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Training deep learning models typically requires a huge amount of labeled data which is expensive to acquire, especially in dense
prediction tasks such as semantic segmentation. Moreover, plant phenotyping datasets pose additional challenges of heavy
occlusion and varied lighting conditions which makes annotations more time-consuming to obtain. Active learning helps in
reducing the annotation cost by selecting samples for labeling which are most informative to the model, thus improving model
performance with fewer annotations. Active learning for semantic segmentation has been well studied on datasets such as
PASCAL VOC and Cityscapes. However, its effectiveness on plant datasets has not received much importance. To bridge this
gap, we empirically study and benchmark the effectiveness of four uncertainty-based active learning strategies on three natural
plant organ segmentation datasets. We also study their behaviour in response to variations in training configurations in terms
of augmentations used, the scale of training images, active learning batch sizes, and train-validation set splits.

1. Introduction

Deep learning models have been widely used for various
plant phenotyping tasks by formulating them as standard
vision tasks such as image classification [1–4], object detec-
tion [5–8], and semantic segmentation [9–11]. In this work,
we focus on the task of semantic segmentation, a dense pre-
diction task where the goal is to predict a class label for every
pixel in an image. Plant phenotyping researchers have used
the segmentation task in a variety of ways, ranging from
simpler tasks of separating plants from their backgrounds
[12] to more challenging tasks of tracking plant growth
and yield such as individual leaf segmentation [13], leaf
counting [9], estimating plant stem pose [14], and detecting
diseases [15].

While semantic segmentation has many applications in
plant phenotyping, training semantic segmentation models
requires dense pixel-wise annotations which is labour-inten-
sive, time-consuming, and often requires domain experts
spending hundreds of hours on only labeling and crowd-
sourcing [13, 16]. Plant phenotyping datasets add another

layer of complexity to the data annotation process owing
to factors such as varied lighting conditions, heavy occlu-
sion, camouflaged foreground objects, and variability in size,
shape, and pose [13] Active learning (AL), a subfield of
machine learning, helps reduce the annotation burden by
selecting and labeling only the most informative samples
[17]. AL sampling techniques reasonably alleviate the bottle-
neck of data annotation which is particularly desirable in the
context of training deep neural networks. Owing to the suc-
cess of data-driven learning methods, many practitioners
have relied on collecting, labeling, and maintaining large
amounts of data to solve tasks of their interest. This popular-
ized pool-based variant of AL methods which specifically
allow for selecting active samples from a large pool of unla-
beled data.

AL for semantic segmentation has been well-studied on
standard datasets such as PASCAL VOC [18] and Cityscapes
[16]. In the context of plant phenotyping, there has been
encouraging evidence of AL’s effectiveness on classification
and detection based tasks [19, 20]. However, AL’s effective-
ness on plant-based segmentation datasets has not received
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much attention in the literature. In this paper, we bridge this
gap by empirically studying and benchmarking the effective-
ness of four popular existing AL techniques on three plant
segmentation datasets. AL methods in this study are per-
formed at image-level, i.e., a queried image is labeled entirely
before being added to the labeled pool, hence the name
image-based active learning. Alternatively, some recent AL
works [21–23] reported great model performances even
while actively labeling only a small portion of images, we
leave evaluation of these methods to future works. In this
work, we study how the AL techniques respond to changes
in the training configurations such as with/without data aug-
mentation, effect of image scale, initial labeled pool size,
batch size, and train validation split. We feel such a detailed
study would allow the researchers and practitioners to
understand how to integrate AL into their plant phenotyp-
ing pipeline to reduce the annotation burden. To the best
of our knowledge, this is the first work that discusses the
effectiveness of AL in plant organ segmentation in RGB
images. In this work, our aim is to investigate how well the
benefits of AL transfer from classification to semantic seg-
mentation, which is a more complex prediction task. To that
end, we have chosen three diverse datasets for evaluation
that vary in terms of image resolution, lighting conditions,
and task complexity in general.

The paper is organized as follows. Section 2 describes the
related work. Section 3 introduces the pool based active
learning setting in the context of semantic segmentation
and discusses the query strategies. Section 4 describes the
datasets used and experimental setup. In Sections 5 and 6,
we report our observations, discuss our results, and make
concluding statements, respectively.

2. Related Work

2.1. Semantic Segmentation in Plant Phenotyping. Prior to
deep learning, plant researchers relied on traditional image
processing techniques such as edge detection, thresholding,
graph partitioning, and clustering [24] to obtain segmenta-
tion maps of plant organs [25–27]. With the rapid growth
and success of deep neural networks, intelligent model-
based automatic segmentation of plant organs has now
become an unavoidable prerequisite for measuring more
complex phenotypic traits. Aich and Stavness [9] perform
leaf counting by training two separate models—a segmenta-
tion model to generate leaf segmentation maps and a regres-
sion model that takes the segmented maps as input to
perform counting. Choudhury et al. [14] introduced an algo-
rithm that uses plant segmentation masks to compute stem
angle, a potential measure for plants’ susceptibility to lodg-
ing. Ma et al. [15] achieved robust disease segmentation in
greenhouse vegetable foliar disease symptom images. They
proposed a decision tree-based two-step coarse-to-fine seg-
mentation method. Shi et al. [12] proposed a multiview
approach that maps 2D segmentation maps to 3D point
clouds on a multiview tomato seedling dataset to increase
prediction accuracy. We refer the readers to Li et al. [28]
for a more comprehensive review of the applications of
semantic segmentation in plant phenotyping.

2.2. Active Learning for Plant Phenotyping. The key hypoth-
esis of AL is that if the learning algorithm is allowed to
choose the data from which it learns, it will perform better
with less training. AL techniques have long been used for
reducing annotation effort [17, 29–33]. However, only a
handful of works have been published that apply AL on
plant phenotyping tasks. In the context of robotic plant phe-
notyping, Kumar et al. [34] proposed a Gaussian process-
based AL algorithm to enable an autonomous system to col-
lect the most informative samples in order to accurately
learn the distribution of phenotypes in the field. Grimm
et al. [35] proposed a model-free approach to plant species
classification with the help of AL. More recently, Nagasubra-
manian et al. [19] comprehensively studied the usefulness of
AL in plant phenotyping on two classification datasets and
showed that AL techniques outperform random sampling
and indeed reasonably reduce labeling costs. For object
detection task, Chandra et al. [20] achieved superior model
performance compared to random sampling while saving
over 50% of annotation time on sorghum-head and wheat-
panicle detection datasets by exploiting weak supervision
for obtaining informative samples.

3. Active Learning for Semantic Segmentation

In this section, we first describe the widely used pool-based
active learning setting. Subsequently, we describe the AL
query methods for semantic segmentation which are evalu-
ated in our experiments.

3.1. Pool-Based Active Learning. Pool-based AL assumes that
there exists a large collection of unlabeled data to solve the
learning problem at hand. In this data-centric deep learning
era, it is a fair assumption to make. We consider a training
set of images T which is a union of the unlabeled set U and
the labeled set L. Initially, L is empty andU contains the entire
dataset, because initially, all data is unlabeled. We first ran-
domly sample a small subset of images from U , label them,
and then, move those images from U to L. Now, this initial
labeled pool L is used to train an initial segmentation model
M. From here, we run multiple AL cycles. In each cycle, we
intelligently sample a batch of images from U , label them,
and move them to L, which is used to retrain model M. For
intelligent sampling, we use a query function QðM,UÞ which
takes the current modelM and the current unlabeled set U as
input. Based on model M’s predictions on each image in U ,
the query function Q calculates an informativeness score for
each image and selects a batch of b most informative images
from U . This cycle repeats until either the sampling budget
is exhausted or until the model achieves a satisfying test set
performance. This framework is described in Algorithm 1.

3.2. Query Strategies.We obtain an informativeness score for
every image by averaging the pixel-wise informativeness
scores calculated by the AL query methods. Formally, the
informativeness score SI of an image I is given by

SI =
1

∣H ∗W ∣
〠

i≤H,j≤W

S i,jð Þ: ð1Þ
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Here, Sði,jÞ is the informativeness score of ði, jÞ pixel, and

H and W are the height and width of the image I, respec-
tively. Further, we select the samples which have the
maximum informativeness score based on cycle budget size
(i.e., top k images with highest SI).

We now describe the informativeness scores used as
active learning query strategies in our experiments. We
decided to evaluate the following AL methods in this study
because while they are easy to implement and experiment
with, they are also some of the best baselines on CamVid
and Cityscapes segmentation datasets, especially Entropy
(Section 3.2.3) [21–23]. Apart from the following query
methods, we also perform random (RAND) sampling, which
serves as a baseline.

3.2.1. Least Confidence (LC). Least confidence method [36]
queries instances which the model is least certain about. This
approach is often straightforward for models which provide
prediction probabilities. For example, in the case of binary
classification, this method simply queries the instances
whose posterior probability of being positive is nearest to
0.5 [17]. A more general variant is as follows:

S i,jð Þ = 1 − p, ð2Þ

where p is the trained model’s maximum prediction prob-
ability after applying Softmax, i.e., the probability of pixel
ði, jÞ being a nonbackground object, in the context of
semantic segmentation.

3.2.2. Margin (MAR). The criterion for the least confidence
strategy only considers information about the most probable
label. Thus, it effectively discards information about the rest
of pixel’s probability distribution. To overcome this, Scheffer
et al. [37] proposed a multiclass sampling variant. Here, for
each pixel, we make use of model’s probabilities of both first
(p1) and second (p2) most probable class labels. The infor-
mativeness score for a pixel at ði, jÞ is given by

S i,jð Þ = − p1 − p2ð Þ: ð3Þ

Intuitively speaking, samples with large margins are easy
since the trained model has little confusion in discriminating

between the two most likely class labels. Here, p1 − p2 is the
margin, and the negative sign is used here only for conve-
nience since less margin indicates more informativeness.
Thus, we can select samples with maximum SI , consistent
with other query methods.

3.2.3. Entropy (ENT). Margin sampling still ignores most of
the output distribution when dealing with large label sets.
A more general uncertainty sampling method (and perhaps
the most popular one) is Shannon’s Entropy [38] as an
informativeness measure. This method makes use of all
model’s predicted probabilities for a given pixel. The infor-
mativeness score is given by

S i,jð Þ = − 〠
c∈ 1⋯Cf g

pc log pc, ð4Þ

where C is the number of classes in the dataset and pi is the
probability score of the corresponding class. Then, SI is cal-
culated using Equation (1), and the samples with the maxi-
mum value of SI are selected.

3.2.4. Deep Bayesian Active Learning (DBAL). Deep Bayesian
active learning by Gal et al. [29] trains model M with drop-
out layers to simulate Monte-Carlo sampling. At inference
time, the dropout layers are applied, and inference is done
T times. The probability scores for the T dropout runs are
averaged, and entropy is computed as follows:

S i,jð Þ = − 〠
c∈ 1⋯Cf g

1

T
〠
t

pct

 !

log
1

T
〠
t

pct

 !

, ð5Þ

where C is the number of classes in the dataset and pct is the
probability of the class c for the dropout run t. This query
selection method is also known as the query-by-committee
algorithm [39].

4. Experimental Settings

4.1. Datasets. ACFR Orchard Fruit Dataset (Apple) dataset
by Bargoti and Underwood [40] contains 1120 RGB images
of apples and their pixel-level labels. All the images were
captured at a resolution of 202 × 308. They are noisy and

Require: Total AL cycles N , Initial Pool Size k, AL Budget size b:

1: Split T ⟶ fU , Lg where ∣L ∣ = k
2: M⟵ Train(L) ⊳Until convergence
3: for i = 1,⋯,N do
4: Apply query function QðM,UÞ
5: Sample a batch B ⊆U using Q ⊳∣B ∣ = b
6: Obtain labels for images in B
7: L⟵ L ∪ B
8: U ⟵U \ B
9: M⟵ Train(L) ⊳Until convergence
10: end for
11: returnM

Algorithm 1: Active Learning Framework.
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have poor lighting accompanied with leaf occlusions. The
dataset contains some images which do not contain any
apples, we removed those images as a preprocessing step.
This left us with 1081 images; we further cropped the images
to a resolution of 200 × 300. Finally, we divided the dataset
into train, validation, and test sets. We split the dataset with
681 images in the train set, 100 images in the validation set,
and 300 images in the test set.

UTokyo_Wheat_2020 (Wheat) dataset is a subset
obtained from the work of David et al. [41], containing
2674 RGB images. Since the original dataset did not have
segmentation labels, we labeled it with polygons for this
study. Originally, the images were captured at resolution
1400 × 4200 roughly. The dataset consists of images which
were captured in reasonably good lighting conditions con-
taining wheat ears which have a different texture com-
pared to the background. We resized all the images to a
fixed size of 1024 × 400 and sliced (https://image-bbox-
slicer.readthedocs.io/) them into patches of size 512 × 400
. We obtained 5348 patches of size 512 × 400; out of
which, we discarded the ones which did not contain any
wheat ears. Finally, we were left with 3547 images which
we divide into the train, validation, and test sets. We split
the dataset with 2047 images in the train set, 500 images
in the validation set, and 1000 images in the test set.

UTokyo_Rice_2013 (Rice) dataset by Desai et al. [5] con-
tains 1953 RGB images of size 1296 × 864. Similar to the
Wheat dataset, the original Rice dataset did not have seg-
mentation labels so we labeled the datasets with polygons
for this study. We resized all the images to a size of 648 ×
432 and then cropped them to obtain images of size 640 ×
432. The dataset is then split into a train set of size 1203
images, validation set with 250 images, and test set with
500 images.

While the train and validation set splits are done ran-
domly at the beginning of each experiment, the test set is
constant across all the reported experiments. Example
images from all three datasets and their corresponding seg-
mentation maps are shown in Figure 1 for reference.

4.2. Model Architecture and Hyperparameters. We use
Deeplabv3+ [42] as our segmentation model with a
ResNet-50 [43] backbone (https://github.com/yassouali/
pytorch-segmentation). Since the DBAL method requires
dropout [44], we add it to the backbone with a probability
of 0.1. For consistency in the experimental setting, we used
the dropout-enabled backbone for training in the case of
all AL methods. In the case of DBAL method, we aggregated
model inferences over T = 25 dropout runs (stochastic for-
ward passes). Only one model inference is considered for
all other AL methods. The ResNet backbone is initialized
with ImageNet pretrained weights. We opted to use focal loss
[45] because the datasets are highly imbalanced, as shown in
Figure 2.

In all our experiments, we use the Adam optimizer with
a constant learning rate. For the Apple and the Wheat data-
set, the learning rate is set to 0.0001, whereas for the Rice
dataset, the learning rate is set to 0.001. In every AL cycle,
we retrain the model on the updated labeled pool for 50

epochs. Note that we initialize the model with ImageNet pre-
trained weights in every AL cycle, before training on the
labeled pool. The model with the best performance (IoU)
on the validation set is used for active sampling. To account
for randomness, we repeat each experiment 3 times and
report the mean and standard deviations of IoU. In case of
the Apple dataset, we populate the initial pool with 50
images. We use 100 images in the initial pool of Wheat
and Rice dataset. We set the AL batch size same as that of
initial pool size for all three datasets. Throughout the paper,
we report the intersection over union (IoU) of the fore-
ground class as the evaluation metric.

5. Results and Discussion

5.1. Active Learning Performance. We first study the perfor-
mance of the four AL methods with respect to random sam-
pling on the three datasets. We observe in Figure 3 that AL
strategies do not show a consistent improvement across all
datasets. For the Apple and the Wheat dataset, we see an
IOU improvement of 0:43% and 0:53% over RAND, respec-
tively, using MAR. However, for the Rice dataset, RAND
consistently performs better than all the active learning tech-
niques. We suspect that model’s uncertainty on Rice images
is overestimated due to the very nature of the Rice dataset,
i.e., lack of clear visual discrimination between background
and foreground pixels. While being very popular in the
vision community for their performance gains, we see little
to no benefit from ENT and DBAL methods on all three
datasets. Overall, there was no clear winner. To understand
this further, we took a closer look at the sample sets actively
sampled by the AL methods. As an ablation study, we used a
model trained on a randomly chosen initial labeled pool of
Wheat and sampled unlabeled data points based on the
informativeness scores of all the AL methods (with replace-
ment). We noticed (see Figure 4) significant overlap between
actively sampled sets across AL methods. The overlap
increased even more in later stages of AL cycles, and this
was consistent across all three datasets. We believe this is
the case due to the similarity (or proportionality) between
informativeness scores calculated by the query metrics at
hand, largely contributed by the binary nature of the task,
which is clearly explained in Chapter 3 of [17]. Apple and
Rice overlap statistics are reported in the supplementary in
Figures S1 and S2, respectively.

While it is understood why there was no clear winner
amongst the AL methods, we suspect that the AL methods
are underperforming (compared to random sampling) due
to the imbalanced nature of the datasets. While the issue of
class imbalance is common in segmentation datasets [16,
18], it is particularly exacerbated in plant phenotyping data-
sets where the pixel counts of foreground objects are signif-
icantly lower in comparison. Figure 2 shows the pixel counts
of foreground objects and background of the three datasets.
Is image-level average (see Equation (1)) a bad approxima-
tion for capturing model’s uncertainty over these high
class-imbalanced images? Perhaps a balancing factor could
be added to the existing AL methods to dampen the contri-
bution of the pixels that are most likely to be background
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towards the image informativeness score. This is, however,
out of the scope of this work, and it would be an interesting
direction that merits further investigation.

5.2. Differing Experimental Conditions. Next, we study the
impact of changes in experimental conditions such as data

augmentations, image scales, initial labeled pool size, AL
batch size, validation set size, and train-val split ratio on
AL methods and model performance in general.

5.2.1. Image Scale. Image resolution plays a crucial role while
training deep neural networks. Images with high resolution

(a) Apple (b) Wheat (c) Rice

Figure 1: Example images for the three datasets with foreground masks overlayed. Segmentation labels are shown in magenta-colored
overlaps.
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capture a lot of detail and are helpful in training highly accu-
rate deep learning models but at the cost of computational
overhead. On the other hand, images with low resolution
are faster to process and train and help us in saving a lot
of computation cost. We try to address the trade-off between
computation cost and annotation cost. We first study the
effect of scale on model performance. We experiment with
four different image scales 25%, 50%, and 75% of original
image size and also at 100% scale. The AL cycles are then
carried out at said four scaled versions of the images. Post
five AL cycles, we checked the overlap between active sample
sets picked by models at all four scales (excluding the ran-
domly chosen initial labeled pools). After five episodes of
AL in all four scales, we checked for overlap between active
sample sets collected across the scales. Precisely, we calculate
percentage of overlap between respective actively sampled
sets from 25%, 50%, 75%, and 100% scales after episodes 1,
3, and 5. The overlap results for the ENT AL method on
the Wheat dataset are shown in Figure 5, averaged over 3
runs. We observe significantly high overlap between the
sample sets. After just one episode, the highest overlap of
68% is observed between 100% and 75% scale sets and about
50% overlap between 100% and 25% sets. This overlap
increases much more in later AL episodes. This suggests that,
in the context of AL, one can end up with largely similarly
labeled datasets even when operating at smaller image scales.

We tested if active samples transfer well from smaller
image scales, and indeed, they did. To that end, we used
the ENT active sample sets picked by models trained on
smaller image scales, resized them back to the original scale,
and trained a model until convergence on the full-resolution
images. All results were averaged over 3 runs. As seen in
Figure 6, we observe similar performance by all active sam-
ple sets compared to the 100% active sample sets at multiple
stages of the AL cycles. Moreover, all three (25%, 50%, and
75%) sets perform better than 100% RAND sample sets
which confirms that the activeness of the sample sets is
still preserved after resizing back to original. Similar over-
lap statistics on Apple and Rice datasets in case of the ENT
method are reported in Figures S3 and S4, respectively, of
supplementary. Operating in smaller image scales would
mean that the models have to work with smaller objects.
This typically makes both model training and inference

more challenging [46]. We observe this clearly in the Rice
dataset. The Rice dataset, which has comparatively smallest
objects (w.r.t. image size) among the three datasets, has the
highest average active sample overlap after five AL cycles
(shown in Figure S3). On the surface, this subtly implies
that the role of object scale is trivial for AL methods.
However, we must observe in Figure 3 that all AL methods
perform worse than RAND on Rice dataset, emphasizing
that object scale indeed plays a crucial role in model
training, inference, and subsequently, on AL performance
as well. A further investigation into how AL methods
respond to varying object scales is warranted.

5.2.2. Data Augmentation. Automatic plant phenotyping is
hard and complicated. Collection of raw data from fields
and greenhouses is a complicated task owing to factors such
as vast crop varieties and phenotype diversities and heavy
reliance on growth seasons, climate changes, and more. This
process is further complicated when specific learning tasks
require a large amount of labeled data for training. Adding
augmented data to the labeled pool is a well-established
method that is known to contribute to model’s better gener-
alization. To that end, we examine if data augmentation
helps the segmentation model and the AL methods. We
repeated the AL experiments with the following augmenta-
tions: scaling, rotation, and horizontal flipping. In case of
the Wheat dataset, model performance improved by
1.166% IoU. We observe that simple data augmentations
do not contribute much in the case of Apple and Rice data-
sets, showing a mere performance increase of 0.1% and
0.13% IoU, respectively (see Table 1).

Nearly all the AL methods performed slightly better than
their unaugumented variants. But this is also seen in the case
of RAND. This suggests that there is a need for more task-
specific, tailored, organ augmentation techniques, similar
to [47] which better simulate environmental occlusions,
etc. Such techniques could make the segmentation models
more robust and likely make them better uncertainty estima-
tors for AL methods to utilize.

5.2.3. Initial Labeled Pool Size. The initial pool provides a
good initialization for the model so that it can be used to
obtain uncertainty estimations over the unlabeled pool.
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The model trained on the initial pool is responsible for
selecting samples for further AL cycles. To study the effect
of the size of the initial pool on the performance of each
active learning strategy, we experiment with initial pool
sizes of 50, 100, and 150. The results are shown in
Figure 7. We observe that performance gain due to differ-
ent initial pool sizes is dataset dependent. While the rice
segmentation model is initially benefited by a larger initial
pool size, the models on other datasets do not show any
significant improvements. Interestingly, the performance
difference between models started with different initial
pools vanishes in the later AL cycles. We report results
of this experiment on all other AL methods in Figure S5
of supplementary.

5.2.4. Active Learning Batch Size. We now explore the effect
of different AL batch sizes on AL methods as small batch
sizes could select samples which are not diverse. On the other
hand, large batch sizes might select samples which are redun-
dant and not very informative to the model. We experiment
with 3 different batch sizes; for all datasets, we experiment
with batch sizes of 50, 100, and 150. The results for ENT on
all datasets are shown in Figure 8. All the other sampling
strategies observe similar trends. The results for all the other
AL sampling strategies are given in Figure S6. We observe
that there are slight variations in the initial AL cycles but
that performance difference vanishes for higher AL cycles.

5.2.5. Train Validation Split. In each episode of AL, the best
model is saved based on validation set accuracy. The vali-
dation set used for saving the best model should also be
labeled. This annotation cost is mostly ignored in the liter-
ature. We study the effect of the size of the validation set
on different AL strategies. We keep the training set (Tr) as
constant and sample subsets from the original validation
set (V) to obtain smaller validation sets and experiment
with those. We choose the subsets of size equal to 5%,
10%, and 20% of the set (T r + V). We show the results
for ENT sampling for all the datasets in Figure 9. We
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Table 1: Effect of data augmentations on model performances.

Dataset
Active learning strategies

RAND LC MAR ENT DBAL

Apple +0.1% +0.26% -0.26% +0.66% -0.16%

Wheat +1.16% +1.30% +1.23% +1.43% +1.16%

Rice +0.13% 0.0% +0.1% +0.1% +0.1%
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observe that the size of the validation set does not have
much effect on the model performance in the long run,
although extremely small validation sets are not appreci-
ated as it could lead to overfitting.

Next, we try to explore the trade-off among the size of
the train and validation set. We experiment with train-val
splits of ratio 80% : 20%, 90% : 10%, and 95% : 5%. As
shown in Figure 10, the 95% : 5% split provides a good ini-
tialization to our model. Increasing the training set size
allows the algorithm to pick a diverse initial pool from a
larger training set, and hence, the model achieves a higher
performance when trained on that initial pool but the per-
formance gain does not last. Thus, we conclude that the ratio
of the train-val split only has effect on the initial pool but
does not show an overall improvement across AL cycles.
All the other sampling strategies also follow a similar trend.
The results for all the other AL sampling strategies are given
in Figures S7 and S8.

6. Conclusion and Future Work

In this paper, we have studied the efficiency of uncertainty-
based AL strategies extensively on three plant organ segmen-
tation datasets. Our experimental results show that AL
struggles to outperform random sampling in two out of
three datasets we studied. We suspect that the traditional
uncertainty estimation at image-level is poor by design for
binary class imbalanced segmentation datasets. We believe
there is a need for AL methods particularly for plant pheno-
typing tasks that operate at region-level where only impor-
tant regions of images are sampled and labeled. We leave
this for future work. We also studied how AL methods per-
formed under differing training configurations. While we
observed small improvements in AL performance with
changes in data augmentations, initial pool size, AL batch
size, and validation set size, we found that performing AL
at smaller (even 75% smaller) image scales yields largely sim-
ilar labeled datasets and ultimately similar model perfor-
mances compared to operating in original image scales,

proving to be a great way of cutting computation and anno-
tation costs.

Data Availability

ACFR Fruit Dataset is already public. Upon acceptance of the
paper, Wheat and Rice datasets with their corresponding seg-
mentation maps will be made publicly accessible. All the
PyTorch code used for experiments in this study is also public:
https://github.com/ShivanganaRawat/ALPO_Segmentation.
For simplicity, dataset download links will be specified in the
above repository.
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tics and more results of experiments done as part of Section
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