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A novel hydrodynamic model for the threshold of cohesionless sediment particle
motion under a steady unidirectional streamflow is presented. The hydrodynamic
forces (drag and lift) acting on a solitary sediment particle resting over a closely
packed bed formed by the identical sediment particles are the primary motivating
forces. The drag force comprises of the form drag and form induced drag. The lift
force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The
points of action of the force system are appropriately obtained, for the first time,
from the basics of micro-mechanics. The sediment threshold is envisioned as the
rolling mode, which is the plausible mode to initiate a particle motion on the bed.
The moment balance of the force system on the solitary particle about the pivoting
point of rolling yields the governing equation. The conditions of sediment threshold
under the hydraulically smooth, transitional, and rough flow regimes are examined.
The effects of velocity fluctuations are addressed by applying the statistical theory
of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold
curve (threshold Shields parameter versus shear Reynolds number) has an excellent
agreement with the experimental data of uniform sediments. However, most of the
experimental data are bounded by the upper and lower limiting threshold curves, corre-
sponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve
of this study is compared with those of previous researchers. The present model also
agrees satisfactorily with the experimental data of nonuniform sediments. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4955103]

I. INTRODUCTION

Sediment threshold is defined as the hydrodynamic condition for which the sediment particles on
the surface of a sediment bed are on the verge of motion. Since the past years, this topic has attracted
the attention of several investigators in order to understand the rheology of the transport of solid sedi-
ment particles through laboratory experiments and field measurements.1–4 In general, it is ascertained
making use of the famous Shields diagram that represents a curve of threshold Shields parameter
Θc versus threshold shear Reynolds number R∗c called the threshold curve.5 The Shields diagram
is extensively used to determine the threshold bed shear stress for a given sediment size. Since the
Shields diagram was prepared in 1936 using the limited experimental data, a slight departure of the
threshold curve from the subsequent experimental data was reported in the literature.6–8 Important
studies on sediment threshold were thoroughly reviewed by several investigators.7,9–12

The concept of threshold bed shear stress was applied by various researchers to describe the
sediment threshold phenomenon.12 This concept is based on the principle of force balance between
the destabilizing hydrodynamic forces (drag and lift) and the stabilizing forces due to the submerged
weight and the inter-particle friction. In some studies, the idea of moment balance of the force system
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about the pivoting point was applied to determine the condition of sediment threshold.13–19 The inclu-
sion of turbulence in the force balance model was due to White,20 who introduced a turbulence factor
in his analysis to account for the instantaneous bed shear stress. Since then, the effects of turbulence on
sediment threshold were successfully addressed in several studies.17–19,21–28 Although the drag force
is the predominant hydrodynamic force being responsible for the sediment threshold, the lift force
can also play an important role to initiate the sediment motion. Several researchers considered the lift
force arising from the steep velocity gradient in the vicinity of the bed,29,30 the slip-spinning of parti-
cle,14,15 and the turbulent velocity fluctuations.18,31,32 The effects of friction angle, exposure, sorting,
and hiding of sediment particles on threshold bed shear stress were studied by Wiberg and Smith,30

Fenton and Abbott,33 Kirchner et al.,34 Komar and Carling,35 Johnston et al.,36 and Luckner.37 Further,
the effects of bed slope on the threshold bed shear stress were evaluated by Ikeda,32 Fernandez Luque
and van Beek,38 Chiew and Parker,39 Armanini and Gregoretti,40 and Lamb et al.41 The salient features
of the trajectories and the different states of motion of sediment particles were reported by Francis,42

Abbott and Francis,43 White and Schulz,44 and Ancey et al.45 Munro46 experimentally investigated
the interaction between the vortex ring and the sloped sediment layer under a threshold condition. The
threshold Shields parameters Θc measured from the experiments were compared with those obtained
from the mathematical model stemming from the principle of force balance. Agudo et al.47 experi-
mentally studied the effects of neighboring bed particles on the initiation of particle motion under a
laminar flow condition. They found that rolling is the primary mechanism of the initiation of spherical
particle motion. The role of near-bed pressure forces on sediment threshold was reported by Vollmer
and Kleinhans,18 Amir et al.,48 and Celik et al.49 The pressure forces are of primary importance to
the sediment threshold phenomenon because the pressure differences across the sediment particle in
the streamflow direction and perpendicular to the streamflow direction contribute to the drag and lift
forces, respectively, exerted on the sediment particle.

The major drawback of most of the previous force balance models is that the point of action of
the force system was not determined from the basics of the mechanics. In addition, the forces acting
on a solitary particle were analyzed using a two-dimensional (2D) approach.14,17,24–26,28,30 Although
Dey15 provided an analysis of sediment threshold treating a three-dimensional (3D) configuration of
the bed particles, the effects of turbulent fluctuations were ignored. The limitations of the previous
studies are more specifically delineated in Appendix A. In this study, we present a novel mathematical
model to determine the threshold Shields parameter for the initiation of cohesionless sediment parti-
cles under a steady unidirectional flow over a sediment bed. We consider the sediment particles as
discrete spherical particles. The mode of sediment threshold is envisaged as the rolling mode, which
is the most plausible mode to initiate a particle motion on the sediment bed. The moment of the force
system about the pivoting point constitutes the governing equation. The analysis starts with the proper
configuration of bed sediment particles in a 3D configuration. The hydrodynamic forces (drag and
lift) acting on a solitary particle resting over three closely packed bed particles are analyzed. The drag
force is due to the form drag and form induced drag. On the other hand, the lift force is due to the
shear (Saffman lift), spinning motion (Magnus lift), rolling over bed particles (centrifugal lift), and
advective vertical acceleration (turbulent lift).12 An in-depth analysis is pursued, for the first time,
from the basics of the micro-mechanics, addressing the typical points of action of the force system.
Three different velocity laws are considered to examine the sediment threshold under hydraulically
smooth, transitional, and rough flow regimes. The effects of turbulent fluctuations are incorporated
by applying the statistical theory of turbulence.50,51

The rest of the paper is organized as follows: the mathematical formulation is developed in Sec. II.
The computational steps are described in Sec. III. The model results and discussion are presented in
Sec. IV. Finally, the conclusions are drawn in Sec. V.

II. MATHEMATICAL FORMULATION

A. Configuration of bed sediment particles

To start the mathematical formulation, a consideration of the proper configuration of bed sedi-
ment particles is an essential prerequisite because the mobility of individual particles depends on the
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FIG. 1. Schematic of (a) the configuration of bed sediment particles and the force system in the xz-plane (C1, C2, and C3

lie on the plane parallel to the xy-plane), (b) the tetrahedron CC1C2C3, (c) the plan view of bed sediment particles (two
arrowheads represent the direction of rolling for two extreme cases), and (d) the tetrahedron CJC2P and the maximum,
minimum, and mean pivoting angles.

configuration of bed particles. It is worth mentioning that the consideration of the configuration of bed
sediment particles in a sediment bed for more natural condition does not guarantee an initial stability
to the solitary particle. Further, it makes the analysis uncertain since the packing of the bed sediment
particles under natural conditions is numerous. Therefore, the configuration of bed sediment particles
is envisioned as a spherical solitary sediment particle of diameter D resting over a closely packed
bed formed by three identically spherical bed particles of diameter ks (see Fig. 1(a)). The coordinate
system is depicted in Fig. 1(a). Figure 1(a) shows a generalized view as D > ks; however, other cases
(D ≤ ks) are also possible. The reason to consider such a configuration is that it essentially provides
an initial stability of the solitary particle before the dislodgement in rolling mode from its initial posi-
tion under the action of hydrodynamic forces. Similar configuration of bed sediment particles was
considered by Coleman,13 Dey,15 Miller and Byrne,52 and others. A tetrahedron CC1C2C3 is formed
by connecting the centers of the solitary and the bed particles (see Fig. 1(a)). The enlarged view of
the tetrahedron CC1C2C3 is further depicted in Fig. 1(b). It may be noted that C1, C2, and C3 lie on
the plane parallel to xy-plane. In Fig. 1(b), G1, G2, and G3 are the points of contact. The points I and
J are the projections of point C on G1G2G3 and C1C2C3 planes, respectively, and the points H and P
are the midpoints of lengths rG2G3 and rC2C3, respectively, where the symbol rAB denotes the distance
between two points A and B.

The x-axis or the virtual bed level (that is, z = 0) is considered at a normal distance ξks

below the summit of the bed particles. Here, ξ is a factor being smaller than unity. Let the
lowermost point of the solitary particle be located at a distance δ from the virtual bed level. Then,
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δ = ξks − 0.5(D + ks) + rCJ. From the geometry, the rCJ is

rCJ = (r2
CC2
− r2

C2J
)0.5 =


(

D + ks

2

)2

−
(

ks√
3

)2
0.5

=
1

2
√

3
(3D2 + 6Dks − k2

s)
0.5. (2.1)

Therefore, the δ in nondimensional form is given by

δ+
(

=
δ

D

)

= ξk+s − 0.5(1 + k+s ) +
1

2
√

3
(3 + 6k+s − k+2

s )0.5, (2.2)

where k+s is ks/D.
Figure 1(c) shows the plan view of bed sediment particles. The principal mode of sediment

threshold is the rolling mode, since the sediment threshold in rolling mode is most likely for spherical
particles.15,17,18,24,47,52–55 In the rolling mode, the solitary particle has two bounds depending on the
orientation of the bed particles with respect to the streamflow direction. The particle can roll either
over the summit of a single bed particle or through the flank of the two contiguous bed particles as
depicted in Fig. 1(c) by the two arrowheads. In the former case, the solitary particle rolls over the
summit of a single bed particle in the direction JC2 making the pivoting angle a maximum (angle
C2CJ = φmax) (see Fig. 1(d)). On the other hand, in the latter case, the solitary particle rolls through
the flank of two bed particles in the direction JP making the pivoting angle a minimum (angle PCJ
= φmin) (see Fig. 1(d)). From the geometry, the values of φmax and φmin are thus obtained as

φmax = tan−1rC2J

rCJ
= tan−1


2k+s

(3 + 6k+s − k+2
s )0.5


, (2.3)

φmin = tan−1 rJP

rCJ
= tan−1


k+s

(3 + 6k+s − k+2
s )0.5


. (2.4)

Let the most likely route followed by the solitary particle during the rolling mode be in the
direction JQ, where JQ ∈ [JP,JC2] (see Fig. 1(d)). For such a situation, the pivoting angle QCJ is
φ ∈ [φmin, φmax]. Considering an angle α (see Fig. 1(d)), the mean value of rJQ is obtained as

rJQ =
1

π/3

π/3

0

rJQdα =
3

π

π/3

0

rJP sec αdα =
3

π

rJP ln(2 +
√

3). (2.5)

Therefore, the mean value of pivoting angle φm is

φm = tan−1rJQ

rCJ
= tan−1


3

π

ln(2 +
√

3)
rJP

rCJ


. (2.6)

Using Eq. (2.4), Eq. (2.6) reduces to

φm = tan−1


3

π

ln(2 +
√

3)
k+s

(3 + 6k+s − k+2
s )0.5


. (2.7)

It follows that for a given k+s , the φm can be obtained from Eq. (2.7) or vice versa. Therefore,
the tetrahedral configuration of sediment particles allows us to link between the ratio of bed particle
diameter to solitary particle diameter and the mean pivoting angle, which is a physical quantity and
feasible to determine.

B. Analysis of force system

The force system acting on the solitary particle is shown in Fig. 1(a). We split the hydrodynamic
force experienced by the solitary particle into two components. The drag force FD acts in the stream-
flow direction (x-direction) and the lift force FL acts normal (z-direction) to the streamflow direction.
Moreover, the submerged weight FG of the particle acts through its center of gravity in the negative
z-direction. The submerged weight of the solitary particle is

FG =
π

6
D3∆ρ f g, (2.8)
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FIG. 2. Schematic of flow velocity received by the frontal area of the solitary particle in the yz-plane.

where ∆ is the submerged relative density [= (ρs − ρ f )/ρ f ], ρs is the sediment mass density, ρ f is
the fluid mass density, and g is the gravitational acceleration.

The local instantaneous velocity components (u, w) in (x, z) are decomposed as u = ū + u′ and
w = w̄ + w ′, where over-bar denotes the time-averaged quantity and prime denotes the fluctuations
with respect to time-averaged quantity. Since the summits of the bed particles upstream of the soli-
tary particle encroach the flow beneath the z = ξks plane, the frontal area of the solitary particle
exposed to the flow is considered as the projected area of the portion of the sphere above that plane17,34

(see Fig. 2). Considering an elementary strip of length W in the yz-plane across the solitary parti-
cle at any vertical distance z, the frontal area dA of the elementary strip is dA = Wdz. From the
geometry, W = 2[(z − δ)(D + δ − z)]0.5. Therefore, dA = 2[(z − δ)(D + δ − z)]0.5dz. Integrating dA
within limits z = D + δ and any vertical distance z ∈ (ξks,D + δ), the frontal area Az, representing
the projected area bounded within z = D + δ and any vertical distance z ∈ (ξks,D + δ), is obtained
as

Az = 0.25D2{π − cos−1(D + 2δ − 2z) + 2(D + 2δ − 2z)[(D + δ − z)(z − δ)]0.5}. (2.9)

The components of drag force FD in the xz-plane and lift force FL in the yz-plane are depicted in
Fig. 3 for two cases. In the former case (see Fig. 3(a)), the center of the solitary particle is submerged
within the viscous sublayer thickness δv, that is, δv ∈ [0.5D + δ,D + δ]. On the other hand, in the
latter case (see Fig. 3(b)), the center of the solitary particle lies above the viscous sublayer thickness
δv, that is, δv ∈ [0,0.5D + δ].

The time-averaged drag force FD comprises of the form drag FD1 and the form induced drag
FD2 due to streamwise pressure gradient (see Fig. 3). Thus, the total drag force is

FD = FD1 + FD2. (2.10)

The form drag FD1 is expressed as (see Fig. 3)

FD1 = 0.5CDρ f

D+δ

ξks

ū2dA, (2.11)

where CD is the drag coefficient. The point of action of FD1 is at (see Fig. 3)

zD1 = ξks +

D+δ
ξks

ū2zdA

D+δ
ξks

ū2dA

= ξks +

D+δ
ξks

ū2z[(z − δ)(D + δ − z)]0.5 dz

D+δ
ξks

ū2[(z − δ)(D + δ − z)]0.5 dz

. (2.12)

The form induced drag FD2 is expressed as (see Fig. 3)

FD2 = −
(

∂ p̄

∂x

)

z=zD2

T Az=δv, (2.13)



075103-6 S. Z. Ali and S. Dey Phys. Fluids 28, 075103 (2016)

FIG. 3. Schematic of the components of drag force FD (form drag FD1 and form induced drag FD2) in the xz-plane and
lift force FL (Saffman lift FLS, Magnus lift FLM , centrifugal lift FLC, and turbulent lift FLT ) in the yz-plane for (a)
δv ∈ [0.5D+δ,D+δ] and (b) δv ∈ [0,0.5D+δ].

where p̄ is the time-averaged pressure intensity, zD2 is the point of action of FD2, and T is the width of
an elementary strip in the yz-plane across the solitary particle at z = δv. The width of the elementary
strip T is expressed as (see Fig. 3)

T = 2[(δv − δ)(D + δ − δv)]
0.5 ∀ δv ∈ [0.5D + δ,D + δ], (2.14)

T = D ∀ δv ∈ (0,0.5D + δ). (2.15)

The point of action of FD2 is at (see Fig. 3)

zD2 = 0.5(D + δ + δv) ∀ δv ∈ [ξks,D + δ], (2.16)

zD2 = 0.5(D + δ + ξks) ∀ δv ∈ (0, ξks). (2.17)

To find the time-averaged pressure gradients in x- and z-direction, we assume that the time-
averaged pressure gradients are free from the viscous effects in order to simplify the mathematical
treatment. Thus, the Euler equations in x- and z-direction produce

− ∂ p̄

∂x
= ρ f

Du

Dt
, (2.18)

− ∂ p̄

∂z
= ρ f

Dw

Dt
, (2.19)

where Du/Dt and Dw/Dt refer to the total acceleration components in (x, z).
Thus, using Eqs. (2.11), (2.13), and (2.18), Eq. (2.10) reduces to

FD = CDρ f

D+δ

ξks

ū2[(z − δ)(D + δ − z)]0.5dz + ρ f
*,

Du

Dt
+-z=zD2

T Az=δv. (2.20)
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Therefore, the FD in nondimensional form is

F+D

(

=
FD

ρ fu2
∗D2

)

= CD

1+δ+

ξk+s

ū+2[(z+0 − δ+)(1 + δ+ − z+0 )]
0.5dz+0 +

*,
Du+

Dt+
+-z+0=z+D2

T+A+
z+0=δ

+
v

, (2.21)

where ū+ is ū/u∗, z+0 is z/D, δ+v is δv/D, u+ is u/u∗, u∗ is the shear velocity, t+ is tu∗/D, T+ is T/D,
and A+ is A/D2.

Analyzing the data of Coleman,13 the drag coefficient CD can be expressed as a function of shear
Reynolds number R∗ (= u∗ks/υ, where υ is the kinematic viscosity) in the following form:18

CD(R∗ ≤ 5) =
25

R∗
,

CD(5 < R∗ ≤ 5 × 104) = 0.55 +
37

R1.2
∗
− 3.5

R0.9
∗

,

CD(R∗ > 5 × 104) = 0.25. (2.22)

The FD acting at the point C ′ (see Figs. 1(a) and 1(b)) is at an elevation

zD =

2


i=1
FDizDi

FD

. (2.23)

For a steady flow, the local acceleration terms disappear yielding Du/Dt = u(∂u/∂x) + w(∂u/∂z)
and Dw/Dt = u(∂w/∂x) + w(∂w/∂z). Substituting u = ū + u′ and w = w̄ + w ′ in Du/Dt and Dw/Dt
and performing the time-averaging yield

Du

Dt
= (ū + u′)

∂(ū + u′)

∂x
+ (w̄ + w ′)

∂(ū + u′)

∂z
, (2.24)

Dw

Dt
= (ū + u′)

∂(w̄ + w ′)

∂x
+ (w̄ + w ′)

∂(w̄ + w ′)

∂z
. (2.25)

For a unidirectional (streamwise, that is, in x-direction) and uniform streamflow over a sediment
bed, ū = ū(z), w̄ = 0 (that is, w = w ′),56 and ∂ū/∂x = 0. Therefore, Eqs. (2.24) and (2.25) reduce to

Du

Dt
= u′

∂u′

∂x
+ w ′

∂u′

∂z
, (2.26)

Dw

Dt
= u′

∂w ′

∂x
+ w ′

∂w ′

∂z
. (2.27)

Since there are no data providing the correlation coefficients for u′(∂u′/∂x), w ′(∂u′/∂z), u′(∂w ′/
∂x), and w ′(∂w ′/∂z), we can adopt the root mean squares of them.57 Therefore, we obtain

Du

Dt
=



u′2





(

∂u′

∂x

)2

+



w ′2





(

∂u′

∂z

)2

, (2.28)

Dw

Dt
=



u′2





(

∂w ′

∂x

)2

+



w ′2





(

∂w ′

∂z

)2

. (2.29)

By applying the statistical theory of turbulence,50,51 we obtain

(

∂u′

∂x

)2

=
u′2

λ2
, (2.30)

(

∂u′

∂z

)2

=
2u′2

λ2
+

1

4u′2
*,
∂u′2

∂z
+-

2

, (2.31)
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(

∂w ′

∂x

)2

=
2w ′2

λ2
, (2.32)

where λ is the Taylor micro-scale.
Substituting Eqs. (2.30)–(2.32) in Eqs. (2.28) and (2.29) yields

Du+

Dt+
=

1

k+s


σ+2
u

λ+
+ σ+w


2σ+2

u

λ+2
+

(

∂σ+u

∂z+

)2
0.5 , (2.33)

Dw+

Dt+
=

1

k+s


√

2σ+uσ
+
w

λ+
+ σ+w

∂σ+w

∂z+

 , (2.34)

where w+ is w/u∗, σ+u is σu/u∗, σu is the turbulence intensity in x-direction [= (u′u′)0.5], σ+w is σw/u∗,
σw is the turbulence intensity in z-direction [= (w ′w ′)0.5], z+ is z/ks, and λ+ is λ/ks.

The σu in nondimensional form is expressed as follows:25

σ+u = 0.31z+R∗ exp(−0.1z+R∗) + 1.8 exp(−0.88ϖ−1)[1 − exp(−0.1z+R∗)], (2.35)

where ϖ is the relative submergence (= h/ks) and h is the flow depth. The effects of the relative
submergence ϖ on turbulence intensity are significant only for the shallow streamflow.25,41 However,
for natural streams, the ϖ is relatively large and hence has a trivial effect on σu-distribution. Equation
(2.35) shows that the σ+u is practically independent of ϖ for ϖ ≥ 100.

The σw in nondimensional form is expressed as follows:58,59

σ+w = 0.5σ+u . (2.36)

To find λ+, as it appears in the right hand side of Eqs. (2.33) and (2.34), we proceed as follows.
The turbulent kinetic energy (TKE) dissipation rate ε is expressed as60

ε =
0.691

h0.5

σ3
u

z0.5
. (2.37)

The Taylor micro-scale λ can be related to the TKE dissipation rate ε as50,60

λ =

(

15υ
σ2
u

ε

)0.5

. (2.38)

Substituting Eq. (2.37) in Eq. (2.38) yields

λ+ = λ+0 +

(

21.71

R∗ϖ1.5σ+u

)0.5

z+0.25, (2.39)

where λ+0 is λ0/ks and λ0 is the amount of increase in size of the eddies depending on the bed
roughness.31,51

The hydrodynamic lift force FL is constituted by the Saffman lift FLS, the Magnus lift FLM,
the centrifugal lift FLC, and the turbulent lift FLT (see Fig. 3). Thus, the total lift force is FL =

FLS + FLM + FLC + FLT .
The Saffman lift61,62 on a particle arises when the particle is placed in a shear flow, which has a

gradient in velocity distribution. The Saffman lift originates from the inertia effects in the shear flow
around the particle. It is expressed as

FLS = CLρ f D2V

(

υ
∂ū

∂z

)0.5

, (2.40)

where CL is the Saffman lift coefficient and V is the velocity of fluid at an elevation of the center of
the solitary particle. In this study, we consider CL = 0.85CD.63 The FLS in nondimensional form is

F+LS

(

=
FLS

ρ fu2
∗D2

)

= CLV+
(

k+s
R∗

∂ū+

∂z+0

)0.5

, (2.41)

where V+ is V/u∗.
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As the shear Reynolds numbers R∗ gradually increases, the solitary particle starts rotating into
the groove, formed by the three closely packed bed particles, just before dislodging from its initial
position.14,15 The rotation of the solitary particle is attributed to the steep velocity gradient ∂ū/∂z in
the vicinity of the bed due to the substantial velocity gradient between the lowermost point (z = δ)
and the uppermost point (z = D + δ) of the solitary particle. Thus, a turning moment is created due
to a larger hydrodynamic force experienced by the upper portion of the particle than that by the lower
portion of the particle. The lift force caused by the particle rotation, known as the Magnus lift,64 is
expressed as

FLM = ρ f D3ūmΩm, (2.42)

where ūm is the mean velocity received by the solitary particle, Ωm (= 0.5Ωmax) is the mean angular
velocity of the solitary particle, and Ωmax = 0.5(∂ū/∂z). The FLM in nondimensional form is

F+LM

(

=
FLM

ρ fu2
∗D2

)

= 0.25ū+m
∂ū+

∂z+0
, (2.43)

where ū+m is ūm/u∗.
The curvilinear motion of the solitary particle over the bed particles induces the centrifugal lift,14

which is expressed as

FLC =
πD3

6
(ρs + αmρ f )

(ΩmD)2

4ℜ cos φm =
πD5

384ℜ (ρs + αmρ f )

(

∂ū

∂z

)2

cos φm, (2.44)

where αm is the added mass coefficient andℜ is the radius of curvature of the locus of the moving
solitary particle over the bed particles. The significance of an added fluid mass is the inertia added
to a system. An accelerating or decelerating particle is to move some volume of surrounding fluid,
as it moves through it. The value αm = 0.5 is used here as was considered by van Rijn.65 The ℜ is
considered as the length rCQ (see Fig. 1(d)). Thus,

ℜ = rCQ = (r2
CJ + r2

JQ)
0.5 =

1

2
√

3


(3D2 + 6Dks − k2

s) +
9k2

s

π
2

ln2(2 +
√

3)

0.5

. (2.45)

The FLC in nondimensional form is

F+LC

(

=
FLC

ρ fu2
∗D2

)

=
π

384ℜ+ (1 + αm + ∆)

(

∂ū+

∂z+0

)2

cos φm, (2.46)

whereℜ+ isℜ/D.
The turbulent lift is developed due to the pressure gradient along the vertical, which can be corre-

lated with the total acceleration component in the vertical direction (see Eq. (2.19)). To analyze the
turbulent lift, we take a section SS of the solitary particle perpendicular to the yz-plane (see Fig. 3).
The 3D view of the spherical cap is depicted in Fig. 3. The diameter of the base of the spherical cap
is T (as defined in Eqs. (2.14) and (2.15)) and the height of the spherical cap is D + δ − δv. Thus, the
turbulent lift is expressed as31,32

FLT = −*,
∂p

∂z
+-z=zD2

(D + δ − δv)
π

4
T2 = ρ f

*,
Dw

Dt
+-z=zD2

(D + δ − δv)
π

4
T2. (2.47)

The FLT in nondimensional form is

F+LT

(

=
FLT

ρ fu2
∗D2

)

=
π

4
(1 + δ+ − δ+v )T

+2*,
Dw+

Dt+
+-z+0=z+D2

. (2.48)

Thus, the total lift force FL in nondimensional form is

F+L

(

=
FL

ρ fu2
∗D2

)

= F+LS + F+LM + F+LC + F+LT . (2.49)
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The point of action of the lift force is at the center of the solitary particle (see Fig. 3).14,15,17,18,24,30

It may be noted that the order of magnitude of hydrodynamic forces in terms of scaling laws is
analyzed in Appendix B.

C. Determination of threshold Shields parameter

For the sediment threshold in rolling mode, the moment balance of the force system about the
pivoting point is FDLz + FLLx = FGLx, where Lx and Lz are the horizontal and the vertical lever
arms, respectively (Fig. 1). Substituting Eq. (2.8) into the above condition yields

Θc

(

=
u2
∗

∆gD

)

=
πL+x

6(F+
L

L+x + F+
D

L+z )
, (2.50)

where L+x is Lx/D and L+z is Lz/D.

D. Determination of lever arms

The horizontal lever arm Lx of the force system is r IK (see Fig. 1). Using the geometrical config-
uration, the Lx in nondimensional form is expressed as

L+x =

√
3

2π

k+s
1 + k+s

ln(2 +
√

3). (2.51)

The vertical lever arm Lz of the force system is rC′I (see Fig. 1). Again using the geometrical
configuration, the Lz in nondimensional form is expressed as

L+z = z+D − δ+ +
1

2
√

3

(3 + 6k+s − k+2
s )0.5

1 + k+s
− 0.5. (2.52)

E. Determination of mean velocity and velocity gradient

The mean velocity ūm received by the solitary particle is determined as (see Fig. 2)

ūm =
Sc

Az=ξks

D+δ

ξks

ūdA =
2Sc

Az=ξks

D+δ

ξks

ū[(z − δ)(D + δ − z)]0.5dz, (2.53)

where Sc is the hindrance coefficient being less than unity.12,31 The reason to introduce the hindrance
coefficient Sc in this study is twofold. First, the presence of bed sediment particles upstream of the
solitary particle results in a reduction of flow area received by the solitary particle. Second, the velocity
field in the vicinity of the sediment bed is substantially affected by the surface of the bed particles. As
a consequence, the mean velocity received by the solitary particle (in the yz-plane) reduces to some
extent. Thus, the mean velocity obtained from the velocity law is multiplied by the hindrance coeffi-
cient to incorporate the aforementioned effects. Since a deterministic formulation of Sc is a difficult
proposition, a sensitivity analysis of Sc on the threshold curve with respect to the experimental data
is performed.

Thus, the ūm in nondimensional form is

ū+m =
2Sc

A+
z+0=ξk

+
s

1+δ+

ξk+s

ū+[(z+0 − δ+)(1 + δ+ − z+0 )]
0.5dz+0 . (2.54)

The velocity gradient ∂ū/∂z is then obtained as

∂ū

∂z
=

1

D + δ − ξks

D+δ

ξks

∂ū

∂z
dz =

ūz=D+δ − ūz=ξks

D + δ − ξks

. (2.55)
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FIG. 4. Schematic of flow velocity received by the solitary particle in the xz-plane for (a) δv ≥D, (b) ξks < δv < D, (c)
0 < δv < ξks, and (d) δv = 0.

Thus, the ∂ū/∂z in nondimensional form is

∂ū+

∂z+0
=

ū+
z+0=1+δ+

− ū+
z+0=ξk

+
s

1 + δ+ − ξk+s
. (2.56)

Figure 4 shows the schematic of flow velocity received by the solitary particle in the xz-plane. To
obtain the threshold Shields parameter Θc for different flow regimes (that is, hydraulically smooth,
transitional, and rough flow regimes), we have the following cases:

Case 1 (δv ≥ D): In this case, the solitary particle is submerged within the viscous sublayer and
the particle does not experience any velocity fluctuations (see Fig. 4(a)). It, therefore, corresponds to
the hydraulically smooth flow regime, where the viscous effect is predominant in the vicinity of the
bed. The velocity law for this case is expressed as14,15

ū+ =
u∗z

υ
=

R∗
k+s

z+0 . (2.57)

The mean velocity ū+m determined from Eq. (2.54) is

ū+m =
2ScR∗

A+
z+0=ξk

+
s

k+s

1+δ+

ξk+s

z+0 [(z
+
0 − δ+)(1 + δ+ − z+0 )]

0.5dz+0 . (2.58)

The velocity gradient ∂ū+/∂z+0 obtained from Eq. (2.56) is

∂ū+

∂z+0
=

ū+
z+0=1+δ+

− ū+
z+0=ξk

+
s

1 + δ+ − ξk+s
=

R∗
k+s

. (2.59)

Case 2 (0 < δv < D): In this case, the solitary particle is partially exposed to the turbulent flow.
It, therefore, corresponds to the hydraulically transitional flow regime, where the effects of both the
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viscosity and the roughness are predominant in the vicinity of the bed. The velocity law for this case
is expressed as follows:66

ū+ =
1

κζz+0=z
+
0

(0.5 −


ζ2
z+0=z

+
0
+ 0.25) +

1

κ
ln(2ζz+0=z

+
0
+ 2



ζ2
z+0=z

+
0
+ 0.25) + Rv, (2.60)

where κ is the von Kármán constant, ζ = κR∗(z+0 − δ+v )/k+s , and Rv = u∗δv/υ.
Moreover, this regime can be divided into two sub-regimes:
(a) For ξks < δv < D (see Fig. 4(b)), the mean velocity ū+m derived from Eq. (2.54) is

ū+m =
2ScR∗

(A+
z+0=ξk

+
s

− A+
z+0=δ

+
v

)k+s

δ+
v

ξk+s

z+0 [(z
+
0 − δ+)(1 + δ+ − z+0 )]

0.5dz+0

+
2Sc

A+
z+0=δ

+
v

1+δ+

δ+
v

[(z+0 − δ+)(1 + δ+ − z+0 )]
0.5


1

κζz+0=z
+
0

(0.5 −


ζ2
z+0=z

+
0
+ 0.25)

× 1

κ
ln(2ζz+0=z

+
0
+ 2



ζ2
z+0=z

+
0
+ 0.25) + Rv



dz+0 . (2.61)

The velocity gradient ∂ū+/∂z+0 determined from Eq. (2.56) is

∂ū+

∂z+0
=

R∗
k+s
+

1

1 + δ+ − δ+v


1

κζz+0=ξk
+
s

(0.5 −


ζ2
z+0=ξk

+
s

+ 0.25)

+
1

κ
ln (2ζz+0=ξk

+
s
+ 2



ζ2
z+0=ξk

+
s

+ 0.25)


. (2.62)

(b) For 0 < δv ≤ ξks (see Fig. 4(c)), the mean velocity ū+m derived from Eq. (2.54) is

ū+m =
2Sc

A+
z+0=ξk

+
s

1+δ+

ξk+s

[(z+0 − δ+)(1 + δ+ − z+0 )]
0.5


1

κζz+0=z
+
0

(0.5 −


ζ2
z+0=z

+
0
+ 0.25)

+
1

κ
ln (2ζz+0=z

+
0
+ 2



ζ2
z+0=z

+
0
+ 0.25) + Rv



dz+0 . (2.63)

The velocity gradient ∂ū+/∂z+0 obtained from Eq. (2.56) is

∂ū+

∂z+0
=

1

1 + δ+ − ξk+s


1

κζz+0=ξk
+
s

(0.5 −


ζ2
z+0=ξk

+
s

+ 0.25) +
1

κ
ln(2ζz+0=ξk

+
s
+ 2



ζ2
z+0=ξk

+
s

+ 0.25)
 .

(2.64)

The experimental observation of Nikuradse67 on pipe flow showed that the Rv decreases mono-
tonically with R∗. The experimental data Rv(R∗) of Nikuradse67 are shown in Fig. 5. The American
Society of Civil Engineers (ASCE) Task Force68 on friction factor in open channels reported that
for open-channel roughness similar to that encountered in pipes, the resistance equations similar to
those of pipe flows are adequate. Figure 5 shows that the experimental data have an agreement with
a quartic polynomial which has the following form:

Rv = a0 + a1R∗ + a2R2
∗ + a3R3

∗ + a4R4
∗ ∀ R∗ ∈ (0,54.3), (2.65)

Rv = 0 ∀ R∗ ∈ [54.3,∞), (2.66)

where a0 = 7.084, a1 = −14.95 × 10−2, a2 = −4.46 × 10−3, a3 = 1.72 × 10−4, and a4 = −1.54 × 10−6.
Case 3 (δv = 0): In this case, the solitary particle is fully exposed to the turbulent flow and the

viscous sublayer does not exist (see Fig. 4(d)). It, therefore, corresponds to the hydraulically rough
flow regime, where the effect of roughness is predominant in the vicinity of the bed. The velocity law
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FIG. 5. Experimental data Rv(R∗) of Nikuradse67 and the fitted polynomial.

for this case is expressed as follows:66

ū+ =
1

κηz+0=z
+
0

(0.5 −


η2
z+0=z

+
0
+ 0.25) − 1

κRl

(0.5 −


R2
l
+ 0.25)

+
1

κ
ln
*..,
ηz+0=z

+
0
+



η2
z+0=z

+
0
+ 0.25

Rl +



R2
l
+ 0.25

+//-
, (2.67)

where η is (Rl + κR∗z+0 )/k+s , Rl is u∗l/υ, and l is the intercept of the mixing length at z = 0.
The mean velocity ū+m determined from Eq. (2.54) is

ū+m =
2Sc

A+
z+0=ξk

+
s

1+δ+

ξk+s

[(z+0 − δ+)(1 + δ+ − z+0 )]
0.5


1

κηz+0=z
+
0

(0.5 −


η2
z+0=z

+
0
+ 0.25)

− 1

κRl

(0.5 −


R2
l
+ 0.25) +

1

κ
ln
*..,
ηz+0=z

+
0
+



η2
z+0=z

+
0
+ 0.25

Rl +



R2
l
+ 0.25

+//-


dz+0 . (2.68)

The velocity gradient ∂ū+/∂z+0 obtained from Eq. (2.56) is

∂ū+

∂z+0
=

1

1 + δ+ − ξk+s


1

κηz+0=1+δ+
(0.5 −



η2
z+0=1+δ+

+ 0.25) − 1

κηz+0=ξk
+
s

(0.5 −


η2
z+0=ξk

+
s

+ 0.25)

+
1

κ
ln

*..,
ηz+0=1+δ+ +



η2
z+0=1+δ+

+ 0.25

ηz+0=ξk
+
s
+



η2
z+0=ξk

+
s

+ 0.25

+//-

. (2.69)

Using the experimental data of Nikuradse,67 Rotta66 proposed that the Rl can be expressed in the
following form:

Rl = 0.014R∗ − 0.76 ∀ R∗ ∈ [54.3,∞), (2.70)

Rl = 0 ∀ R∗ ∈ (0,54.3). (2.71)

For a sediment bed at near-threshold condition, the velocity laws are modified due to the expan-
sion of the roughness layer, resulting in a slight deviation of von Kármán constant κ value from its
universal value κ = 0.41. The experimental investigations of Best et al.69 and Dey et al.70,71 revealed
that the value of κ reduces in flows over weakly mobile beds. Best et al.69 reported an average value
of κ = 0.385 which is adopted in the present study. Further, van Rijn65 stated that the virtual bed level



075103-14 S. Z. Ali and S. Dey Phys. Fluids 28, 075103 (2016)

can be fixed at a distance 0.25ks below the summit of the bed particles (that is, ξ = 0.25) in order
to preserve the velocity law over an immobile bed. However, the experimental observation of Dey
et al.71 revealed an upward shift of the virtual bed level for a weakly mobile bed. Here, we consider
ξ = 0.21 as reported by Dey et al.71

III. COMPUTATIONAL STEPS

The pivoting angle φm has a wide variation depending on the variable pocket geometry and the
nonuniformity of sediments. However, for uniform sediments, k+s is approximately unity. To deter-
mine the threshold Shields parameter Θc, the computational steps are described as follows:

(1) For a given φm, determine k+s from Eq. (2.7) or vice versa.
(2) Compute δ+ from Eq. (2.2).
(3) For a given R∗, determine Rv from Eq. (2.65) or (2.66).
(4) Determine δ+v = Rvk+s /R∗ and find the flow regime: for smooth flow, δ+v ≥ 1, for transitional

flow, 0 < δ+v < 1, and for rough flow, δ+v = 0.
(5) Compute z+

D1(= zD1/D) numerically from Eq. (2.12) using the expression for ū+ from Eq.
(2.57) for smooth flow or Eq. (2.60) for transitional flow or Eq. (2.67) for rough flow, and then
determine z+

D2(= zD2/D) from Eq. (2.16) or (2.17).
(6) Estimate ū+m from Eq. (2.58) for smooth flow, (2.61) or (2.63) for transitional flow, and (2.68)

for rough flow.
(7) Estimate ∂ū+/∂z+0 from Eq. (2.59) for smooth flow, (2.62) or (2.64) for transitional flow, and

(2.69) for rough flow.
(8) Evaluate CD from Eq. (2.22).
(9) Compute CL from CL = 0.85CD.

(10) Determine σ+u |z+0=z
+
D2

and σ+w |z+0=z
+
D2

from Eqs. (2.35) and (2.36), respectively.

(11) Calculate λ+
z+0=z

+
D2

from Eq. (2.39) with λ+0 = Rl/R∗.

(12) Obtain Du+/Dt+ and Dw+/Dt+ from Eqs. (2.33) and (2.34), respectively.
(13) Compute F+

D
from Eq. (2.21).

(14) Compute F+
L

from Eq. (2.49). Note that for Case 1 (δv ≥ D), F+
L
= F+

LS
+ F+

LM
+ F+

LC
since

F+
LT
= 0; and for Case 2 (0 < δv < D) and Case 3 (δv = 0), F+

L
= F+

LS
+ F+

LM
+ F+

LC
+ F+

LT
.

Further, for Case 1, Az=δv vanishes, while for Cases 2 and 3, it exists.
(15) Calculate L+x and L+z from Eqs. (2.51) and (2.52), respectively.
(16) Determine Θc from Eq. (2.50).

IV. RESULTS AND DISCUSSION

To show the graphical representations of Θc(R∗), we consider the characteristic values of sedi-
ment mass density ρs, fluid mass density ρ f , and kinematic viscosity υ as 2650 kg m−3, 103 kg m−3

(water), and 10−6 m2 s−1, respectively.
Figure 6 shows the curve of threshold Shields parameter Θc as a function of threshold shear

Reynolds number R∗c obtained from the present study for Sc = 0.2, 0.3, and 0.4 and the experimental
data of uniform sediments. The experimental data are obtained from the work of Gilbert,1 Shields,5

Mantz,6 Yalin and Karahan,8 White,20 Zanke,25 Iwagaki,31 Casey,72 Kramer,73 USWES,74 Vanoni,75

Meyer-Peter and Müller,76 Neill,77 Grass,78 White,79 Karahan,80 Julien,81 and Soulsby and White-
house.82 Moreover, the explicit version of the Shields curve proposed by Hager and Del Giudice83

(also see Hager and Oliveto84) is also shown for the comparison. It is evident that the Θc(R∗c)-curves
shift downward with an increase in Sc. The Θc(R∗c)-curve for Sc = 0.3 provides an excellent fitt-
ing (as if it were a regression fitting) with the thick band of experimental data over a wide range of
R∗c. On the other hand, the experimental data are approximately bounded by the Θc(R∗c)-curves for
Sc = 0.2 and 0.4. Figure 6 shows that for Sc = 0.3, the Θc decreases with an increase in R∗c becom-
ing a minimum as Θc = 0.025 at R∗c = 16 and then gradually increases to attain a constant value
as Θc = 0.044 for R∗c ≥ 100. According to the Θc(R∗c)-curve of Yalin and Karahan,8 the threshold
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FIG. 6. Comparison of the curves of threshold Shields parameter Θc versus threshold shear Reynolds number R∗c obtained
from the present study for Sc = 0.2, 0.3, and 0.4 with the experimental data of uniform sediments and Θc(R∗c)-curve of
Hager and Del Giudice.83

Shields parameter Θc for hydraulically rough flow regime is independent of R∗c having a constant
value of Θc = 0.046, which closely corresponds to the value of Θc = 0.044 obtained from this study.
Further, the Θc(R∗c)-curve given by Hager and Del Giudice,83 in general, underestimates the exper-
imental data in hydraulically smooth flow regime but slightly overestimates in hydraulically tran-
sitional and rough flow regimes. It may be noted that the simulated natural bed conditions in the
experiments corresponding to the data plots in Fig. 6 might not be under the same idealized condition
as considered in Fig. 4 of this study. As such, the experimental data scatter in Fig. 6 reveals that a
universal threshold curve for the determination of threshold Shields parameter is a difficult propo-
sition. Therefore, it is desirable to obtain the upper and lower bounds of the threshold curve. For

FIG. 7. Comparison of the curve of threshold Shields parameter Θc versus threshold shear Reynolds number R∗c for Sc =

0.3 obtained from the present study with those of various researchers.
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instance, Mantz6 proposed the extended Shields diagram (see the shaded band in Fig. 7) to obtain
the condition of maximum stability of sediment particles. Using the extensive experimental data of
gravel-bed rivers, Buffington and Montgomery10 reported that for the rough flow regime, the reference
based and visual based studies have typical ranges of threshold Shields parameter as 0.052–0.086 and
0.03–0.073, respectively. Furthermore, Dey and Raikar85 showed that in the rough flow regime, most
of the experimental data at near-threshold condition are confined within the curves of Shields5 and
Yalin and Karahan.8 Therefore, Dey and Raikar85 used the lower, intermediate, and upper threshold
conditions to distinguish the experimental data. Reverting back to this study, Fig. 6 shows that the
experimental data are approximately confined within the two threshold curves, corresponding to
Sc = 0.4 (upper bound) and 0.2 (lower bound). The values of threshold Shields parameter for the
rough flow regime, obtained from this study, corresponding to Sc = 0.4 and 0.2 are 0.025 and 0.067,
respectively. Therefore, it can be concluded that the Sc can be varied to simulate range of experimental
condition.

Figure 7 presents the comparison of the curve of threshold Shields parameterΘc versus threshold
shear Reynolds number R∗c obtained from this study with those of various researchers.5,6,8,14,15,18,30,31

To prepare Fig. 7, we consider Sc = 0.3. Figure 7 shows that the Θc(R∗c)-curve obtained from this
study lies within the shaded zone, referred to the extended Shields diagram,6 excepting 8 < R∗c < 25.
The Θc(R∗c)-curve proposed by Dey15 falls within the shaded zone of Mantz,6 since an extensive
calibration of the lift coefficient with the experimental data was done by Dey.15 The Θc(R∗c)-curve
of Ling14 shows two limits, such as rolling and lifting. Ling14 argued that the real feature of sediment
threshold lies within the curves defining the rolling and lifting threshold. However, it is difficult to
find the value of Θc from the Θc(R∗c)-curves of Ling14 because the actual threshold curve is hidden
within the rolling and lifting threshold curves. It is pertinent to state that both the rolling and lifting
threshold curves of Ling14 monotonically increase with an increase in R∗c in the hydraulically rough
flow regime. This phenomenon is not practically feasible, as the Θc in the hydraulically rough flow
regime is independent of R∗c. Furthermore, the Θc(R∗c)-curve of Wiberg and Smith30 and Vollmer
and Kleinhans18 predicts a monotonic increase in Θc with R∗c for R∗c ≥ 100. However, Vollmer and
Kleinhans18 reported that the dip in the Θc(R∗c)-curve occurs at higher R∗c than that predicted by
the Shields diagram.5 This study is in conformity with this fact, as Fig. 7 shows that the dip in the
Θc(R∗c)-curve of Shields5 occurs early than that of this study.

Figure 8 illustrates the curves of threshold Shields parameterΘc versus threshold shear Reynolds
number R∗c for k+s = 0.25, 0.5, 1, and 2 (or mean pivoting angles φm = 8.6, 15.25, 26, and 38.7◦ as
obtained from Eq. (2.7)) and Sc = 0.3 obtained from the present study. It is evident that the Θc in-
creases with an increase in k+s . This is due to the fact that an increase in k+s indicates that the size of

FIG. 8. Comparison of the curves of threshold Shields parameter Θc versus threshold shear Reynolds number R∗c for
k+s = 0.25, 0.5, 1, and 2 and Sc = 0.3 obtained from the present study with the experimental data of Fisher et al.86 for
nonuniform sediments grouped into different k+s classes.
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the solitary particle is much smaller than that of the bed particles. As a consequence, with an increase
in k+s , the solitary particle becomes more hidden within the bed pocket geometry. Thus, a greater bed
shear stress is required to dislodge the particle. The threshold Shields parameter Θc in the rough flow
regime for k+s = 0.25, 0.5, 1, and 2, obtained from this study is 0.009, 0.019, 0.044, and 0.089, respec-
tively. Another important observation is that the occurrence of dip inΘc(R∗c)-curve is delayed with an
increase in k+s . The experimental data ofΘc(R∗c) for nonuniform sediments reported by Fisher et al.86

are grouped into different k+s classes. The comparison of the computedΘc(R∗c)-curves obtained from
this study with the experimental data shows that the computed Θc(R∗c)-curves, in general, do a good
job in separating the experimental data of different k+s classes of nonuniform sediments.

The novelty of this study as compared to the previous studies lies on the fact that this study
analyses the threshold motion of sediment particles in 3D configuration by applying the fundamental
concepts of hydrodynamics and micro-mechanics. The hydrodynamic force is resolved into drag
(collective effects of form drag and form induced drag) and lift (collective effects of Saffman lift,
Magnus lift, centrifugal lift, and turbulent lift) taking part to the micro-mechanical force system that
governs the initiation of sediment particle motion. It thus provides a clear physical insight into the
sediment threshold phenomenon. The evolution of different force components depending on the shear
Reynolds number is well focused. The consideration of viscous sublayer and its decay with the shear
Reynolds number in an explicit form is incorporated into the mathematical analysis. The points of
action of the hydrodynamic forces being the key feature are obtained from the basics of mechanics, for
the first time to the best of authors’ knowledge. The consideration of velocity fluctuations (turbulence)
from the concept of statistical theory of turbulence makes the formulation more realistic. Further, the
reduction in mean velocity received by the solitary particle due to the bed particles and resistance
to flow is incorporated by introducing the hindrance coefficient. Given above, this study provides
therefore an improved treatment of the sediment threshold problem over the existing ones.

It is pertinent to mention that the present mathematical model is applicable for a steady turbulent
flow over a closely packed plane sediment bed formed by uniform and nonuniform sediment particles.
However, an exact determination of hindrance coefficient used in this study requires more experi-
mental evidences. The model results are thus limited to the closely packed sediment beds. However,
for nonuniform sediment particles subjected to different bed packing conditions forming a loosely
packed sediment bed, the present mathematical model can be further extended, as a future scope of
research study.

V. CONCLUSIONS

A novel mathematical model is presented to determine the threshold bed shear stress to initiate
cohesionless sediment particle motion under a steady unidirectional streamflow over a sediment bed.
The sediment particles are considered as discrete spherical particles. The primary mode of sediment
threshold is considered as rolling mode. The forces acting on a solitary sediment particle resting over
three identical closely packed bed particles are analyzed from the basics of the hydrodynamics and
micro-mechanics. The form drag and form induced drag contribute to the hydrodynamic drag force.
On the other hand, the hydrodynamic lift force comprises of Saffman lift, Magnus lift, centrifugal
lift, and turbulent lift. The effects of velocity fluctuations are incorporated in the analysis by apply-
ing the statistical theory of turbulence. The governing equation of sediment threshold is obtained by
taking moment of the force system on the solitary particle about the pivoting point. To investigate the
sediment threshold under hydraulically smooth, transitional, and rough flow regimes, three different
velocity laws are used in the analysis. The Θc(R∗c)-curve obtained from the present study compares
well with those of previous studies. The present model provides a satisfactory agreement with the
experimental data of uniform and nonuniform sediments.

APPENDIX A: LIMITATIONS OF THE PREVIOUS STUDIES

The limitations of the previous studies on modeling the sediment threshold are listed in Table I.
The mathematical model presented in this study overcomes these limitations.
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TABLE I. Limitations of the previous studies on modeling the sediment threshold.

References Limitations

Ling14 Considered 2D configuration of sediment bed and disregarded form induced drag, turbulent lift,

appropriate points of action of force system, determination of mean velocity from area-averaged

concept, decay of viscous sublayer with shear Reynolds number, velocity fluctuations

(turbulence effects), and hindrance coefficient

Dey15 Ignored form induced drag, centrifugal lift, turbulent lift, appropriate points of action of force

system, decay of viscous sublayer with shear Reynolds number and velocity fluctuations

(turbulence effects)

Wu and Chou17 Considered 2D configuration of sediment bed, a single velocity law for the hydraulically rough

flow regime and constant streamwise turbulence intensity in the vicinity of the bed; and ignored

vertical velocity fluctuations, appropriate points of action of force system, form induced drag,

Magnus lift, centrifugal lift, turbulent lift, decay of viscous sublayer with shear Reynolds

number, and hindrance coefficient

Vollmer and

Kleinhans18

Considered 2D moment arms and pivoting angle, a single velocity law for the hydraulically

rough flow regime and constant turbulence intensity in the vicinity of the bed; and disregarded

appropriate points of action of force system, form induced drag, Magnus lift, centrifugal lift,

decay of viscous sublayer with shear Reynolds number, and hindrance coefficient

White20 Considered 2D configuration of sediment bed and ignored form induced drag, Magnus lift,

centrifugal lift, turbulent lift, appropriate points of action of force system, and decay of viscous

sublayer with shear Reynolds number

Zanke25 Considered 2D configuration of sediment bed and disregarded form induced drag, Magnus lift,

centrifugal lift, turbulent lift, appropriate points of action of force system, determination of mean

velocity from area-averaged concept, and decay of viscous sublayer with shear Reynolds number

Wiberg and Smith30 Considered 2D configuration of sediment bed and disregarded form induced drag, Magnus lift,

centrifugal lift, turbulent lift, appropriate points of action of force system, decay of viscous

sublayer with shear Reynolds number, and velocity fluctuations (turbulence effects)

Iwagaki31 Considered 2D configuration of sediment bed and ignored lift force in hydraulically smooth flow

regime, Saffman lift, Magnus lift, centrifugal lift, appropriate points of action of force system,

and determination of mean velocity from area-averaged concept

Luckner37 Improperly determined the points of action of force system and disregarded form induced drag,

Magnus lift, centrifugal lift, turbulent lift, and decay of viscous sublayer with shear Reynolds

number

APPENDIX B: ORDER OF MAGNITUDE OF HYDRODYNAMIC FORCES

The time-averaged velocity ū, the mean velocity ūm, and the velocity of fluid V at the center
of the particle can be written as (ū, ūm,V ) ∼ u∗, where the symbol “∼” represents the “scales with”.
Since λ+0 = Rl/R∗ (see computational step 11), we can write λ+0 ∼ R−1

∗ , using Eq. (2.70). Therefore,
from Eq. (2.39), we obtain λ+ ∼λ+0 . Considering ks = D (k+s = 1) for simplicity, the turbulence inten-
sity components (σu,σw) can be scaled as (σu,σw) ∼ u∗. Thus, Eqs. (2.33) and (2.34) reduce to
Du+/Dt+ ∼ R∗ and Dw+/Dt+ ∼ R∗. Using the above scaling laws, the form drag FD1 in nondimen-
sional form can be written as F+

D1 ∼ CD, where F+
D1 is FD1/ρ fu

2
∗D

2. Since CD is a function of R∗ (see
Eq. (2.22)), the F+

D1 reduces with R∗ becoming a constant in the hydraulically rough flow regime.
The form induced drag FD2 in nondimensional form is F+

D2 ∼ R∗, where F+
D2 is FD2/ρ fu

2
∗D

2. Since
the F+

D2 is practically zero for the hydraulically smooth flow, the above scaling of F+
D2 indicates that

the F+
D2 increases with R∗ in the hydraulically transitional flow regime. However, it attains almost

a constant value in the hydraulically rough flow regime. Furthermore, the velocity gradient can be
scaled with the bed shear stress, that is ∂ū/∂z ∼ u2

∗/υ. Thus, ∂ū+/∂z+0 ∼ R∗. Hence, from Eqs. (2.41),
(2.43), (2.46), and (2.48), we obtain F+

LS
∼ CL, F+

LM
∼ R∗, F+

LC
∼ R2

∗, and F+
LT
∼ R∗. Since CL ∼ CD,
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the F+
LS

reduces with R∗ in the hydraulically transitional flow regime, whereas the F+
LM

, F+
LC

, and
F+
LT

increase with R∗. However, they attain almost a constant value in the hydraulically rough flow
regime.

NOMENCLATURE

Az = projected area of solitary particle bounded within z = D + δ and any vertical distance z
A+ = A/D2

CD = drag coefficient
CL = lift coefficient
D = solitary particle diameter
FD = drag force
F+
D

= FD/ρ fu
2
∗D

2

FD1 = form drag
F+
D1 = FD1/ρ fu

2
∗D

2

FD2 = form induced drag
F+
D2 = FD2/ρ fu

2
∗ D2

FG = submerged weight of sediment particles
FL = lift force
F+
L

= FL/ρ fu
2
∗ D2

FLC = centrifugal lift
F+
LC

= FLC/ρ fu
2
∗ D2

FLM = Magnus lift
F+
LM

= FLM/ρ fu
2
∗ D2

FLS = Saffman lift
F+
LS

= FLS/ρ fu
2
∗D

2

FLT = turbulent lift
F+
LT

= FLT/ρ fu
2
∗ D2

g = gravitational acceleration
h = flow depth
ks = bed particle diameter
k+s = ks/D
Lx = horizontal lever arm
L+x = Lx/D
Lz = vertical lever arm
L+z = Lz/D
l = intercept of mixing length at z = 0
p̄ = time-averaged pressure intensity
ℜ = radius of curvature of locus of moving solitary particle over bed particles
R∗ = shear Reynolds number (= u∗ks/υ)
Rl = u∗l/υ
Rv = u∗δv/υ
rAB = distance between points A and B
Sc = hindrance coefficient
T = width of elementary strip across solitary particle at z = δv
T+ = T/D
t+ = tu∗/D
ū+ = ū/u∗
ū+m = ūm/u∗
u∗ = shear velocity
ūm = mean velocity received by solitary particle
u, w = instantaneous velocity components in (x, z)
ū, w̄ = time-averaged velocity components in (x, z)
u′, w ′ = velocity fluctuations in (x, z)
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u+, w+ = (u, w)/u∗
V = velocity of fluid at center of solitary particle
V+ = V/u∗
x, y, z = Cartesian coordinates
z+ = z/ks

z+0 = z/D
zD = point of action of drag force
zD1 = point of action of form drag
zD2 = point of action of form induced drag
∆ = submerged relative density of sediment particles [= (ρs − ρ f )/ρ f ]
Θc = threshold Shields parameter
Ωm = mean angular velocity of solitary particle
αm = added mass coefficient
δ = distance of bottommost point of solitary particle from virtual bed level
δ+ = δ/D
δ+v = δv/D
δv = viscous sublayer thickness
ε = turbulent kinetic energy dissipation rate
φ = pivoting angle
φm = mean pivoting angle
φmax = maximum value of pivoting angle
φmin = minimum value of pivoting angle
η = (Rl + κR∗z+0 )/k+s
κ = von Kármán constant
λ = Taylor micro-scale
λ+ = λ/ks

λ0 = amount of increase in size of eddies depending on bed roughness
λ+0 = λ0/ks

ρ f = mass density of fluid
ρs = mass density of sediment particles
σu, σw = turbulence intensity components in (x, z)
σ+u,σ

+
w = (σu,σw)/u∗

υ = kinematic viscosity of fluid
ϖ = relative submergence (= h/ks)
ζ = κR∗(z+0 − δ+v )/k+s
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