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Abstract

This paper deals with the homogenization of a mixed boundary value problem for

the Laplace operator in a domain with locally periodic oscillating boundary. The

Neumann condition is prescribed on the oscillating part of the boundary, and the

Dirichlet condition on a separate part. It is shown that the homogenization result holds

in the sense of weak L2 convergence of the solutions and their flows, under natural

hypothesis on the regularity of the domain. The strong L2 convergence of average

preserving extensions of the solutions and their flows is also considered.

Keywords Homogenization · Asymptotic analysis · Periodic unfolding · Locally

periodic boundary · Oscillating boundary
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1 Introduction

This paper is concerned with the homogenization of a boundary value problem for

the Laplace operator on a domain in R2 with locally periodic oscillating boundary.

Specifically, the domain is given by

�ε =
{

x ∈ R
2 : 0 < x1 < 1, 0 < x2 < η

(
x1,

x1

ε

)}
,

where η is a positive Lipschitz continuous function which is periodic in the second

variable, and ε is a small positive parameter (see Figure 1(a)). Certain further require-

ments are imposed on η to ensure a particularly simple structure of the homogenized
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problem. On the oscillating part of the boundary the Neumann condition is prescribed,

and on a separate part the Dirichlet condition, and the data are assumed to be L2. We

are interested in the asymptotic behavior of the solutions uε to the boundary value

problem, and their flows, as ε tends to zero.

Domains with oscillating boundaries have attracted particular interest in the case

where the domain is thin, that is to say when homogenization and dimension reduction

may take place. This is natural in the mathematical physics program of the derivation

of lower-dimensional theories from three-dimensional (see e.g. [16]). There is a rich

literature on thin heterogeneous domains (see [8, 50, 52] and the references therein).

Asymptotic analysis in thin domains with locally periodic oscillating boundary was

conducted in for example [3, 6–9, 20, 23, 24, 48, 54].

There are many works on homogenization in periodically oscillating domains with

pillar type oscillations of fixed amplitude where the cross-section of each pillar is

constant in the vertical direction. For the literature on pillar type oscillations, we refer

to [31, 34, 35, 49] and the references therein. Oscillating boundary domains with non-

uniform cylindrical pillars, that is when the cross-sections of the pillars are varying

in the vertical direction, have been considered in [1, 32, 42, 45]. In the mentioned

works, the top boundary of the pillars have been assumed to be flat, that is the measure

of the cross-section of each pillar at the maximum height is assumed to be positive,

and also the base of each pillar assumed to be flat. There are few works on non-flat

top boundaries, and [2, 22] stand out. In [22], the authors restrict the boundary graph

functions to be smooth, periodic, and to have a unique maximum in each period. In [33],

the authors consider an oscillating domain without explicit periodicity assumption and

the base of each uniform pillar is allowed to be non-flat. Locally periodic flat pillar

type domains were considered in [28], with respect to width and height. The works of

Mel’nyk and his collaborators (c.f. [29, 30, 36, 44, 46, 47]) appear to have had a strong

influence on later developments, after the initial works of Brizzi and Chalot [21, 22].

In this paper, the oscillating domain �ε is a bounded region partially bounded by the

graph of a locally periodic Lipschitz function η(x1, x1/ε), where η : [0, 1] × T → R,

T is the 1-torus, and ε is a small parameter. These assumptions on η ensure that

the domain is connected and Lipschitz. In particular, the domain is not thin in the

direction normal to oscillation, and not of pillar-type, and no assumptions are made on

its flatness. Under these assumptions, the domain naturally becomes asymptotically

disconnected (in the x1 direction) between two curves, one that appears as a part of

the limiting boundary and one that appears as an interior interface, as ε tends to zero.

The assumptions on η guarantee that these curves are graphs of Lipschitz functions.

The analysis simplifies considerably with the Brizzi-Chalot condition of a single

bump in each period. It appears to be worthwhile to remark that it is not generally true

that as soon as there is more than one bump in each period, even if one restricts to the

smallest possible periodicity cell, the asymptotic limit will not be decoupled (fast and

slow variables). An example that shows that the connectedness of the sections is not

necessary is given.

The expected influence of the domain oscillations on the asymptotic behavior of the

solutions is that since the Laplace operator is local and the periodicity of the domain

makes a region asymptotically disconnected in the x1 direction, ∂/∂x1 cannot be

123



Applied Mathematics & Optimization (2022) 86 :14 Page 3 of 34 14

present in the homogenized equation in that region. This will show in the homogenized

boundary value problem.

The result of this paper is the homogenization of the domain for the particular

boundary value problem in which the heterogeneity is only in the domain. Three

properties of homogenization are shown. Namely, (i) the weak L2 convergence of

the zero-extended solutions and their flows (Theorem 6.1), (ii) that the error of the

zeroth approximation of the solutions and their flows converge strongly to zero in

weighted L2 restricted to the oscillating domain (Theorem 7.1), and (iii) the strong

L2 convergence of average preserving extensions of the solutions and their flows

(Theorem 8.1). In regard to (iii), in [22] reflection extensions were constructed and

used, while the extension we use is the one used in [28, 41].

The analysis methods we use are standard techniques of asymptotic analysis and

homogenization in particular. The method of homogenization is outlined in [38]. The

method of periodic unfolding is described in [25–27], which is closely related to the

notion of two-scale convergence [4, 51, 58], a generalization of weak convergence.

Some works in which the unfolding method was used extensively in problems with

oscillating boundary are [1, 18, 19, 28]. The homogenized problem is of degenerate

elliptic type, as will be described below (c.f. [22]). The classical theory of Sobolev

spaces for such is outlined in [39, 40]. For the method of asymptotic expansions we

refer to [10–15, 17, 43, 53, 55, 56].

The rest of this paper is organized as follows. The problem statement and the results

are presented in Sect. 2. The homogenized problem is derived using formal asymptotic

expansions of the solutions in Sect. 3. In Sect. 4, an example is provided that shows

that the first term in the asymptotic expansion to uε may be globally regular even in

a degenerating case. In Sect. 5, the mean value property for the periodic unfolding

is presented, adjusted to the present problem. The homogenization result of weak

convergence of the solutions and their flows is established in Sect. 6. In Sect. 7, we

prove that the energies in the problem converge. In Sect. 8, the strong convergence of

the extended solutions and their flows using average preserving extensions is shown.

A numerical example, illustrating the rate of convergence is presented in Sect. 9. In

Sect. 10, some information about a case of non-connected sections is provided.

2 Problem Statement and Results

In this section we state the boundary value problem and present the results.

With strictly positive Lipschitz η : [0, 1] × T → R, the sequence of Lipschitz

domains with periodically oscillating boundaries is for each ε = 1/k, k = 1, 2, . . .,

defined by

�ε =
{

x ∈ R
2 : 0 < x1 < 1, 0 < x2 < η

(
x1,

x1

ε

)}
.

Here, T denotes the one-dimensional torus realized as (0, 1). See Figure 1(a) for an

illustration of �ε. Additional restrictions on η will be added below in order to ensure

homogenization.
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(a) (b)

Fig. 1 A locally periodic domain �ε (a), ε = 1/8, and the corresponding homogeneous domain � (b),

with Ŵ− marked with a dashed line separating the regions �+ and �−. The particular function η is

η(x1, y) = (1 + x1 cos(4πx1))(1 + sin(2π(x1 + y))/2)

Let uε ∈ H1(�ε, Ŵ) be the sequence of solutions to the following mixed boundary

value problem:

−�u = f in �ε,

u = 0 on Ŵ, (1)

∇u · ν = 0 on ∂�ε \ Ŵ,

with f in L2(�), where �ε ⊂ �. Here ν denotes the outward unit normal to the

domain, and H1(�ε, Ŵ) the functions in H1(�ε) with zero trace on Ŵ = (0, 1)×{0}.

Our goal is to describe the asymptotic behavior of the solutions uε to (1) as ε tends to

zero.

The solutions uε will be approximated in terms of the solution u0 to the homoge-

nized problem:

−div(h A0∇u) = h f in �,

u = 0 on Ŵ, (2)

h A0∇u · ν = 0 on ∂� \ Ŵ,

where the coefficients A0 and the domain � are defined as follows. In terms of the

Lipschitz functions

η−(x1) = min
y

η(x1, y), η+(x1) = max
y

η(x1, y),
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the domain

� = {x ∈ R
2 : 0 < x1 < 1, 0 < x2 < η+(x1)}

is separated into the regions

�− = {x ∈ R
2 : 0 < x1 < 1, 0 < x2 < η−(x1)},

�+ = {x ∈ R
2 : 0 < x1 < 1, η−(x1) < x2 < η+(x1)},

with interior interface Ŵ− = ∂�− ∩ ∂�+. The effective matrix is

A0 =

(
χ�− 0

0 1

)
. (3)

An illustration of �, with the regions �+ and �−, and the interface Ŵ−, indicated

is shown in Fig. 1b, corresponding to the domain �ε in Figure 1(a).

Let h denote what we call the density of �ε in �:

Y (x) = {y : x2 < η(x1, y)}, (4)

h(x) = |Y (x)|. (5)

In �− the density is h = 1. A part of the upper boundary, denoted by Ŵa is given by

Ŵa = {(x1, x2) | x1 ∈ (0, 1), x2 = η+(x1), h(x1, x2) = 0} .

In order to ensure that homogenization takes place, the following hypotheses will

be used:

(H1) Y (x) is connected, x ∈ �.

(H2) Y (x) = k/N + Y (x), x ∈ �, k ∈ Z, for some natural number N ≥ 1, and

Y (x) = y0 − Y (x) for some y0 ∈ [0, 1/N ), and Y0(x) = {y ∈ Y (x) : y0 ≤ y ≤

y0 + 1/(2N )} is connected, x ∈ �.

The hypothesis (H1) means that there is only one so-called pillar or bump in each

period, and (H2) means restricting to a fundamental symmetry cell with respect to

some translations and mirror symmetry. The hypothesis (H1) is stronger than (H2),

and it gives a sufficient condition for homogenization. The hypothesis (H2) is included

here to illustrate that it is not necessary there is only one ’bump’ in each period even

if one uses the smallest periodicity cell. The graph of a function η that satisfies (H2)

but not (H1) is illustrated in Figure 3.

The assumption that η is strictly positive ensures that the segment Ŵ = (0, 1)×{0}

is separated from the graph of η(x1, x1/ε), so �− is a nonempty connected Lipschitz

domain. The subdomains �+ and �− have been chosen such that �+ covers the

periodic region of �ε, and �+ is of positive measure if η(x, y) is non-constant in y

for at least one x .
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Denote by L2(�, h) the Lebesgue space {v :
∫
�

v2h dx < ∞}, and W (�, Ŵ) the

Sobolev space

W (�, Ŵ) =
{
v ∈ L2(�, h) : A0∇v ∈ L2(�, h), v = 0 on Ŵ

}
, (6)

where A0 is defined in (3) and h is defined in (4)-(5). The homogenized problem (2)

has a unique solution u0 ∈ W (�, Ŵ).

We will first establish the homogenization of (1), that is the convergence of the

solutions uε and their flows ∇uε to the solution u0 to the homogenized problem (2)

and its flow h A0∇u0, under hypothesis that (H1) holds.

Let uε ∈ H1(�ε, Ŵ) be the solutions to (1), and let u0 ∈ W (�, Ŵ) be the solution

to (2). In Theorem 6.1, it is shown under hypothesis (H1) that

ũε⇀hu0 weakly in L2(�),

∇̃uε⇀h A0∇u0 weakly in L2(�),

as ε tends to zero. Here tilde denotes extension by zero.

At this point we know that there will be oscillations in ũε in the upper part �+ due

to the periodicity of �ε, while no oscillations in the lower part �− due to the compact

embedding of H1(�−) into L2(�−). Moreover, we cannot at this point exclude the

possibility of oscillations in the solutions ũε due to something else, as the above weak

convergences may be expressed as weak unfolding or two-scale convergence. A next

step is to check whether the strong unfolding convergence holds for the solutions uε

and their flows.

The weak convergence of the zero extensions in the upper part �+ cannot be

strong, unless the limit is zero. To this end we first describe the error measured in the

oscillating domain. Not only are the unfoldings of the solutions uε and their flows

strongly converging, there are no oscillations.

For uε the solutions to (1) and u0 the solution to (2), in Theorem 7.1 it is shown

under hypothesis (H1) that

‖uε − u0‖L2(�ε,h) → 0,

‖∇uε − A0∇u0‖L2(�ε,h) → 0,

as ε tends to zero.

Turning back to the question of homogenization, there is an extension of the solu-

tions uε and their flows for which strong convergence holds in L2(�).

For uε the solutions to (1) and u0 the solution to (2), in Theorem 8.1 it is shown that

when the functions are extended in a way preserving their average, under hypothesis

(H1) (c.f. [28, 41]),

ũεm
→ u0 strongly in L2(�, h),

∇̃uε
m

→ A0∇u0 strongly in L2(�, h),
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as ε tends to zero, when ∼m denotes the particular extension ((26), (27) in Sect. 8). It

is remarked that the above mentioned convergences also hold under hypothesis (H2).

Without the hypotheses (H1), (H2), under a slightly milder restriction on the domain,

in Theorem 10.1 it is shown that the solutions uε to (1) converge to the solution u0 to

the limit problem (31), with A0 given by (30), in the sense that

ũε⇀

∫

Y (x)

u0 dy weakly in L2(�),

∇̃uε⇀

∫

Y (x)

A0∇x u0 dy weakly in L2(�),

as ε tends to zero. One also has strong unfolding convergence. We do not analyze

further the convergence in the case of non-connected sections.

In the case of the homogeneous Dirichlet condition on the oscillating part of the

boundary, the limit is trivial in the oscillating part. This case was studied in [5].

Remark 2.1 (The effect of anisotropy and oscillating coefficients) To illustrate the

effect of anisotropy and oscillating coefficients on the asymptotic behavior of the

solutions uε to (1), one can consider the following elliptic model problem:

−div
(

A
(
x,

x1

ε

)
∇u

)
= f in �ε,

u = 0 on Ŵ,

A
(
x,

x1

ε

)
∇u · ν = 0 on ∂�ε \ Ŵ,

under the assumption that the not necessarily symmetric matrix A ∈ C1(�, L∞(T))

satisfies the ellipticity condition

A(x, y)ξ · ξ ≥ C |ξ |2, x ∈ �, y ∈ T, ξ ∈ R
2.

Suppose further that hypothesis (H2) is satisfied, and that the coefficient matrix satisfies

the corresponding symmetry conditions: A(x, y) = A(x, k/N + y), k ∈ Z, and

A(x, y) = A(x, y0 − y), for x ∈ �+, where N and y0 are the same as for Y (x) in

(H2). Then the weak limits of ũε and ∇̃uε are hu0 and A0u0, respectively, in L2(�),

as ε tends to zero, where u0 solves the limit problem

−div(A0∇u) = h f in �,

u = 0 on Ŵ,

A0∇u · ν = 0 on ∂� \ Ŵ,

where the entries A0
i j of the effective matrix A0 are given by, here including h,

A0
11 = χ�−

( ∫

Y (x)

1

A11
dy

)−1
,
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A0
12 = A0

11

∫

Y (x)

A12

A11
dy,

A0
21 = A0

11

∫

Y (x)

A21

A11
dy,

A0
22 = A0

11

∫

Y (x)

A12

A11
dy

∫

Y (x)

A21

A11
dy +

∫

Y (x)

det A

A11
dy,

where Ai j denote the entries of the local matrix A. In the fixed region �−, A0 is the

classical effective matrix for layered materials because there Y (x) = T, while in the

oscillating region �+ all but the last term in A0
22 vanish due to the insulation in the x1

direction. In particular, for −� the effective matrix reduces to the matrix given in (3).

A similar statement can be made for the case of non-connected sections analogous to

Theorem 10.1.

3 Asymptotic Expansions for the Solutions

To derive the homogenized equation (2) for the solutions uε to the equation

−�uε = f in �ε, (7)

asymptotic expansions may be used, in the form of a formal power series in the small

parameter ε. In the problem (7), in the periodic region �ε
+ of the domain �, ε represents

both the periodicity in the x1 direction, as well as the order of magnitude of the widths

of the pillars with homogeneous Neumann condition on their sides. In the fixed region

�− of the domain, ε represents the periodicity on the interface Ŵ−.

The above reasoning leads us to consider the following Bakhvalov ansatz for inner

expansion in the periodic region �ε
+:

uε(x) ∼
(
u0

+(x2, y) + εu1
+(x2, y) + ε2u2

+(x2, y)
)∣∣∣

y =
x1

ε

, (8)

where ui
+ are assumed to be periodic in y.

Let χ(x, y) denote the characteristic function of the set

{(x, y) : 0 < x1 < 1, 0 < x2 < η(x1, y)}.

Then the characteristic function of �ε is

χ�ε (x) = χ
(
x,

x1

ε

)
.

We write (7) in the homogeneous domain � as follows:

−
∑

i

∂

∂xi

(
χ

(
x,

x1

ε

) ∂

∂xi

uε
)

= χ
(
x, x1

ε

)
f in �. (9)
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With the ansatz (8),

� ∼
1

ε2

∂2

∂ y2
+

∂2

∂x2
2

.

A substitution of (8) into (9) and collecting similar powers of ε result in the following

equations for the initial powers of ε:

ε−2 : −
∂

∂ y

(
χ

∂u0
+

∂ y

)
= 0,

ε−1 : −
∂

∂ y

(
χ

∂u1
+

∂ y

)
= 0,

ε0 : −
∂

∂ y

(
χ

∂u2
+

∂ y

)
=

∂

∂x2

(
χ

∂u0
+

∂x2

)
+ χ f .

The equation for power ε−2 suggests that u0
+ is independent of y, under the assumption

that Y (x) is connected, or some discrete symmetry in the problem such as (H2).

Viewing the above equations as definitions of ui
+ in T with x as a parameter, the

compatibility condition for u2
+ may be read off from the ε0 equation:

∫

T

( ∂

∂x2

(
χ

∂u0
+

∂x2

)
+ χ f

)
dy = 0.

Because

∫

T

χ(x, y) dy =

∫

Y (x)

dy = |Y (x)| = h(x),

where

Y (x) = {y : x2 < η(x1, y)},

h(x) = |Y (x)|,

the compatibility condition is

−
∂

∂x2

(
h

∂u0
+

∂x2

)
= h f in �+. (10)

The equation (10) is the homogenized equation for uε in the periodic part �+ of �.

In the fixed region �− of the domain, the equation (7) reads

−�uε = f in �−. (11)
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Consider the following ansatz for inner expansion in the fixed region �−:

uε(x) ∼
(
u0

−(x, y) + εu1
−(x, y) + ε2u2

−(x, y)
)∣∣∣

y =
x1

ε

, (12)

where ui
− are assumed to be periodic in y. With the ansatz (12),

� ∼
1

ε2

∂2

∂ y2
+

2

ε

∂2

∂ y∂x1
+ �x .

A substitution of (12) into (11) and collecting similar powers of ε result in the following

equations for the initial powers of ε:

ε−2 : −
∂2u0

−

∂ y2
= 0,

ε−1 : −
∂2u1

−

∂ y2
= 2

∂2u0
−

∂ y∂x1
,

ε0 : −
∂2u2

−

∂ y2
= 2

∂2u1
−

∂ y∂x1
+ �x u0

− + f .

The equation for power ε−2 suggests that u0
− is independent of y. By the periodicity

of u1
−, the compatibility condition for u2

− reads

−�u0
− = f in �−.

In order u0 = χ�−u0
− + χ�+u0

+ to be globally defined, an interface condition is

needed on Ŵ− = ∂�− ∩ ∂�+. If one requires continuity of u0 and its flow on Ŵ−, one

must have u0
+ = u0

− on Ŵ−, as well as

(
1 0

0 h

)
∇u0

+ · ν − ∇u0
− · ν = 0,

where ν is one of the unit normals on Ŵ−, and the upper left entry of the matrix in the

first term is arbitrary. This condition becomes explicitly,

h
∂u0

+

∂x2
ν2 − ∇u0

− · ν = 0,

which may be expressed as

[h A0∇u0 · ν] = 0 on Ŵ−,

where [·] denotes the jump on Ŵ−, and A0 is given by (3).
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(a) (b)

Fig. 2 A locally periodic domain �ε (a), ε = 1/4, and the corresponding homogeneous domain � (b), with

interface Ŵ− marked as a dashed line separating the regions �+ and �−

4 Example of Behavior of the Solutions in a Degenerating Case

The solution u0 to the homogenized problem (2) may belong to H1(�) even if h(x)

tends to zero as x approaches M = {x : h(x) = 0} ⊂ ∂�, as the following example

illustrates. Consider the case f = 1 with η(x, y) = η̂(y) the piecewise linear function

given by η̂(0) = 1 and η̂(1/2) = 2, that is η̂(y) = 2 − 2|y − 1/2|. The homogeneous

domains are � = (0, 1) × (0, 2), �+ = (0, 1) × (1, 2), �− = (0, 1) × (0, 1), and the

interface is Ŵ− = (0, 1) × {1}. In Figure 2, illustrations of the domains �ε and � are

shown. In this case,

h(x) =

{
2 − x2 in �+,

1 in �−,

and

h = 0 on M = {x : h(x) = 0} = (0, 1) × {2},

h = 1 on Ŵ−.

The solution to the homogenized problem (2) is

u0(x) =

{
1/4 + x2 − x2

2/4 in �+,

3x2/2 − x2
2/2 in �−.

In particular, u0 ∈ H1(�) and it has continuous gradient over the interface Ŵ−.
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5 Periodic Unfolding

The only apparent possible cause of oscillations in the solutions to (1) and their flows

is the periodicity in the domain, in the x1 direction. For the study of these oscillations

we will use periodic unfolding.

The periodic unfolding at rate ε of a function v : R2 → R along x1 is

(T εv)(x, y) = v
(
ε
[ x1

ε

]
+ εy, x2

)
,

where [·] denotes the integer part, and v is extended by zero when necessary. Using this

change of variables for the periodic coefficient χ�ε
+

in (1), the characteristic function

of the region of �ε where coefficients are periodic,

�ε
+ =

{
x ∈ R

2 : 0 < x1 < 1, η−(x1) < x2 < η
(
x1,

x1

ε

)}
,

gives χ�ε
u
, the characteristic function of the domain

�ε
u =

{
(x, y) ∈ R

2 × T : 0 < x1 < 1, η−

(
ε
[ x1

ε

]
+ εy

)
< x2 < η

(
ε
[ x1

ε

]
+ εy, y

)}
.

There holds

T εχ�ε
+

= χ�ε
u

→ χ�u strongly in L p(R2 × T), 1 ≤ p < ∞, (13)

where

�u = {(x, y) ∈ R
2 × T : 0 < x1 < 1, η−(x1) < x2 < η(x1, y)}

= {(x, y) ∈ R
2 × T : x ∈ �+, y ∈ Y (x)}.

The property (13) is the strong unfolding convergence of the sequence and it will be

used in the passage from periodic domain to a fixed domain in integrals. It expresses

that χ�ε
+

converges weakly in L p(R2) while not strongly, and that the oscillation

spectrum of the sequence belongs to the integers if not empty. To obtain (13) one

uses the almost everywhere pointwise convergence of χ�ε
u

to χ�u and the Lebesgue

dominated convergence theorem, or views it as a consequence of Lemma 5.1 below.

The cost of replacing in integrals the ε depending unfolded domain �ε
u with the

fixed domain �u is described by the following lemma.

Lemma 5.1 Let � contain �ε
+. Suppose that ‖vε‖L p(�) ≤ C and p > 1. Then

∫

�ε
+

vε dx =

∫

�u

T εvε dxdy + O(ε1−1/p),

as ε tends to zero.
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Proof Because T εχ�ε
+

= χ�ε
u
, the discrepancy can be computed as follows:

∫

�ε
+

vε dx −

∫

�u

T εvε dxdy =

∫

�×T

T εχ�ε
+

T εvε dxdy −

∫

�u

T εvε dxdy

=

∫

�×T

(χ�ε
u
− χ�u )T

εvε dxdy.

The differences �ε
u \ �u and �u \ �ε

u are contained in some strip of measure O(ε):

{
(x, y) ∈ R

2 × T : dist((x, y), ∂�u) < Cε
}
,

where C may be chosen independent of ε by the Lipschitz continuity of η and η−,

By the Hölder inequality,

∣∣∣
∫

�ε
+

vε dx −

∫

�u

T εvε dxdy

∣∣∣

≤ ‖χ�ε
u
− χ�u ‖L1/(1−1/p)(�×T)‖v

ε‖L p(�) = O(ε(p−1)/p),

which gives the desired estimate.

6 Homogenization

In this section we establish the homogenization of problem (1) to (2) in the sense of

weak convergence of the solutions and their flows. The method we use is the unfolding

Lemma 5.1 to pass to the fixed domain �u , and the weak compactness in L2(�u) to

characterize the asymptotic behavior of uε.

Throughout this section (H1) is assumed to hold.

Theorem 6.1 Suppose that (H1) holds. Let uε ∈ H1(�ε, Ŵ) be the solutions to (1),

and let u0 ∈ W (�, Ŵ) be the solution to (2). Then

(i) ũε⇀hu0 weakly in L2(�),

(ii) ∇̃uε⇀h A0∇u0 weakly in L2(�),

as ε tends to zero, where ∼ denotes extension by zero.

The convergence of the flows in Theorem 6.1(ii) means that uε converges weakly

to u0 in H1(�−, Ŵ), and strongly in L2(�−) by the Relich theorem.

Lemma 6.1 For any ε = 1/k, k = 1, 2, . . ., there exists a unique solution uε ∈

H1(�ε, Ŵ) to (1). For the solutions uε, the following a priori estimate holds:

‖uε‖H1(�ε, Ŵ) ≤ C,

where C is independent of ε.
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Proof The variational form of (1) is: Find uε ∈ H1(�ε, Ŵ) such that

∫

�ε

∇u · ∇ψ dx =

∫

�ε

f ψ dx, (14)

for all ψ ∈ H1(�ε, Ŵ). Using the Poincaré inequality

∫

�ε

v2 dx ≤ (max η+)2

∫

�ε

( ∂v

∂x2

)2
dx, v ∈ H1(�ε, Ŵ),

one verifies that left hand side in (14) is an inner product on H1(�ε, Ŵ). The right

hand side in (14) is a bounded linear functional on H1(�ε, Ŵ). The Riesz theorem

guarantees the existence of a unique solution uε ∈ H1(�ε, Ŵ). Using uε as a test

function in (14) gives

‖uε‖H1(�ε, Ŵ) ≤ C‖ f ‖L2(�),

uniformly in ε by the uniform Poincaré constant, from which the desired a priori

estimate is obtained.

Lemma 6.2 For the sequence of solutions uε to (1), the following a priori estimates

hold for the unfolded sequences:

‖T εuε‖L2(�u) ≤ C,

‖T ε∇uε‖L2(�u) ≤ C,

where C is independent of ε.

Proof By the definition of unfolding,

∫

�ε
+

(uε)2 dx =

∫

�ε
u

(T εuε)2 dxdy =

∫

�u

(T εuε)2 dxdy +

∫

�ε
u\�u

(T εuε)2 dxdy,

because T εuε is zero outside �ε
u . By using the estimate for the solutions uε in

Lemma 6.1, the estimate ‖T εuε‖L2(�u) ≤ C is obtained. The same computation

with |∇uε| in place of uε gives the estimate ‖T ε∇uε‖L2(�u) ≤ C .

Regarding the function space, W (�, Ŵ) is associated to the homogenized prob-

lem (2). In the cover �+ of the periodic region of �ε, the H1(�) ellipticity of the

operator to the homogenized problem (2) may be violated. For

h A0ξ · ξ =

{
hξ2

2 in �+,

|ξ |2 in �−,
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and h(x) tends to zero as x approaches M = {x : h(x) = 0}, which might be

nonempty. The properties

h(x) > 0 in �,

h, h−1 ∈ L1
loc(�),

ensure that W (�, Ŵ) is a Hilbert space when equipped with the inner product

(u, v) =
∫
�

h A0∇u · ∇v dx , and that C∞
0 (�) is embedded into W (�, Ŵ). We denote

by C∞(�, Ŵ), the C∞(�) functions vanishing in a neighborhood of Ŵ.

The existence of a solution u0 ∈ W (�, Ŵ) to (2) is obtained by weak compactness

in the proof of Theorem 6.1 below, with uniqueness by linearity. One might also obtain

it in the direct way as follows.

Lemma 6.3 There exists a unique solution u0 ∈ W (�, Ŵ) to (2).

Proof The variational form of (2) is: Find u0 ∈ W (�, Ŵ) such that

∫

�

h A0∇u0 · ∇ψ dx =

∫

�

f ψh dx, (15)

for all ψ ∈ W (�, Ŵ).

The Hilbert space structure on W (�, Ŵ) has been chosen such that

∫

�

h A0∇v · ∇v dx = ‖v‖2
W (�, Ŵ).

By the Hölder and Poincaré inequalities, the left hand side of (15) defines an inner

product on W (�, Ŵ). The right hand side of (15) is a bounded linear functional on

W (�, Ŵ). By the Riesz theorem, there exists a unique u0 ∈ W (�, Ŵ) satisfying (15).

Proof of Theorem 6.1 From Lemmas 6.1 and 6.2 we have the following a priori esti-

mates for the solutions uε to problem (1) and their unfoldings:

‖uε‖H1(�ε, Ŵ) ≤ C,

‖T εuε‖L2(�u) ≤ C,

‖T ε∇uε‖L2(�u) ≤ C .

By weak compactness, there exist u0
− ∈ H1(�−, Ŵ), u0

+ ∈ L2(�u), p ∈ L2(�u), and

a subsequence of ε which we still denoted by ε, such that

uε⇀u0
− weakly in H1(�−, Ŵ), (16)

T εuε⇀u0
+ weakly in L2(�u), (17)

T ε∇uε⇀
(

p,
∂u0

+

∂x2

)
weakly in L2(�u), (18)

123



14 Page 16 of 34 Applied Mathematics & Optimization (2022) 86 :14

where the equality of second component of the weak limit of T ε∇uε and
∂u0

+

∂x2
, and

that u0
+ does not depend on y, follow from the boundedness of the sequences and

∂

∂x2
T εuε = T ε ∂uε

∂x2
,

∂

∂ y
T εuε = εT ε ∂uε

∂x1
. (19)

By (H1) and (19), u0
+ does not depend on y.

Claim 1: The average of p in y is zero:
∫

Y (x)
p dy = 0, a.e. x ∈ �+.

Information about p may be obtained by using oscillating test functions in the

equation for uε (c.f. [43, 57]). The prototype ϕε = εφ(x){x1/ε}, with φ ∈ C∞
0 (�+)

and {·} denoting fractional part, would serve the purpose in view of (22) because

T εϕε → 0 and T ε∇ϕε → (φ, 0) strongly in L2(�u). As ϕε are not necessarily

continuous on �ε
+, appropriate shifts are introduced as follows. Note that

ε
{ x1

ε

}
= x1 − xε

k , if x1 ∈ [xε
k , xε

k+1) and xε
k = kε.

Replace xε
k = kε with a grid where the graphs of η(x1, x1/ε) and η−(x1) are close:

xε
k ∈ arg minx∈ε[k,k+1]η

(
x,

x

ε

)
, k = 0, . . . ,

1

ε
− 1. (20)

Let φ ∈ C∞
0 (�+). Then with xε

k as in (20),

ϕε(x) = (x1 − xε
k )φ(x), if x1 ∈ [xε

k , xε
k+1), (21)

belongs to C∞(�ε
+) for all small enough ε. Indeed,

η
(
xε

k ,
xε

k

ε

)
− η−(xε

k )

= min
x∈ε[k,k+1]

η
(
x,

x

ε

)
− min

y
η(xε

k , y)

≤ max
ξ∈ε[k,k+1]

(
min

y
η(ξ, y) − min

y
η(xε

k , y)
)

≤ Cε,

by the Lipschitz continuity of η−, and φ is compactly supported.

With ϕε given by (20), (21) as test functions in the equation (22) for uε, and using

that

T εϕε → 0,

T ε∇ϕε → (φ, 0),
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strongly in L2(�u) as ε tends to zero because |x1 − xε
k | ≤ ε, one obtains in the limit

∫

�u

pφ dxdy =

∫

�+

∫

Y (x)

p dy φ dx = 0, φ ∈ C∞
0 (�+).

which gives the first claim.

Claim 2: χ�−u0
− + χ�+u0

+ ∈ W (�, Ŵ) and is the solution to the homogenized

problem (2).

To verify that χ�−u0
− + χ�+u0

+ ∈ W (�, Ŵ) it suffices to check that u0
− = u0

+ in

L2(Ŵ−). Note that u0
+ ∈ L2(�u) is continuously traced into L2(Ŵ−) because h > 0

in a neighborhood of Ŵ− in � (see Remark 6.1).

Because uε⇀u0
− weakly in H1(�−), the weak continuity of the trace gives uε⇀u0

−

weakly in L2(Ŵ−), and so T εuε(x1, η−(x1))⇀u0
−(x1, η−(x1)) weakly in L2((0, 1)×

T), as ε tends to zero. Denote Ŵε = �ε ∩ Ŵ−. Let φ ∈ C∞
0 (�). On the one hand,

∫

Ŵε

uεφν2 dσ =

∫ 1

0

(χŴε uεφν2)(x1, η−(x1)) dx1

=

∫ 1

0

∫

T

T ε(χŴε uεφν2)(x1, η−(x1)) dy dx1

→

∫ 1

0

∫

T

(χY (x)u
0
−φν2)(x1, η−(x1)) dy dx1

=

∫

Ŵ−

hu0
−φν2 dσ,

as ε tends to zero, because T εχŴε (x1, η−(x1)) converges to χY (x1,η−(x1))(y) strongly

in L2((0, 1) × T). On the other hand,

∫

Ŵε

uεφν2 dσ =

∫

�u

T ε ∂uε

∂x2
T εφ dxdy +

∫

�u

T εuεT ε ∂φ

∂x2
dxdy + o(1)

→

∫

�u

∂u0
+

∂x2
φ dxdy +

∫

�u

u0
+

∂φ

∂x2
dxdy

=

∫

Ŵ−

hu0
+φν2 dσ,

as ε tends to zero. Thus

∫

Ŵ−

(u0
+ − u0

−)φhν2 dσ = 0, φ ∈ C∞
0 (�).

It follows that u0
− = u0

+ in L2(Ŵ−), for by the Lipschitz continuity of η−,

hν2 ≥
min{h(x) : x ∈ Ŵ−}√

1 + max(η′
−)2

> 0.
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A split of the variational form (14) of problem (1) into the periodic �ε
+ and the

fixed �− reads

∫

�−

∇uε · ∇ψ dx +

∫

�ε
+

∇uε · ∇ψ dx =

∫

�ε

f ψ dx .

After unfolding �ε
+ and using Lemma 5.1 one arrives with ψ ∈ C∞(�, Ŵ) at

∫

�−

∇uε · ∇ψ dx +

∫

�u

T ε∇uε · T ε∇ψ dxdy =

∫

�ε

f ψ dx + o(1). (22)

By passing to the limit in (22) with ψ ∈ C∞(�, Ŵ), using the weak convergence

of uε, T εuε, T ε∇uε (16)–(18), and that p is of average zero in y, one obtains that

χ�−u0
− + χ�+u0

+ satisfies

∫

�−

∇u0
− · ∇ψ dx +

∫

�u

∂u0
+

∂x2

∂ψ

∂x2
dy dx =

∫

�

∫

Y (x)

f ψ dy dx, (23)

as ε tends to zero.

Let

�U = {(x, y) : x ∈ �, y ∈ Y (x)},

and

W (�U , Ŵ × T) = {v : v ∈ L2(�U ),
∂v

∂x1
∈ L2(�− × T),

∂v

∂x2
∈ L2(�U ),

∇yv = 0 in �U , v = 0 on Ŵ × T}.

By the density of C∞(�, Ŵ) in W (�U , Ŵ × T) under hypothesis (H1), (23) holds for

any test function in W (�U , Ŵ × T):

∫

�U

(
χ�−×T

∂u0
−

∂x1

∂ψ

∂x1
+

∂u0
+

∂x2

∂ψ

∂x2

)
dxdy =

∫

�U

f ψ dxdy, (24)

for any ψ ∈ W (�U , Ŵ × T). The equation (24) is well-posed in the Hilbert space

W (�U , Ŵ×T). Under (H1), the problem (24) is equivalent to (2), and v belongs to the

weighted space W (�, Ŵ) if and only if it belongs to W (�U , Ŵ × T). One concludes

that u0 = χ�−u0
− + χ�+u0

+.

Claim 3: ũε⇀hu0 weakly in L2(�).

The uniqueness of the solution u0 to the homogenized problem (2) ensures that the

full ε sequences (16)–(18) converge.

The weak limit of a sequence is obtained from the weak unfolding limit (weak two-

scale limit) by taking the average over the cell of periodicity. Because T εuε converges

weakly to u0, and u0 does not depend on y,
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ũε⇀

∫

Y (x)

u0 dy = hu0,

weakly in L2(�+), as ε tends to zero. It follows that ũε⇀hu0 weakly in L2(�), as ε

tends to zero.

Claim 4: ∇̃uε⇀h A0∇u0 weakly in L2(�).

By the same property of weakly converging unfolding, as was used in the previous

paragraph, and that p is of average zero in y,

∇̃uε⇀

∫

Y (x)

(
p,

∂u0

∂x2

)
dy =

(
0, h

∂u0

∂x2

)
,

weakly in L2(�+), as ε tends to zero. It follows that ∇̃uε⇀h A0∇u0 weakly in L2(�),

as ε tends to zero.

Remark 6.1 (About the L2 trace) Let γ (v)(x) = v(x) for x ∈ Ŵ−, v ∈ C∞(�+).

Then γ : {v ∈ L2(�+) : ∂v
∂x2

∈ L2(�+)} → L2(Ŵ−) is linear and bounded, where

the natural Hilbert space structures are employed. Indeed, for v ∈ C∞(�+),

v(x1, η−(x1)) = −

∫ x2

η−(x1)

∂v

∂x2
(x1, x2) dx2 + v(x1, x2).

By the triangle inequality for the integral, the Bunyakovsky-Cauchy-Schwarz inequal-

ity, and the inequality of arithmetic and geometric means,

v(x1, η−(x1))
2 ≤ C

( ∫ η+(x1)

η−(x1)

( ∂v

∂x2

)2
(x1, x2) dx2 + v2(x1, x2)

)
.

An integration in x2 over the interval (η−(x1), η+(x1)) gives

v(x1, η−(x1))
2 ≤ C

( ∫ η+(x1)

η−(x1)

( ∂v

∂x2

)2
(x1, x2) dx2 +

∫ η+(x1)

η−(x1)

v2(x1, x2) dx2

)
.

An integration in x1 over the interval (0, 1) gives

∫

Ŵ−

v2 dσ ≤ C
( ∫

�+

( ∂v

∂x2

)2
dx +

∫

�+

v2 dx
)
.

The set C∞(�+) is dense in the domain of γ .

7 Justification

In this section it is shown that the error in approximating the solutions uε to (1) and

their flows with the solution u0 to the homogenized problem (2) and its flow tends to

zero, measured in L2(�ε, h). The method we use is the convergence of energy.
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Theorem 7.1 Suppose that (H1) holds. Let uε ∈ H1(�ε, Ŵ) be the solutions to (1),

and let u0 ∈ W (�, Ŵ) be the solution to (2). Then

(i) ‖uε − u0‖L2(�ε,h) → 0,

(ii) ‖∇uε − A0∇u0‖L2(�ε,h) → 0,

as ε tends to zero.

Proof By the weak convergence of uε, T εuε, T ε∇uε (16)–(18), the property that sum

of lim inf is less than or equal to lim inf of sum, using that uε, u0 solve (22), (15),

∫

�u

p2 dxdy +

∫

�

h A0∇u0 · ∇u0 dx

≤ lim inf
ε→0

∫

�u

|T ε∇uε|2 dxdy + lim inf
ε→0

∫

�ε
u\�u

|T ε∇uε|2 dxdy

+ lim inf
ε→0

∫

�−

|∇uε|2 dx

≤ lim inf
ε→0

( ∫

�ε
u

|T ε∇uε|2 dxdy +

∫

�−

|∇uε|2 dx
)

= lim inf
ε→0

( ∫

�ε
u

T ε f T εuε dxdy +

∫

�−

f uε dx
)

= lim inf
ε→0

( ∫

�u

T ε f T εuε dxdy +

∫

�−

f uε dx
)

=

∫

�

f u0h dx

=

∫

�

h A0∇u0 · ∇u0 dx .

This shows that the energies converge:

∫

�ε
u

(T εuε)2 dxdy +

∫

�ε
u

|T ε∇uε|2 dxdy +

∫

�−

|∇uε|2 dx

→

∫

�u

(u0)2 dxdy +

∫

�u

A0∇u0 · ∇u0 dxdy +

∫

�−

|∇u0|2 dx, (25)

as ε tends to zero, as well as

lim
ε→0

∫

�ε
u\�u

|T ε∇uε|2 dxdy = 0.

It follows that each weak convergence in (16)–(18) is strong, and p = 0. For (i),

∫

�ε

(uε − u0)2h dx =
∫
�ε

u
T ε(uε − u0)2T εh dxdy +

∫
�−

(uε − u0)2 dx → 0,
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as ε tends to zero. The convergence in (ii) then follows by the same argument.

As T ε ∂uε

∂x1
converges to zero strongly in L2(�u), the proof of Theorem 7.1 shows

that

∂̃uε

∂x1
→ 0 strongly in L2(�+),

as ε tends to zero, which justifies the first term in the asymptotic expansion under

hypothesis (H1).

8 Average Preserving Extension

In this section we prove the homogenization Theorem 6.1 for an average preserving

extension (see [28, 41]). The method we use is the strong unfolding convergence

obtained in the proof of Theorem 7.1, which is stated explicitly in the form of

Lemma 8.1 below.

Throughout this section (H1) is assumed to hold. By the end of the section, a remark

about (H2) is included.

Let the local average of a function v in the x1 direction over �ε
+ be denoted by

mε(v)(x) =
1

h(x)

∫

Y (x)

(T εv)(x, y) dy, x ∈ �+, (26)

where mε(v)(x) is set to zero at points where h(x) = |Y (x)| = 0. The average

preserving extension is defined by

ũεm
(x) =

{
uε(x) if x ∈ �ε,

mε(u
ε)(x) if x ∈ � \ �ε.

(27)

For v ∈ H1(�ε), mε(v) and mε(∇v) are well-defined, using the Sobolev space

property that v has a representative that is absolutely continuous on almost all line

segments parallel to the coordinate axes and with square integrable partial derivatives.

In particular, v belongs to H1({(t, x2) : t ∈ R} ∩ �ε
+) for almost all x2 of relevance.

Theorem 8.1 Suppose that (H1) holds. Let uε ∈ H1(�ε, Ŵ) be the solutions to (1),

and let u0 ∈ W (�, Ŵ) be the solution to (2). Then

(i) ũεm
→ u0 strongly in L2(�, h),

(ii) ∇̃uε
m

→ A0∇u0 strongly in L2(�, h),

as ε tends to zero, where ∼m denotes the extension (26), (27).

In the proof of Theorem 7.1, the following strong convergence of the unfolded

sequences were obtained.

123



14 Page 22 of 34 Applied Mathematics & Optimization (2022) 86 :14

Lemma 8.1 Suppose that (H1) holds. Let uε ∈ H1(�ε, Ŵ) be the solutions to (1), and

let u0 ∈ W (�, Ŵ) be the solution to (2). Then

(i) T εuε → u0 strongly in L2(�u),

(ii) T ε∇uε →
(
0,

∂u0

∂x2

)
strongly in L2(�u),

as ε tends to zero.

Proof of Theorem 8.1 Because the extension does not alter the functions uε in �−, the

�− parts of (i) and (ii) are included in Theorem 7.1. In �+, by definition,

‖ũεm
− u0‖2

L2(�+, h)
= ‖uε − u0‖2

L2(�ε
+, h)

+ ‖mε(u
ε) − u0‖2

L2(�+\�ε
+, h)

.

The first term on the right hand side tends to zero as ε tends to zero according to

Theorem 7.1. The second term may be estimated as follows. Because u0 is independent

of y, and T εuε converges to u0 strongly in L2(�u), by Theorem 6.1 and Lemma 8.1(i),

the Hölder inequality gives

‖mε(u
ε) − u0‖2

L2(�+, h)

=

∫

�+

( 1

h(x)

∫

Y (x)

T εuε dy − u0
)2

h dx

=

∫

�+

( 1

h(x)

∫

Y (x)

T εuε dy −
1

h(x)

∫

Y (x)

u0 dy
)2

h dx

≤

∫

�u

(T εuε − u0)2 dxdy → 0,

as ε tends to zero, which gives part (i).

Part (ii) is obtained by repeating the above two steps for the components of ∇uε in

place of uε, using the second parts of Theorem 7.1 and Lemma 8.1.

Remark 8.1 (Hypothesis (H2)) The Theorems 6.1, 7.1, 8.1, and Lemma 8.1, hold under

the slightly weaker hypothesis (H2). The weak limit u0
+ of T εuε is the first component

of the unique solution (u0
+, u0

−) in the Sobolev space

W =
{
(v,w) : v ∈ L2(�u),

∂v

∂x2
∈ L2(�u),

∂v

∂ y
= 0,

w ∈ H1(�−, Ŵ), v = w on Ŵ− × T
}
,

to the following problem: Find (u+, u−) ∈ W such that

∫

�+

∫

Y (x)

∂u+

∂x2

∂ϕ

∂x2
dy dx+

∫

�−

∇u− · ∇φ dx =

∫

�+

f

∫

Y (x)

ϕ dy dx+

∫

�−

f φ dx,

(28)
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for any (ϕ, φ) ∈ W . This statement relies on the density of C∞(�, Ŵ) in W (c.f.

Sect. 10 below).

By (H2), (u0
+(x, k/N + y), u0

−), k ∈ Z, and (u0
+(x, y0 − y), u0

−) solve the prob-

lem (28). By uniqueness of solution, u0
+(x, y) = u0

+(x, k/N + y), k ∈ Z, and

u0
+(x, y) = u0

+(x, y0 − y). Because all Y0(x) are connected,
∂u0

+

∂ y
= 0 implies that u0

+

is constant in y.

9 A Numerical Example

To illustrate the rate of convergence in Theorem 7.1 under hypothesis (H2), we consider

the following example. Let uε be the solutions to (1) with f = 1 and

η(x, y) =
1

4
(1 + x cos(4πx))(3 − cos(2π y))b(y), (29)

where a bump is introduced at y0 by

b(y) =

{
1 − 2(δ − |y − y0|) if |y − y0| ≤ δ,

1 otherwise,

with δ = 1/10 and y0 = 1/2, y ∈ [0, 1). Then η satisfies (H2) but not (H1). Moreover,

h = 1 on the graph Ŵ− of η−, and h = 0 on the graph of η+. The domains �ε and �

are illustrated in Figure 3.

The solutions uε, u0 to the problems (1), (2) are approximated by means of the finite

element method using piecewise linear Lagrange elements. The numerical approxi-

mations are denoted by uε
s , u0

s . The numerically computed rates of convergence for the

approximation in Theorem 6.1, are illustrated in Figure 5, obtained using the numer-

ical tool FreeFEM [37]. The data points were obtained using the values of ε and the

number of degrees of freedom given in Table 1.

One observes that the rate of convergence for uε appears to be close to ε3/4, and

for ∇uε close to ε1/4, for the approximation measured in L2(�ε, h) for the selected

values of ε.

10 A Case of Non-connected Sections

In this section we consider a case where the sections Y (x) are allowed to be discon-

nected, that is the hypotheses (H1) and (H2) are mildly relaxed. First we describe

the weak unfolding limit of the zero extended solutions to problem (1), and then we

describe the weak limit in terms of local domain densities using the ideas of Mel’nyk,

splitting the oscillating part of the domain into branches (c.f. [29, 30, 46]).

Here, the full unfolded limit domain will be used, denoted by

�U = {(x, y) : x ∈ �, y ∈ Y (x)},
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(a) (b)

Fig. 3 A locally periodic domain �ε (a) that satisfies (H2) but not (H1), ε = 1/8, and the corresponding

homogeneous domain � (b), with Ŵ− marked as a dashed line separating the regions �+ and �−. The

particular function η is specified in (29)

Fig. 4 The region below the graph x2 = η(1/2, y) for η given by (29) that satisfies (H2) but not (H1), with

symmetry line y = 1/2 marked with a dashed line

and the effective matrix is given by

A0 =

(
χ�−×T 0

0 1

)
. (30)
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Fig. 5 The numerically computed rates of convergence for the approximations u0 to uε , and A0∇u0 to

∇uε , in Theorem 7.1 for f = 1 and �ε given by (29) and illustrated for ε = 1/8 in Figure 3

Table 1 The numerically computed errors for the approximation in Theorem 6.1, rounded to three significant

digits

ε ‖uε
s − u0

s ‖L2(�ε , h) ‖∇uε
s − A0∇u0

s ‖L2(�ε , h) dof

0 – – 78 · 102

1/1 0.0488 0.141 39 · 103

1/2 0.0502 0.140 46 · 103

1/3 0.0336 0.101 33 · 103

1/4 0.0226 0.0918 27 · 103

1/5 0.0149 0.0830 59 · 103

1/6 0.0104 0.0736 69 · 103

1/7 0.0120 0.0781 77 · 103

1/8 0.0115 0.0784 11 · 104

1/9 0.0101 0.0738 13 · 104

1/10 0.00941 0.0689 15 · 104

1/11 0.00940 0.0698 20 · 104

1/12 0.00882 0.0704 23 · 104

1/13 0.00801 0.0680 24 · 104

1/14 0.00740 0.0649 35 · 104

1/15 0.00716 0.0638 35 · 104

1/16 0.00688 0.0642 37 · 104

The number of degrees of freedom, rounded to two significant digits, is abbreviated to dof. The row ε = 0

is for the numerical solution u0
s to the homogenized problem
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The limit problem reads

−divx (A0∇x u) = f in �U ,

∇yu = 0 in �U , (31)

A0∇x u · νx = 0 on ∂�U \ Ŵ × T,

u = 0 on Ŵ × T,

where νx denotes the projection of the outward unit normal to �U onto R2. The limit

problem (31) is well-posed in the Sobolev space

W (�U , Ŵ × T)

= {v ∈ L2(�U ) : A0∇xv ∈ L2(�U ), ∇yv = 0 in �U , v = 0 on Ŵ × T},

equipped with the natural Hilbert space structure.

Theorem 10.1 Let uε ∈ H1(�ε, Ŵ) be the solutions to problem (1). Let u0 ∈

W (�U , Ŵ × T) be the solution to (31). Then

(i) ũε⇀

∫

Y (x)

u0 dy weakly in L2(�),

(ii) ∇̃uε⇀

∫

Y (x)

A0∇x u0 dy weakly in L2(�),

as ε tends to zero.

Proof The following a priori estimate holds

‖uε‖H1(�−) + ‖T εuε‖L2(�u) + ‖T ε∇uε‖L2(�u) ≤ C .

There exist

u0
− ∈ H1(�−, Ŵ),

u0
+ ∈

{
v ∈ L2(�u) :

∂v

∂x2
∈ L2(�u), ∇yv = 0 in �u

}
,

p ∈ L2(�u),

such that, along a subsequence still denoted by ε,

uε⇀u0
− weakly in H1(�−, Ŵ),

T εuε⇀u0
+ weakly in L2(�u),

T ε∇uε⇀
(

p,
∂u0

+

∂x2

)
weakly in L2(�u).

At this point u0
+ and p depend in general on the fast variable y.
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The unfolded variational form of problem (7) is by Lemma 5.1,

∫

�−

∇uε · ∇ψ dx +

∫

�u

T ε∇uε · T ε∇ψ dxdy =

∫

�U

T ε f T εψ dxdy + o(1),

(32)

as ε tends to zero, for any sufficiently smooth ψ ∈ H1(�ε, Ŵ).

Step 1: p = 0 a.e. in �u .

We will show that p = 0 almost everywhere in �u . Let φ ∈ C∞
0 (�u) and consider

the sequence of test functions ϕε(x) = εφ
(
x, x1

ε

)
. Then

T εϕε → 0,

T ε∇ϕε →
(∂φ

∂ y
, 0

)
,

strongly in L2(�u), as ε tends to zero. By passing to the limit in (32) with test functions

ϕε one obtains

∫

�u

p
∂φ

∂ y
dxdy = 0, φ ∈ C∞

0 (�u),

as ε tends to zero. That is, ∇y p = 0 in �u .

Let φ ∈ C∞
0 (�u) be such that ∇yφ = 0. Then consider the sequence of test

functions ϕε defined by

ϕε(x) = (x1 − xε
k )φ

(
x,

x1

ε

)
, if x1 ∈ [xε

k , xε
k+1),

where xε
k is a tagging such as in (20). Then

T εϕε → 0,

T ε∇ϕε → (φ, 0),

strongly in L2(�u), as ε tends to zero. By passing to the limit in (32) with test functions

ϕε one obtains

∫

�u

pφ dxdy = 0, φ ∈ C∞
0 (�u,∇y), (33)

as ε tends to zero. By the density of C∞
0 (�u,∇y) in the Sobolev space {v ∈ L2(�u) :

∇yv = 0 in �u}, one concludes that (33) holds for φ = p, that is

∫

�u

p2 dxdy = 0.
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Step 2: Transmission condition.

To determine the transmission condition for u0
− and u0

+ on the internal interface

Ŵu
− = {(x, y) : x ∈ Ŵ−, y ∈ Y (x)},

we will trace uε from either side.

Let φ ∈ C∞
0 (�U ), and set φε(x, x1

ε
).

On the one hand, from below,

∫

Ŵε

uεφεν2 dσ =

∫ 1

0

(χŴε uεφεν2)(x1, η−(x1)) dx1

=

∫ 1

0

∫

T

T ε(χŴε uεφν2)(x1, η−(x1)) dy dx1

→

∫ 1

0

∫

T

(χY (x)u
0
−φν2)(x1, η−(x1), y) dy dx1

=

∫

Ŵ−

∫

Y (x)

u0
−φν2 dy dσ,

as ε tends to zero, because T εχŴε (x1, η−(x1)) converges to χY (x1,η−(x1))(y) strongly

in L2((0, 1) × T).

On the other hand, from above,

∫

Ŵε

uεφεν2 dσ =

∫

�u

T ε ∂uε

∂x2
T εφε dxdy +

∫

�u

T εuεT ε ∂φε

∂x2
dxdy + o(1)

→

∫

�u

∂u0
+

∂x2
φ dxdy +

∫

�u

u0
+

∂φ

∂x2
dxdy

=

∫

Ŵ−

∫

Y (x)

u0
+φν2 dy dσ,

as ε tends to zero.

Thus

∫

Ŵ−

∫

Y (x)

(u0
+ − u0

−)φν2 dy dσ = 0, φ ∈ C∞
0 (�U ).

It follows that

u0
− = u0

+ in L2(Ŵu
−), (34)

for by the Lipschitz continuity of η−,

ν2 ≥
1√

1 + max(η′
−)2

> 0.
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The transmission condition (34) means here that the trace of u0
+ on each connected

component of the sections Y (x) for x ∈ Ŵ− is equal to the trace of u0
−. That is, zero

jump condition into each branch from below.

Step 3: Limit problem.

Let ϕ ∈ C∞(�U ) be such that ∇yϕ = 0, and ϕ vanishes on Ŵ × T. Set ψε(x) =

ϕ(x, x1
ε

), which belongs to H1(�ε, Ŵ). Using ψε as test functions in (32), one obtains

∫

�U

A0∇x u · ∇xϕ dxdy =

∫

�U

f ϕ dxdy, (35)

in the limit as ε tends to zero, where u = χ�u u0
+ + χ�−×Tu0

− ∈ W (�U , Ŵ × T) by

Step 1. In the upper part �u one uses p = 0 by Step 2. By the density of the considered

set of test functions in W (�U , Ŵ × T), as �U is Lipschitz, one has that u = u0 is the

unique solution to problem (31). One concludes that the weak convergences (i) and

(ii) have been established for the full sequences.

Remark that Lemma 8.1 holds without hypotheses (H1), (H2), by the same

argument, and it takes the following form, which is the result that corresponds to The-

orem 7.1 in this case.

Lemma 10.1 Let uε ∈ H1(�ε, Ŵ) be the solutions to (1), and let u0 ∈ W (�U , Ŵ ×T)

be the solution to (31). Then

(i) T εuε → u0 strongly in L2(�U ),

(ii) T ε∇uε →
(
χ�−×T

∂u0

∂x1
,
∂u0

∂x2

)
strongly in L2(�U ),

as ε tends to zero.

We will conclude this section by translating the limit problem (31) into a system in

the original coordinates x ∈ �, (� is the Hausdorff limit of �ε), in a particular case

of a finite number of ’bumps’ on the boundary.

Lemma 10.2 Let ω be an open set in RN . Then there exists an open cover K ′ of ω

such that for all v ∈ L2(ω) with ∇x ′v = 0 almost everywhere in ω, (x, x ′) ∈ ω, one

has that v is constant in x ′ almost everywhere in each V ∈ K ′.

Proof A subset V of ω is said to have the property (P) if the intersection of V and any

k-plane parallel to the x ′-coordinate k-planes is connected, x ′ ∈ Rk . For (x, x ′) ∈ ω,

let V (x, x ′) be a neighborhood of (x, x ′) in ω that is not contained in any distinct

neighborhood of (x, x ′) in ω with the property (P). By the Zorn lemma, at least

one such maximal element exists for the set inclusion partial order on the set of all

neighborhoods of (x, x ′) with the property (P), because ω is open and if F is a totally

ordered subset, ∪V ∈F V is an upper bound for F . Then K ′ = {V (x, x ′) : (x, x ′) ∈ ω}

is an open cover of ω.

Let v ∈ L2(ω) be such that ∇x ′v = 0 almost everywhere in ω. Then v has a

representative ṽ that is absolutely continuous on almost all line segments parallel to the
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x ′-coordinate axes and whose classical partial derivatives parallel to the x ′-coordinate

axes belong to L2(ω). It follows from Fubini’s theorem that ṽ assumes constant value

on each connected component of each k-plane parallel to the x ′-coordinate k-planes

when intersected with ω. Therefore v is constant in x ′ almost everywhere on each

V ∈ K ′.

Now we restrict to domains such that there is a finite open cover of �U as

in Lemma 10.2 with ω = �U and x ′ = y, effectively discarding domains with

a countably infinite number of ’bumps’ on the boundary. For instance, excluding

η(x, y) = x2
1 sin(

y
x1

), and η(x, y) = dist(y, K ), where K is a Cantor set.

We say that K is a partition of an open set ω in RN if K consists of disjoint nonempty

open subsets of ω such that ω = ∪V ∈K V . Under the assumption that there is a finite

open cover K ′ of �U as in Lemma 10.2, we can construct a finite partition K of �U

as follows. Given K ′ = {V1, . . . , Vk}, let K = {V1, V2 \ V1, . . . , Vk \ ∪k−1
j=1V j }.

Let K be a finite partition of �U with the same property as the open cover in

Lemma 10.2. Denote the measure of the connected components of Y (x) by

hV = |Y (x) ∩ {y : (x, y) ∈ V }|,

for V ∈ K , that is the density of �ε in �. Denote the common boundaries of the

subdomains U , V ∈ K of the partition by

ŴU ,V = ∂U ∩ ∂V .

Let the effective matrix be given by

A0 =

(
χ�− 0

0 1

)
.

Let

WK =
{
{vV }V ∈K : vV ∈ L2(πR2 V , hV ),

A0∇vV ∈ L2(πR2 V , hV ),

[v] = 0 on πR2ŴU ,V ,

vV = 0 on Ŵ ∩ πR2 V ,

U , V ∈ K
}
,

where πR2 denotes the projection onto R2, equipped with the natural Hilbert space

structure.

The limit problem

−div(hV A0∇uV ) = hV f in πR2 V ,

uV = 0 on Ŵ ∩ πR2 V ,

hV A0∇uV · ν = 0 on (∂� \ Ŵ) ∩ πR2 V , (36)
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[u] = 0 on πR2ŴU ,V ,

[h A0∇u · ν] = 0 on πR2ŴU ,V ,

is then well-posed in WK .

Corollary 10.1 Let uε ∈ H1(�ε, Ŵ) be the solutions to (1), and let u0 ∈ W (�U , Ŵ×T)

be the solution to (31). Let K be a finite partition of �U with the same property as the

open cover in Lemma 10.2 with ω = �U and x ′ = y. Then

(i) ũε⇀
∑

V ∈K

hV χπ
R2 V u0

∣∣
V

weakly in L2(�),

(ii) ∇̃uε⇀
∑

V ∈K

hV χπ
R2 V A0∇u0

∣∣
V

weakly in L2(�),

as ε tends to zero. Moreover, u0 = u0
V in V ∈ K , where {u0

V }V ∈K in WK is the solution

to (36).

Proof It follows from the weak unfolding convergence T εuε⇀u0 in L2(�U ), that

ũε⇀

∫

Y (x)

u0 dy =

∫

Y (x)

∑

V ∈K

χV u0 dy =
∑

V ∈K

hV χπ
R2 V u0

∣∣
V
,

as ε tends to zero. The same computation gives the convergence of the flows. By

writing u0 =
∑

V ∈K χV u0, one verifies that the limit problem (36) is equivalent to

the limit problem (31) with u0
V = χV u0 on V , for any suitable partition K .
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