steps encompass the funda-

mental tenets of turbulence laws, the similarity hypotheses,

and the phenomenological arguments.2,3 However, it is per-

tinent to mention that the PTT can effectively predict the

scaling laws in terms of the mathematical expression for a

physical phenomenon involving turbulence, but it cannot pre-

dict the proportionality constant. In this review article, we

exemplify the state-of-the-science of the impact of the PTT

by highlighting its elegance and straightforwardness on the

pragmatic approach to fluvial hydraulics; however, we show-

case its widespread significance by briefly referring to other

physical phenomena in nature.

II. WALL-SHEAR FLOW

In a wall-shear flow, we shed light on the origin of the

law of the wall, the resistance equation, and the turbulence

intensities from the perspective of the PTT. We focus on

the link between the friction factor and the turbulent energy

spectrum by referring to two elegant theories developed in

recent years, labeled as the spectral theory12 and the co-

spectral budget theory.13 These theories primarily apply to

obtain the fluid shear stress at a finite distance from a ref-

erence level due to the momentum transfer caused by the

turbulent eddies, relating the fluctuations of the eddies with

the unique properties of the turbulent energy spectrum. The

underlying mechanisms in seeking the scaling laws of the

law of the wall, the resistance equation, and the turbulence

intensities with certain plausible assumptions are appraised

below.

A. The law of the wall

The classical law of the wall describes the law of veloc-

ity slowdown within the turbulent wall-shear layer and it acts

as a benchmark for predicting the skin-frictional drag in a

pipeline or an aircraft. It is also recognized as a fundamental

law in fluvial hydraulics and geomorphology to determine the

shear stress exerted at the surface of a granular bed.10 This law

states that the time-averaged flow velocity ū within the tur-

bulent wall-shear layer obeys a logarithmic scaling law with

the vertical distance z measured from the channel bed. It is

expressed as

ū(z) =
u∗

κ
ln

z

z0

, (1)

where u∗ [= (τ0/ρf )1/2 = (ghS0)1/2] is the shear velocity, τ0 is

the bed shear stress, ρf is the mass density of fluid, g is the

gravitational acceleration, h is the flow depth, S0 (= tan☞1 χ) is

the streamwise slope of the channel bed, χ is the streamwise

inclination of the channel bed, κ (= 0.41) is the von Kármán

constant, and z0 is the zero-velocity level. The law of the wall

together with Kolmogorov’s theory2 belongs to the most stir-

ring phenomenological theories of turbulence and is deemed to

have received considerable awareness with multifarious inter-

pretations.14,15 The link between the law of the wall and the

Kolmogorov scaling laws was discovered with the aid of the

incomplete similarity, the intermediate asymptotics, and the

composite expansions, which were discussed elsewhere,15–17

and also appraised via the spectral theory12,18,19 and the co-

spectral budget theory.13,20 In this context, it is worth empha-

sizing that the law of the wall was obtained from the assump-

tion of a constant stress flow layer, called the wall-shear layer.

This assumption of constant stress is debatable.14

The spectral theory reveals that the time-averaged veloc-

ity distribution in a boundary layer flow is connected with the

shape of the turbulent energy spectrum.12 To gain an insight

into the law of the wall from the perspective of the PTT, let us

first consider the schematic representation of the physical sys-

tem as illustrated in Fig. 1, where an open-channel flow, being

turbulent, has a flow depth h and a mean flow velocity U. The

enlarged frame of the channel bed depicts the bed roughness

of uniform size r in succession.

Figure 2 shows the detail derivation of the law of the wall

involved in the spectral theory. In accordance with the spec-

tral theory, the Reynolds shear stress τ developed at a surface

S(z) due to a turbulent eddy of size l, having a characteristic

velocity vl, is the product of the velocity difference resulting

in a momentum contrast across the eddy and the eddy turnover

velocity. It follows

τ = −ρf u′w′ ∼ ρf Γlvl = ρf κτΓlvl, (2)

where u′ and w′ are the velocity fluctuations in horizontal

and vertical directions, respectively, the overline refers to the

time-averaging, Γ (= dū/dz) is the local strain rate, and κτ is

a coefficient. The vl was determined from the integration of

the turbulent energy spectrum over the eddy wavenumber k

ranging from l☞1 to ∞. In identifying the prevailing turbulent

eddies straddling the surface S(z), it was argued that the eddies

of size larger than z contribute feebly to the net momentum

transfer because these eddies are unable to straddle the S(z)

completely. It implies that the prevailing eddies straddling the

S(z) are the eddies of size l = z (or kz = 1) yielding vz = (κεεz)1/3,

where κε is a coefficient and ε is the turbulent kinetic energy

dissipation rate. Within the turbulent wall-shear layer, applying

the energy balance equation, ρf ε = Γτ = ρf Γu2
∗ produces the

local strain rate

Γ =
u∗

(κ3τ κε)
1/4

z
, (3)

FIG. 1. Schematic illustration of flow through a turbulent channel (left), having a flow depth h and a mean flow velocity U. The enlarged frame of the channel

bed (right) illustrates the typical momentum transfer mechanism at a surface S(z), parallel to the line touching the summit of the bed roughness, due to a local

turbulent eddy of size l, having a characteristic velocity vl , in the proximity of the channel bed characterized by the bed roughness of size r.
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FIG. 2. Schematic illustration of the

derivations of the law of the wall and

the resistance equation by means of the

spectral theory.12,18,19

which can be integrated to obtain the law of the wall [Eq. (1)],

having the von Kármán constant κ = (κ3τ κε)1/4. Since eddies in

the wall-shear layer belong to the equilibrium range (that is,

the energy inertial range), the Kolmogorov four-fifth law can

be readily applied. Thus, using κε = 4/5 and κ = 0.41 results

in κτ = 0.33.

The co-spectral budget theory presents a comprehensive

scrutiny of the spectral theory and unfolds the weakness of

the spectral theory on many facets, for instance, in the spectral

theory, the vl can be solely linked with the turbulent energy

spectrum rather than the vertical velocity spectrum. More-

over, the spectral theory disregards the contributions from the

enstropy term in the momentum balance. Thus, the co-spectral

budget theory offers new insights into the momentum transfer

mechanism by providing an improvement of the lacunas of

the spectral theory. Figure 3 shows the generalized co-spectral

budget, where Fwu(k) is the co-spectrum function, t is the

time, ν is the coefficient of kinematic viscosity of fluid, Pwu(k)

[= ΓEww(k)] is the production term, Eww is the energy spec-

trum function of the vertical velocity, Twu(k) is the co-spectral

flux transport term, and Π(k) is the velocity-pressure correla-

tion term. After certain approximations, the solution for the

Fwu(k) was obtained as

Fwu(k) = A−1
Γε−1/3Eww(k)k−2/3, (4)

FIG. 3. Schematic illustration of the derivations of the

law of the wall and the resistance equation by means of

the co-spectral budget theory.13,20
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where A = CR/(1 ☞ CI ), CR (= 1.8) is the Rotta constant

and CI = 3/5, in agreement with the rapid distortion the-

ory of isotropic turbulence.13,20 Fundamentally, the CI is

linked with the isotropization of the production term that cor-

rects the original model proposed by Rotta (see Ref. 13).

The Reynolds shear stress τ(z) can be obtained by integrat-

ing the co-spectrum function Fwu(k) encompassing the full

range of the eddy wavenumber k (Fig. 3). To evaluate this

integral, it was necessary to express the Eww(k) as a func-

tion of k. To this end, the Eww(k) was linked with the Kol-

mogorov spectrum function EK as Eww(k ≤ ka) = EK (ka) and

Eww(k > ka) = EK (k) (Fig. 3). This idealized scenario of the

spectrum function delineates the sudden switchover of the

Eww(k) from a constant value to the universal wavenumber

dependency in the energy inertial range. This consideration

overlooked the low wavenumber modulations kh → 1 and

the Pao correction kη → 1, where η [= (ν3/ε)1/4] is the Kol-

mogorov length scale.21 This spectral depiction was supported

by ample laboratory and field experimental data.21 More-

over, the breakpoint at k = ka respects Townsend’s attached

eddy hypothesis.22 The EK (k) can be expressed in the phe-

nomenological form as EK (z☞1 ≪ k ≪ η☞1) = C0ε
2/3k☞5/3,

where C0 = (24/55)CK and CK (= 1.5) is the Kolmogorov con-

stant for three-dimensional (3D) wavenumbers. It is pertinent

to note that when Eww(k) = EK (k), Fwu(k) = CuwΓε
1/3k☞7/3,

corroborating the other co-spectral theories and the experimen-

tal measurements.23,24 Here, Cuw (= A☞1C0) is a coefficient

with a constant value of 0.15. With this form of Eww(k) and

following the stress balance (–ρf u′w′ = ρf u2
∗), the energy bal-

ance (ρf ε = ρf Γu2
∗), and noting ka = z☞1, the local strain rate

reads

Γ =

(

4

7Cuw

)3/4
u∗

z
, (5)

which upon integration produces the law of the wall [Eq. (1)],

with the von Kármán constant κ = (7Cuw/4)3/4 = 0.37.

This shows that the co-spectral budget theory provides an

underestimation of the von Kármán constant (= 0.41).

Furthermore, the co-spectral budget theory provides an

understanding on the suitability of using the law of the wall

or the power law, which acts as a surrogate for the law of the

wall, to define the velocity distribution within the turbulent

wall-shear layer. In fact, both the velocity laws can be deduced

depending on the proper formulation of the intermittency cor-

rection applied to the Eww(k).13 The intermittency correction

modifies the spectrum function as Eww(k) = C0ε
2/3k☞5/3(kL)γ,

where L is the length scale of large-scale eddies, γ (= –µ/9) is

the intermittency correction, and µ is the intermittency expo-

nent. When L = z, the Eww(kz > 1) = C0ε
2/3k☞5/3(kz)γ, whereas

for kz ≤ 1, the scaling in the energy inertial range does not exist.

With this form of Eww(k), the application of the energy equa-

tion and the co-spectral budget preserves the law of the wall;

however, it creates a weak dependency of the von Kármán con-

stant on the intermittency exponent. On the other hand, when

L = h, the co-spectral budget recovers the power law.13

B. Resistance equation

The most familiar resistance equation in fluvial hydraulics

is the Manning equation, which is rigorously used by the

researchers belonging to the planetary community. The Man-

ning equation was honored with the title “one of the best

formulas of the day.”25 It was also applied to calculate the

massive flow in the Martian channels.26 The Manning equa-

tion, proposed in 1891, describes the mean flow velocity U

of a fully developed steady-uniform turbulent channel. For a

wide rectangular channel, it takes the form10

U =
1

n
h2/3S

1/2

0
, (6)

where n is the Manning roughness coefficient in SI units. In

essence, for a channel of arbitrary cross section, the h appear-

ing in Eq. (6) is to be replaced by the channel hydraulic radius,

which is expressed as a ratio of the channel cross-sectional

area to the channel wetted perimeter.10 Although the Manning

equation is solely founded on the empirical ground supporting

a large corpus of the experimental data, no equation till date

is deemed to have replaced the Manning equation. However,

the Manning equation in conjunction with the Strickler scal-

ing awaited a hundred and eleven years to receive a theoretical

explanation, which was given after the advent of the spectral

theory that used the incomplete similarity principle.11

Reverting to Fig. 1, we note that at the horizontal surface

touching the summit of the bed roughness, the local eddies

that fill the roughness trough are of size l ∼ r, and thereby, the

local strain rate at this level can be approximated as Γ ∼ U/r

yielding u′ ∼ U (Fig. 2). This simplification associated with

vr ∼ (εr)1/3 makes

τ = −ρf u′w′ ∼ ρf U(εr)1/3. (7)

The relationship u′ ∼ U can be further expressed as

u′ = α1U (Fig. 2), where α1 is a coefficient.11,27 In addition, at

the summit of the bed roughness, the ε in appearing in Eq. (7)

can be scaled as ε = α3
2
U3/h, where α2 is a coefficient.11 There-

fore, after the stress balance (τ = τ0 = ρf ghS0), Eq. (7) produces

the Manning scaling as (also see Fig. 2)

U ∼ (α1α2)−1/2(ghS0)1/2
(

r

h

)−1/6

. (8)

However, the Strickler scaling can only be retrieved from

the Manning scaling if the product α1α2 remains a constant.

Since Γ = α1U/r ∼ u∗/r, it turns out that α1 ∼ λ
1/2
D

, where λD

is the Darcy-Weisbach friction factor (∼u2
∗/U

2). Moreover, at

z = r, the ε can be expressed as ε = –u′w′Γ∼ u3
∗/r. This relation-

ship together with ε = α3
2
U3/h produces α2 ∼ λ

1/2
D

(r/h)☞1/3.

Therefore, a close inspection of the phenomenological argu-

ments prior to derive the Manning scaling unveils that

α1α2 ∼ λD(r/h)☞1/3, which would attain a constant value

inasmuch as the λD obeys the Strickler scaling, that is,

λD ∼ (r/h)1/3. This observation reveals a logical fallacy of

the spectral theory that has been identified recently (Fig. 2

and Ref. 28).

To get rid of the fallacy, the co-spectral budget theory was

applied to derive the Manning scaling independently without

inviting the Strickler scaling (Fig. 3). At the summit of the bed

roughness, using the previous phenomenological arguments

(Γ = α1U/r and ε = α3
2
U3/h) and noting ka ∼ r☞1, the local

strain rate Γ gives rise to the Manning scaling as

U ∼

(

4

7α1α2Cuw

)1/2

r−1/6g1/2h2/3S
1/2

0
, (9)
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where the Manning roughness coefficient n is scaled as n

∼ [4/(7α1α2Cuw)]☞1/2.28 Nevertheless, the co-spectral budget

theory remains so far silent to provide a theoretical explana-

tion of the Strickler scaling from the perspective of the general

properties of the turbulent energy spectrum.

With regard to the spectral theory, it is worth emphasizing

that when the bed roughness r approaches the Kolmogorov

length scale η resulting in a hydraulically smooth flow, the

momentum transfer becomes viscous. Recalling η = (ν3/ε)1/4

and setting η/h ∼ R☞3/4, where R (= 4Uh/ν) is the Reynolds

number, the Strickler scaling produces the well-recognized

Blasius scaling λD ∼ R☞1/4 (Fig. 2).

It is relevant to discuss here that in case of flow over a

rough-permeable channel bed, for instance, a gravel bed, a veg-

etated, or a snow-covered bed, the resistance to flow departs

from its conventional behavior. To address this anomaly, a con-

ceptual framework was developed by extending the spectral

theory to flow in a rough-permeable bed.29 This framework

considered the turbulent momentum exchange between the

interstitial and the superficial flows via the canonical scales

of turbulent eddies.

C. Turbulence intensities

Turbulence intensities play a decisive role in many engi-

neering and industrial applications, for instance, the design of

aerodynamic bodies to control the aerofoil drag affecting the

fuel efficiency and aerofoil stability,30 the manoeuvre of For-

mula One racing cars that produce large turbulent clouds,31

the generation of premeditated turbulent mixing in industrial

flows,32 and many others. In the realm of fluvial hydraulics,

knowledge of turbulence intensities is a prerequisite for the

design and operation of hydraulic structures. We first describe

the vertical turbulence intensity σw, which was derived from

the shape of the vertical velocity spectrum Eww(k) as displayed

in Fig. 3. Integrating the Eww(k) over limits k = 0 to ∞ and

using the energy balance equation (ρf ε = ρf Γu2
∗) together with

ka = z☞1 produce

σw ≈ 1.7u∗, (10)

which is independent of z.13 This estimation ofσw was slightly

larger than the traditional values (ranging from 1.25 to 1.30)

for the boundary layer flows.10,21 However, the low wavenum-

ber modulations and the exponential cutoff could reduce the

predicted value of σw. On the other hand, the origin of the log-

arithmic scaling of the horizontal turbulence intensity σu was

probed by applying the co-spectral budget theory;33 and later, a

more generalized logarithmic scaling of the σu was explained

by the random sweeping decorrelation hypothesis.34 The σu

was expressed as33

σ2
u

u2
∗

= B1 − A1 ln

(

z

h

)

, (11)

where B1 and A1 are the coefficients. Based on the exper-

imental measurements, numerical simulations, and analyti-

cal models,35–39 the horizontal velocity spectrum in three

separate windows of wavenumber can be expressed as

Euu(0 < k < h☞1) = C1u2
∗h, Euu(h☞1 < k < z☞1) = C1u2

∗k
☞1,

and Euu(z☞1 < k < η☞1) = Cuuε
2/3k☞5/3,33,34 where Cuu =

(18/55)CK . At k = z☞1, the continuity restraints on Euu(k) sug-

gest C1 = Cuuκ
☞2/3. Then, integrating the Euu(k) over limits

k = 0 to η☞1 by accounting for the three distinct spectral

regimes, it yields A1 = C1 = Cuuκ
☞2/3 and B1/A1 = 2.5 ☞

1.5(η/z)2/3. To get rid of the Reynolds number dependency

(z ≫ η), it follows B1 = 2.5A1.

III. FLUVIAL PROCESSES

In geomorphology and physical geography, the fluvial

processes result from a direct interplay between the fluvial

channel and the sediment grains, and they refer to the complete

sequential processes of formation and development of a flu-

vial system. Despite their ubiquity on the Earth’s surface, their

existence was evidenced on other terrestrial surfaces including

Mercury, Venus, and Mars.40,41 Large channels carry a colos-

sal amount of sediments, for instance, the Mississippi River

in the United States annually sequesters 406 × 106 tons of

sediment to the sea.42 Sometimes, large channels are named

by the color of the sediments that they carry, such as the

Big Muddy River, the Yellow River, etc. Many fluvial pro-

cesses are linked with the energetics of the turbulent flow that

plays a subtle role to govern the planetary morphodynamics.

Here, we illustrate the unique scaling laws of some of the

delicate fluvial processes that have been explored in recent

decades.

A. Onset of grain motion

The onset of grain motion is among the striking man-

ifestations of turbulent flow over a granular bed. This phe-

nomenon specifies a critical flow velocity beyond which the

grains entrain into the flow (Fig. 4). A necessary condition for

this phenomenon to occur is the near-bed flow velocity u or the

mean flow velocity U to attain their respective critical values.

The concept of near-bed flow velocity invites a considerable

degree of uncertainty owing to several intricacies entangled

in the local velocity measurements. By contrast, proceeding

with the idea of mean flow velocity, we find a more lucid

characterization of the critical velocity because the mean flow

velocity can be readily obtained from the continuity equation.

It is therefore no surprise that in many primitive experiments

and analytical modeling, the mean flow velocity rather than the

FIG. 4. Schematic illustration of the onset of grain motion.
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near-bed flow velocity was considered to be the characteris-

tic critical velocity. In the previous empirical formulas, the

nondimensional critical velocity Fdc was expressed as a

function of relative roughness N (ratio of grain size d to

flow depth h) in the following form: Fdc = Kf (N),10 where

Fdc = Uc/(∆gd)1/2, ∆ [= (ρg ☞ ρf )/ρf ] is the submerged

relative density of grains, ρg is the mass density of grains,

and K is a proportionality constant. However, the origin of

the scaling laws involved in the earlier empirical formu-

las has been recently explored from the perspective of the

PTT.43

The velocity vl of a local turbulent eddy that controls the

onset phenomenon can be scaled with the velocity scale VL

of large-scale eddies as vl ∼ VL(l/L)–(1+σ )/2, where σ signi-

fies the typical spectral exponent;43 for instance, in the energy

inertial range that follows the Kolmogorov scaling, σ = ☞5/3.

When the l approaches the grain size d and having considered

VL ∼ U, the fluid-particle interplay in the vicinity of the

granular bed produces

τ ∼ ρf Uvd ∼ ρf U2N−(1+σ)/2. (12)

At an onset of grain motion, it follows τ ∼ ∆ρf gdΘc,

where Θc [= u2
∗c/(∆gd)] is the critical Shields number and u∗c

is the critical shear velocity.44 Therefore, Eq. (12) leads to

Fdc ∼ N (1+σ)/4, (13)

which reflects that the Fdc obeys the “(1 + σ)/4” scaling law

with N. Figure 5(a) sheds light on the dependency of Fdc on

N covering a wide range of N.43 In the energy inertial range,

the application of σ = ☞5/3 yields Fdc ∼ N☞1/6, corroborating

the Manning-Strickler relationship. For N < 10☞4, the grain

size closely approaches the viscous sublayer thickness, which

acts as a barrier to shield the grains, prohibiting the outer flow

to sense the bed roughness. It ensures a hydraulically smooth

flow regime, which is governed by the viscous momentum

transfer. Under this circumstance, the energy spectrum obeys

σ = ☞3 due to the existence of the enstrophy cascade45 that

results from the smooth velocity field to produce Fdc ∼ N☞1/2.

On the other hand, for N ≥ 10☞1, the energy spectrum displays

σ = ☞1 due to the presence of large-scale eddies belonging to

the energy containing range and as a result Fdc ∼ N0. In addi-

tion, Figs. 5(b)–5(d) present the comparison of the scaling laws

of Fdc(N) in three separate windows of N with the primitive

empirical formulas reported in the literature.46–50 For different

windows of N, the deviation of the empirical formulas from

the spectral laws is attributed to the uncertainties involved in

the experimental data.

B. Bedload transport

The sediment grains are set in motion when the bed shear

stress τ0 exceeds the critical bed shear stressτ0c for the grain

motion. The grains are transported within a thin layer, known

as the bedload layer,10 in different modes of transport, for

instance, rolling mode (RM), sliding mode (SM), and lifting

mode (LM) of transport, as sketched in Fig. 6. Previous experi-

mental and analytical studies revealed that the nondimensional

bedload flux Φb [= qb/(∆gd3)1/2] follows Φb ∼ T
3/2
∗ ,10 where

qb is the amount of grain (solid) volume transported per unit

time and width, T∗ [= (τ0 ☞τ0c)/τ0c = (Θ ☞Θc)/Θc] is the trans-

port stage parameter, andΘ [= u2
∗/(∆gd)] is the Shields number.

It has been recently shown that the above scaling law can be

deduced applying the simple phenomenological arguments.43

If n is the number of grains per unit area of the granular bed

and vp is the grain velocity, then qb ∼ nd3vp. Following the

traditional arguments of bedload transport,10,51 the bed shear

stress τ0 can be split into the dispersive particle shear stress

τ0p and the interfacial fluid shear stress τ0f . This formulation

accounts for the shear between the layers of grains and the

shear between the grains and the surrounding fluid. When the

bedload transport takes place, the τ0f equals to the τ0c, sug-

gesting that the τ0c acts directly on the immobile grains as a

FIG. 5. (a) Spectral link between the

nondimensional critical velocity Fdc

and the relative roughness N in

three different windows of N.43 (b–d)

Comparison of the scaling laws of

Fdc(N) obtained from the perspective of

the PTT43 with the primitive empirical

formulas.46–50
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FIG. 6. Schematic illustration of grain transport as a bedload. The rolling

mode (RM), sliding mode (SM), and lifting mode (LM) of grain transport are

also shown.

skin frictional stress leaving the available stress τ0 ☞ τ0c to act

on the mobile grains as a form drag induced stress. Thereafter,

it was shown that n ∼ (Θ ☞ Θc)/d2 and vp ∼ Uc[(Θ/Θc) – 1]1/2

yielding

Φb ∼ T
3/2
∗ N (1+σ)/4. (14)

Equation (14) confirms the emergence of Φb ∼ T
3/2
∗

scaling law in the earlier empirical formulas.10

C. Suspended load transport

Large channel carries huge quantity of suspended sed-

iments along its course; for instance, recent US Geological

Survey of suspended sediment samples collected from four-

teen sites during 2007–2011 reported that the Minnesota River

annually carried the mean suspended load of approximately

1.8 × 106 tons.52 Channels carrying extreme suspended sed-

iment load may cause serious damage for flood control, irri-

gation and navigation, soil conservation, and eutrophication

causing nutrients, suggesting a necessity of proper estimation,

and monitoring of suspended load transport. In the case of

sediment suspension (Fig. 7), the sediment grains are carried

FIG. 7. Schematic illustration of grain transport as a suspended load.

by the neighboring fluid for a sufficiently long time. The

turbulent eddies grip the suspended grains within their core

making a convective transport of grains from a zone of higher

to lower concentrations obeying the Fickian diffusion. The

suspended load is usually determined from the integration of

the product of the suspended sediment concentration and the

time-averaged flow velocity distributions over the entire depth

of the channel. Long ago, an analytical solution of the distribu-

tion of suspended sediment concentration in the vertical was

obtained by solving the advection-diffusion equation of sus-

pended sediment motion.53 In solving the advection-diffusion

equation, the classical law of the wall and the Fickian diffu-

sion were used. In recent years, the distribution of suspended

sediment concentration in the vertical was obtained by means

of the power law theory54 and the energetics of the two-phase

flow.55 However, within the turbulent wall-shear layer, the dis-

tribution of suspended sediment in the vertical obeys a power

law as

C(z)

CR

=

(

z

zR

)−Z

, (15)

where C(z) is the sediment concentration at any level z normal-

ized by the reference concentration CR at a distance zR from

the channel bed and Z is the Rouse number. Recent application

of the PTT has evidenced this power law behavior by provid-

ing a simple sediment flux balance model under equilibrium

state.43 The Rouse equation falls short in deriving this power

law because of the questionable assumptions involved in the

derivation.10 The power law also provided a simple interpreta-

tion to find the Rouse number within the turbulent wall-shear

layer for a given concentration distribution.

D. Formation of an erosion pit under
equilibrium state

The formation of an erosion pit, which is also often called

a pothole or a giant’s kettle, caused by a waterfall or a swift

turbulent flow is a natural phenomenon. The turbulent chan-

nel erodes large amounts of bed sediments and, sometimes,

prolonged erosion can even create deep canyons; for example,

the Grand Canyon carved by the Colorado River. The appli-

cation of this phenomenon poses a relevant question: For a

given power of the waterfall, what is the depth of the erosion

pit under equilibrium state? By contrast, the inverse problem

is to ascertain the flow discharge that engraved the terrestrial

channel bed to form giant depression. In fluvial hydraulics, this

phenomenon is quite common downstream of a drop structure

and it may imperil the stability of the structure. Here, we high-

light the scaling law involved in such a phenomenon under

three different circumstances, such as the formation of an ero-

sion pit due to a fluid jet (Fig. 8), around a cylinder (Fig. 9),

and in a channel contraction (Fig. 10).

When a fluid jet impinges on a water body, a turbulent

cauldron is formed. Due to the jet energetics, the turbulent

cauldron erodes the granular bed to form an erosion pit (Fig. 8).

The depth of the erosion pit increases until an equilibrium state

is attained between the turbulent cauldron and the granular

bed. For a given power P of the jet per unit thickness, the jet

discharge q per unit thickness, the jet head h0, and the grain

size d, the researchers paid a considerable heed to find the
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FIG. 8. Schematic illustration of an erosion pit with a turbulent cauldron

triggered by a fluid jet. The fluid jet, from a height h0 called the jet head,

plunges into the water body having a depth h and creates an erosion pit of

depth dp.

FIG. 9. Schematic illustration of an erosion pit of depth dp formed around

a circular cylinder of diameter a embedded in a granular bed. Here, h is the

flow depth upstream of the erosion pit, HV is the horseshoe vortex, DF is the

downflow, and WV is the wake vortices.

equilibrium depth of the erosion pit. If D is the sum of the

depth of the erosion pit and the water body (D = dp + h), a

general scaling law can be written as

D ∼
qαq h

αh0

0
gαg dαd

∆α∆
, (16)

where the exponents αq, αh0
, αg, αd , and α∆ predicted by

the different empirical formulas vary significantly.10 Apply-

ing the dimensional analysis and the similarity methods, it

can be found that P = ρf g3/2D5/2f (d/D, ρg/ρf ). In the case

of an incomplete similarity, P = ρf g3/2D5/2(d/D)αf [ρg/ρf +

O(d/D)α], where α is the similarity exponent, and after some

algebra, the D takes the form

D ∼ qαq h
αh0

0
gαg dαd f1

(

ρg

ρf

)

, (17)

where αq = αh0
= 2/(5 ☞ 2α), αg = ☞1/(5 ☞ 2α), αd = ☞2α/

(5 ☞ 2α), and f1 ∼ 1/f 2/(5☞2α). This form of D is linked with

the salient variables of the problem via a single parameter α,

which was obtained from the perspective of the PTT.56,57 The

jet power per unit jet thickness is P = gqρf h0. The P can also be

thought as a product of the local dissipation rate ε (∼V3
L

/D) and

the fluid mass M per unit thickness of the turbulent cauldron

(M ∼ ρf D2). This makes VL ∼ (gqh0/D)1/3. The Reynolds shear

stress τ at the surface of the erosion pit follows τ ∼ ρf VLvl,

where the velocity scale of the turbulent eddies vl can be scaled

as vl ∼ VL(l/L)1/3. In the limit l ∼ d and L ∼ D, it follows

τ ∼
ρf (gqh0)2/3d1/3

D
. (18)

As the erosion pit deepens with time, the size of the

turbulent cauldron becomes larger and in turn, the strength

of the turbulent cauldron weakens according to the scaling

VL ∼ (gqh0/D)1/3, making a reduction in the shear stress

exerted on the granular bed surface. In due course, the depth of

the erosion pit attains an equilibrium state, where the bed shear

stress equals the critical bed shear stress for the motion of sed-

iment grains. For a constant value of critical Shields number

Θc, the scaling τ ∼ τ0c ∼ ∆ρf gd makes

D ∼
q2/3h

2/3

0
g−1/3d−2/3

∆
, (19)

which indicates αq = αh0
= 2/3, αg = ☞1/3, αd = ☞2/3, and

α = 1.

The formation of an erosion pit around a cylinder embed-

ded in a granular bed remains a challenging problem of fluvial

hydraulics in the context of the stability of bridge pier foun-

dation (Fig. 9). The presence of the cylinder causes a 3D flow

separation giving rise to a vortex flow around and a vortex

shedding downstream of the cylinder. The approach flow gets

separated at the upstream face of the cylinder causing to form

the horseshoe vortex (HV) as depicted in Fig. 9. It subse-

quently traverses the downstream to create an erosion pit due

to the removal of sediment grains. In addition, at the upstream

face of the cylinder, a reduction of the stagnation pressure in

the downward direction creates a downflow (DF), which dis-

lodges the grains, and consequently, the grains are transported

by the action of the HV along the upstream slope of the ero-

sion pit (Fig. 9). Downstream of the cylinder, the wake vortices

(WV), behaving like a tornado, lifts off the sediment grains by

the action of vortex suction.10 In an attempt to seek the scal-

ing law of the depth of the erosion pit from the viewpoint

of the PTT, the length scale of the large-scale eddy was sur-

mised as to scale with the equilibrium depth of the erosion pit,

L ∼ dp.58 The power P accompanying the large-scale eddy was

determined as the work done by the drag force fD acting on

FIG. 10. Schematic illustration of an erosion pit of depth

dp formed in a channel contraction. In plan view (left),

B1 and B2 are the channel widths corresponding to the

approach and contracted channel sections, respectively,

whereas in elevation view (right), h1 and h2 are the flow

depths in those sections.
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FIG. 11. Schematic illustration of the onset of meander-

ing of a straight channel displaying the counter-rotation of

contiguous large-scale eddies in succession to cause the

processes of alternate erosion and deposition of grains

(plan view).

the cylinder (P = fDU). The fD per unit length of the cylin-

der can be expressed as fD = (1/2)ρf CDaU2, where CD is the

drag coefficient and a is the cylinder diameter. The mass of the

largest eddy per unit length L follows M ∼ ρf L2, resulting in

ε = P/M ∼ CDaU3/L2, which was equated to ε ∼ V3
L

/L to pro-

duce VL ∼ U(aCD/L)1/3 ∼ U(aCD/dp)1/3. The Reynolds shear

stress τ was obtained as

τ ∼ ρf V2
L

(

d

dp

)1/3

∼ ρf U2

(

aCD

dp

)2/3 (
d

dp

)1/3

. (20)

Under equilibrium state (τ ∼ τ0c ∼ ∆ρf gd), the scaling

law of dp was thus anticipated as58

dpg

U2
∼

(

a

d

)2/3 C
2/3
D

∆
. (21)

In practice, wide channels are often contracted to construct

various kinds of hydraulic structures, such as bridges, weirs,

guide banks, and many others. The formation of an erosion pit

in a channel contraction is another important aspect (Fig. 10).

When an approach channel flow, having a channel width B1

and flow depth h1, enters into a contracted channel through a

gradual transition, having a contracted channel width B2 and

flow depth h2, the flow in the contracted zone is accelerated. It

leads to a higher flow velocity giving rise to a larger bed shear

stress that erodes the granular bed forming an erosion pit in the

contracted portion of the channel. Let D be the sum of the equi-

librium depth of the erosion pit and the approach flow depth

(D = dp + h1). To seek an appropriate scaling law of D, using the

dimensional analysis, it was linked with the nondimensional

approach flow velocity Fd 1 [= U1/(∆gd)1/2], the approach

relative roughness N1 (= d/h1), and the channel contraction

ratio r (= B2/B1).43 Applying the continuity equation (U1h1B1

= U2 |U2=Uc
h2B2) and overlooking the difference in veloc-

ity heads and the energy loss through the channel transition

(dp = h2 ☞ h1) produce D/h1 = U1/(r U2 |U2=Uc
). In the energy

inertial range, using the scaling law of the critical velocity in

the contracted channel as U2 |U2=Uc
∼ (∆gd)1/2(D/h1)1/6N

−1/6

1
,

the scaling law of D was predicted as43

D

h1

∼ F
6/7

d1
r−6/7N

1/7

1
. (22)

E. Onset of meandering of a straight channel

Meandering channels are ubiquitous features of plane-

tary surfaces. A central aspect is the onset of meandering of a

channel. To find its underlying mechanism, the motion of the

turbulent eddies in a straight channel was considered anal-

ogous to that of contiguous solid spherical balls, arranged

in a row, confined to two parallel boundaries.59 As soon as

the first sphere is given a counter rotational motion having

a trivial shift toward the right-side boundary, the next neigh-

boring sphere displays a clockwise rotation having a similar

shift toward the left-side boundary. For the remaining spheres

in succession, similar kinds of processes of alternate rotation

and shift take place, as if a meandering path is formed by the

line connecting the centers of the spheres. In close proximity

of the granular bed, the anisotropic turbulence stretches the

turbulent eddies, forming the turbulence induced secondary

currents.10 When a highly intermittent counter rotating large-

scale eddy erodes the grains close to the right-side channel

boundary (Fig. 11), the eroded grains are deposited at the oppo-

site side of the channel boundary. The subsequent adjacent

local eddy is motivated by the motion of the parent eddy, and

thus, it performs a clockwise rotation having shifted toward

the left-side channel boundary. In this manner, the processes

of alternative erosion and deposition advance. Then, a quanti-

tative criterion of this phenomenon was obtained by applying

the equal periodicity concept.60 With this concept and using the

spectral link of the mean flow velocity,11 a unique scaling law

was deduced connecting the streamwise bed slope S0, channel

width B, flow discharge Q, and grain size d. The stream-

wise bed slope corresponding to the onset of meandering was

anticipated as59

S0 ∼ B2/9Q−2/9d1/3g1/9, (23)

which agrees satisfactorily with myriads of experimental data

collected from laboratory and field.59

IV. CONCLUSION

The impact of the phenomenological theory of turbu-

lence (PTT), highlighting its recent advances over the past

two decades to answer apparently unrelated and unresolved

issues, on the pragmatic approach to fluvial hydraulics has

been elucidated. This theory delivers a smart strategy to find

the fingerprint of turbulence in the form of scaling laws that are

involved in several fluid flow phenomena, and thus, it has the

foresight to verify the accuracy of various empirical formulas

pertaining to fluvial hydraulics. It suffices here to say that the

application of the PTT has explained the physical processes

with much simplicity and intuition, as if to remind us of the
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words of Richard Feynman: “The true hallmark of genius is

the ability to explain things simply.” The application of this

theory makes it possible to bring theory and practice under

one umbrella, explaining the origin of the empirical formulas

and dictating the uncertainty that lingers in the experimen-

tal observations. The PTT permits us to find the scaling laws

of many other key physical processes, where the turbulence

is inextricably linked with, for instance, the scaling law of

mean evaporation rate from rough surfaces into the turbulent

atmosphere.61

One of the cornerstones of the PTT is the existence of

the universal energy spectrum–eddy wavenumber dependency

(Kolmogorov spectrum) in the energy inertial range. How-

ever, in natural gravel or boulder streambeds, this universality

can slightly break down from the idealized notion depending

on the bed roughness heterogeneity and the levels of turbu-

lence anisotropy.62 A new phenomenological model can be

built to address such complexities by which more insights

into the flow physics can be gleaned. In essence, an enriched

understanding of the subject can help us to seek the scaling

and similarity laws of several complex processes guided by

the turbulence and their possible origin as a future scope of

research.
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