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Abstract

We consider left-right symmetric model with spontaneous CP-violation. The Lagrangian of this

model is CP invariant and the Yukawa couplings are real. Due to spontaneous breaking of the

gauge symmetry, some of the neutral Higgses acquire complex vacuum expectation values, which

lead to CP-violation. In the model considered here, we identify the neutrino Dirac mass matrix

with that of Fritzsch type charged lepton mass matrix. We assume a hierarchical spectrum of the

right handed neutrino masses and derive a bound on this hierarchy by assuming that the decay of

the lightest right handed neutrino produces the baryon asymmetry via the leptogenesis route. It is

shown that the mass hierarchy we obtain is compatible with the current neutrino oscillation data.
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I. INTRODUCTION

Present low energy neutrino oscillation data [1, 2, 3] are elegantly explained by neutrino

oscillation hypothesis with very small masses (≤ 1 eV) for the light neutrinos. These masses

can be either Dirac or Majorana. See-saw mechanism is an elegant technique to generate

small Majorana masses for light neutrinos without fine tuning [4]. This can be achieved by

introducing right handed neutrinos into the electroweak model, which are invariant under

all gauge transformations. The Majorana masses of these right handed neutrinos are free

parameters of the model and are expected to be either at TeV scale [5] or at a higher

scale [6, 7, 8, 9].

In the simplest scenario a right handed neutrino per generation is added. They are

coupled to left handed neutrinos via Dirac mass matrix (mD) which is assumed to be similar

to charged lepton mass matrix. The consequent type-I seesaw mechanism [4] gives rise to

Majorana mass matrix of the light neutrinos of the form

mν = −mDM
−1
R mT

D. (1)

The goal of the present neutrino oscillation experiments is to determine the nine degrees of

freedom of the above equation (1). These are given by three light neutrino masses, three

mixing angles and three phases which include one Dirac and two Majorana. At present

the neutrino oscillation experiments are able to measure the two mass square differences,

the solar and the atmospheric, and three mixing angles with varying degrees of precision,

while there is no information about the phases. Moreover, it is difficult to constrain the

parameters of the right handed neutrinos from low energy neutrino data. However, an early

attempt [10] was made by inverting the seesaw formula (1).

Baryogenesis via leptogenesis [11] provides an attractive scenario to link the physics of

right handed neutrino sector with the low energy neutrino data. In this scenario, a lepton

(L) asymmetry is produced first which is then transformed to baryon (B) asymmetry of the

Universe via the high temperature behavior of the B + L anomaly of the Standard Model

(SM) [12]. Most proposals along these lines rely on the out of equilibrium decay of heavy

Majorana neutrinos to generate the L-asymmetry [11, 13, 14]. In these modifications of SM,

the B − L conservation is ad hoc.

An alternative is to consider leptogenesis [15, 16] within left-right symmetric model [17]

where U(1)B−L is a gauge symmetry. Because B − L is a gauge charge of the model, no

2



primordial B−L can exist. Further, the rapid violation of B+L conservation by the anomaly

due to high temperature sphaleron fields erases any B+L generated earlier. Thus the lepton

asymmetry must be produced entirely during or after the B − L symmetry breaking phase

transition. The Higgs sector of this model is very rich which consists of two triplets ∆L

and ∆R and a bi-doublet Φ. In contrast to type-I models, in the present case the vacuum

expectation value (VEV) of the triplet ∆L provides an additional mass, mL, to the light

Majorana neutrino mass matrix [18, 19, 20, 21, 22]

mν = mL −mDM
−1
R mT

D = mII
ν +mI

ν , (2)

where the two terms on the right hand side of above equation are called type-II and type-I

respectively.

In the present work, we consider a left-right symmetric model in which CP-violation

occurs via spontaneous symmetry breaking [23, 24, 25, 26]. The Lagrangian of the model

is CP invariant which demands that all the Yukawa couplings should be real. CP violation

occurs via the complex vacuum expectation values (VEVs) of the neutral Higgses in the

model. In the present case, there are four complex neutral scalars, all of which can acquire

complex VEVs. However, the global U(1) symmetries associated with SU(2)L and SU(2)R

gauge groups allow two of the phases to be set to zero. Using the remnant U(1) symmetry

related to SU(2)R, one phase choice is made to make the VEV of ∆R, and hence the mass

matrix of right handed neutrinos, real. The phase associated with the other U(1) symmetry

can be chosen to achieve two different types of simplification of neutrino mass matrix. In the

type-II choice, the mI
ν is made real leaving the CP-violating phase purely with mII

ν . In this

phase convention, we derive a lower bound on the mass scale of N1 from the leptogenesis

constraint by assuming a normal mass hierarchy in the right handed neutrino sector. In the

type-I phase choice, only the type-I term contains CP-violating phase leaving type-II term

real. This allows us to derive an upper bound on the heavy neutrino mass hierarchy from

the leptogenesis constraint.

The early analyses [24, 25, 26] show that, the vacuum alignment of the most general

Higgs potential in the left-right symmetric model requires both the phases to be very tiny

O(mW/vR) (vR = 〈∆R〉) and hence there is no observable CP-violation. However, this

analyses assumed that the VEVs of the two neutral scalars in the bidoublet Φ are of the

same order of magnitude. On the other hand, requiring one of the bidoublet VEVs to be
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much smaller than the other [23] allows the phase associated with the triplet VEV to be

large [27]. Later analyses worked out scenarios where the above conclusion [27] was explicitly

demonstrated [28]. These papers also showed that the choice vR ≥ 108 GeV, suppresses

flavour changing neutral currents adequately. This is in accord with our result, shown in

section V, that the present B-asymmetry of the Universe also requires a similar magnitude

of vR.

Rest of the paper is organised as follows. In section II, we briefly recapitulate the left-

right symmetric model with spontaneous CP-violation. In section III, we derive an upper

bound on the CP-asymmetry in left-right symmetric models by keeping both type-I and

type-II terms in the mass matrix of light neutrinos. We identify the neutrino Dirac mass

matrix with that of charged lepton mass matrix [4]. Further we choose this matrix to be of

Fritzsch type [29]. With these assumptions, in section IV, we show that a successful lepton

asymmetry can be created for a reasonable mass hierarchy among right handed neutrinos

and derive bounds on this hierarchy. In section V, we demonstrate that this hierarchy is

compatible with the current neutrino oscillation data. Section VI contains our summary

and conclusions.

II. LEFT-RIGHT SYMMETRIC MODEL AND SPONTANEOUS CP-VIOLATION

In the left-right symmetric model the right handed charged lepton of each family, which

was a singlet under the SM gauge group SU(2)L ⊗ U(1)Y , gets a new partner νR. These

two form a doublet under the SU(2)R of the left-right symmetric gauge group SU(2)L ⊗
SU(2)R ⊗U(1)B−L. Similarly, in the quark sector, the right handed up and down quarks of

each family, which were singlets under SM gauge group, combine to form a doublet under

SU(2)R.

The Higgs sector of the model consists of two triplets ∆L and ∆R and a bidoublet Φ,

which contains two copies of SM Higgs. Under SU(2)L⊗SU(2)R⊗U(1)B−L the field content
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and the quantum numbers of the Higgs fields are given as

Φ =





φ0
1 φ+

1

φ−
2 φ0

2



 ∼ (1/2, 1/2, 0) (3)

∆L =





δ+L /
√
2 δ++

L

δ0L −δ+L /
√
2



 ∼ (1, 0, 2) (4)

∆R =





δ+R/
√
2 δ++

R

δ0R −δ+R/
√
2



 ∼ (0, 1, 2). (5)

To achieve the correct phenomenology, the various Higgs multiplets in the model should

have the following VEVs,

〈∆R〉 =





0 0

vRe
iθR 0



 , (6)

〈Φ〉 =





k1e
iα 0

0 k2e
iβ



 , (7)

and

〈∆L〉 =





0 0

vLe
iθL 0



 . (8)

The electric charge of the fields is given by

Q = T 3
L + T 3

R +
1

2
(B − L). (9)

In the above vL, vR, k1 and k2 are real parameters and the electroweak symmetry breaking

scale v = 174 GeV is given by v2 = k21 + k22. Further we require that vL ≪ v ≪ vR. The

requirement of the spontaneous breakdown of parity gives rise to

vLvR = γ(k21 + k22) = γv2, (10)

where γ is parameter which is a function of the quartic couplings in the Higgs potential.

The minimisation of the most general Higgs potential involving ∆L,∆R and Φ was studied

in refs. [24, 28]. The relations between the various couplings, for which the above set of

VEVs are generated, were derived. In this scenario, the gauge symmetry SU(2)L×SU(2)R×
U(1)B−L is broken to U(1)em in a single step. Thus the CP -violating phases come into

existence at the same scale where the left-right symmetry is broken. Since v ≪ vR, the SM
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symmetry is present as an approximate symmetry at the scale where symmetry breaking

occurs.

An attractive alternative to the single step symmetry breaking is the phenomenon of

inverse symmetry breaking [30, 31]. This phenomenon usually occurs in models with multiple

HIggs representations. The zero temperature Higgs potential of the model can be chosen so

that all the neutral Higgses acquire non-zero VEVs. To consider the pattern of symmetry

breaking at high temperatures, a temperature dependent correction is added to the Higgs

potential and the potential is minimized. At high temperatures, it was shown that some of

the VEVs grow with the temperature [31, 32]. In ref. [32], this mechanism was demonstrated

for a left-right symmetric model with two Higgs bidoublets. The relevance of this mechanism

to the model considered here is being studied and will be reported soon.

The fermions get their masses via Yukawa couplings. The Lagrangian for one generation

of quarks and leptons is

− Lyuk = h̃q q̄LΦqR + g̃q q̄LΦ̃qR + h̃lℓ̄LΦlR + g̃lℓ̄LΦ̃lR

+if(ℓTLCτ2∆LℓL + ℓTRCτ2∆RℓR) +H.c. (11)

where q and ℓ are quark and lepton doublets, Φ̃ = τ2Φ
∗τ2 and C is the Dirac charge conju-

gation matrix. Further the Majorana Yukawa coupling f is the same for both left and right

handed neutrinos to maintain the discrete L↔ R symmetry.

Substituting the complex VEVs (6), (7) and (8) in (11) we obtain fermion masses to be

Mf = (h̃qk1e
iα + g̃qk2e

iβ)ūLuR + (h̃qk2e
iβ + g̃qk1e

iα)d̄LdR

+(h̃lk1e
iα + g̃lk2e

iβ)ν̄LνR + (h̃lk2e
iβ + g̃lk1e

iα)ēLeR

+f(νTLCvLe
iθLνL + νTRCvRe

iθRνR) +H.C. (12)

Generalising the above equation (12) for three generation of matter fields we get the up and

down quark mass matrices to be

(Mu)ij = (h̃q)ijk1e
iα + (g̃q)ijk2e

iβ and (Md)ij = (h̃q)ijk2e
iβ + (g̃q)ijk1e

iα. (13)

We assume [26, 33] k1/k2 ∼ mt/mb. In the see-saw mechanism, the Dirac mass matrix of the

neutrinos is assumed to be similar to the mass matrix of the charged leptons. For k2 ≪ k1,

and assuming h̃l ∼ g̃l in equation (12), the Dirac mass matrix of the neutrinos to a good
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approximation becomes h̃lk1e
iα. Thus neglecting k2 terms, the masses of three generations

of neutrinos are given by

(Mν)ij = ν̄Li
k1e

iα(h̃l)ijνRj
+ fij(vLe

iθLνTLi
CνLj

+ vRe
iθRνTRi

CνRj
) +H.C. (14)

The Majorana Yukawa coupling matrix fij is real and symmetric and hence can be diago-

nalized by an orthogonal transformation on νR

NR = OT
RνR. (15)

In this basis, we have

OT
RfOR = fdia, (16)

h = h̃OR. (17)

In the transformed basis we get the mass matrix for the neutrinos to be





fvLe
iθL k1e

iαh

k1e
iαhT fdiavRe

iθR



 . (18)

Diagonalising the neutrino mass matrix into 3 × 3 blocks we get the light neutrino mass

matrix to be

mν = fvLe
iθL − k21

vR
(hf−1

diah
T )ei(2α−θR) (19)

Notice that the Lagrangian (11) is invariant under the following unitary transformations

of the fermion and Higgs fields,

ψL −→ ULψL and ψR −→ URψR, (20)

Φ −→ ULΦU
†
R and Φ̃ −→ ULΦ̃U

†
R (21)

∆L −→ UL∆LU
†
L and ∆R −→ UR∆RU

†
R, (22)

where ψL,R is a doublet of quark or lepton fields. The invariance under UL is the result of

the remnant global U(1) symmetry which remains after the breaking of the gauge symmetry

SU(2)L and similarly for UR. The matrices UL and UR can be parametrized as

UL =





eiγL 0

0 e−iγL



 and UR =





eiγR 0

0 e−iγR



 . (23)
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By redefining the phases of the fermion fields we can rotate away two of the phase degrees of

freedom from the scalar sector of the theory. Thus only two of the four phases of Higgs VEVs

have phenomenological consequences. Under these unitary transformations, the VEVs (6),

(7) and (8) become

〈∆R〉 =





0 0

vRe
i(θR−2γR) 0



 , (24)

〈Φ〉 =





k1e
i(α+γL−γR) 0

0 k2e
i(β−γL+γR)



 , (25)

and

〈∆L〉 =





0 0

vLe
i(θL−2γL) 0



 . (26)

We choose γR = θR/2 so that the masses of the right handed neutrinos are real. The light

neutrino mass matrix (19) then becomes

mν = fvLe
i(θL−2γL) − k21

vR
(hf−1

diah
T )ei(2α+2γL−θR) (27)

= mII
ν +mI

ν (28)

Conventionally, in equation (27), γL was chosen to be −α + θR/2 [26, 34]. This makes

mI
ν real leaving the imaginary part purely in mII

ν . We call this type-II phase choice. The

light neutrino mass matrix, with this phase choice, is

mν = fvLe
iθ′

L − k21
vR

(hf−1
diah

T ), (29)

where θ′L = (θL − θR +2α). On the other hand, by choosing γL = θL/2 in equation (27) mII
ν

can be made real, with the phase occuring purely in mI
ν . We call this type-I phase choice.

Consequently the light neutrino mass matrix (27) becomes

mν = fvL − k21
vR
eiθ

′

R(hf−1
diah

T ) (30)

where θ′R = (θL − θR + 2α). Note that the authors in ref. [34] displayed the possibility of

leptogenesis through the type-II choice only. With this choice, they related the magnitude of

CP violation in leptogenesis to the magnitude of CP violation possible in neutrino oscillations

in certain models. However, in the present work we consider two distinct phase choices, i.e.

type-I and type-II, and consider the implication of each choice to leptogenesis. The CP-

violating parameter ǫ1 which gives rise to the lepton asymmetry is independent of the phase
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choice. However, the theoretical upper bound on ǫ1 is not a physical parameter of the

theory and can depend on the choice of phases as we see in the next section. In numerical

calculations, we take into account the consistency of the bounds coming from the different

phase choices.

Diagonalization of the light neutrino mass matrix mν , through lepton flavour mixing

matrix UPMNS [35], gives us three light Majorana neutrinos. Its eigenvalues are

UT
LmνUL = dia(m1, m2, m3), (31)

where m1, m2 and m3 are the absolute masses of light Majorana neutrinos and are chosen

to be real.

III. UPPER BOUND ON CP-ASYMMETRY IN LEFT-RIGHT SYMMETRIC

MODELS

We assume that the lepton asymmetry of the Universe is produced by the CP-violating

decay of the heavy right handed Majorana neutrinos to standard model leptons (l) and

Higgs (φ). We also assume a normal mass hierarchy for the heavy Majorana neutrinos. In

this scenario while the heavier neutrinos, N2 and N3, decay, the lightest of heavy Majorana

neutrinos is still in thermal equilibrium. Any asymmetry, thus, produced by the decay

of N2 and N3 will be erased by the lepton number violating interactions mediated by N1.

Therefore, the final lepton asymmetry is given only by the CP-violating decay of N1. The

CP-asymmetry, thus, is given by

ǫ1 = ǫI1 + ǫII1 , (32)

where the contribution to ǫI1 comes from the interference of tree level, self-energy correction

and the one loop radiative correction diagrams involving the heavier Majorana neutrinos N2

and N3. This contribution is same as in type-I models [6, 7] and is given by

ǫI1 =
3M1

16πv2

∑

i,j Im
[

hT1i(m
I
ν)ijhj1

]

(hTh)11
. (33)

On the other hand the contribution to ǫII1 in equation (32) comes from the interference of

tree level diagram and the one loop radiative correction diagram involving the virtual triplet

∆L. It is given by [8, 36]

ǫII1 =
3M1

16πv2

∑

i,j Im
[

hT1i(m
II
ν )ijhj1

]

(hTh)11
. (34)
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The total CP-asymmetry is therefore given by

ǫ1 =
3M1

16πv2

∑

i,j Im
[

hT1i(m
I
ν +mII

ν )ijhj1
]

(hTh)11
. (35)

From equation (35), we see that the physical observable ǫ1 is not affected by the choice of

phases. In the following, we use bound on ǫ1 from the observed baryon asymmetry to obtain

bounds on right-handed neutrino masses for the two different phase choices.

A. The type-II choice of phases

In this choice of phases the type-I mass term is real. The only source of CP-violation in

the light neutrino mass matrix mν lies in the type-II mass term. Thus in this case ǫI1 = 0

because of both h and mI
ν are real. The total CP-asymmetry in this choice of phases is

therefore given by

ǫ1 = ǫII1

=
3M1vL
16πv2

(hTfh)11
(hTh)11

Im(eiθ
′

L). (36)

Using (16) and (17) in equation (36) we get

ǫ1 =
3M1vL
16πv2

∑

i fi(O
T
Rh)

2
i1

∑

i(O
T
Rh)

2
i1

sinθ′L, (37)

where fi = (Mi/vR). Up to a first order approximation it is reasonable to assume that
∑

i fi ≈ 1. In this approximation the theoretical upper bound on the CP-asymmetry (37)

is given by [6, 7, 8, 9]

ǫ1,max =
3M1vL
16πv2

. (38)

Thus, for type-II phase choice, a bound on ǫ1 leads to a bound on M1.

B. The type-I choice of phases

In the type-I choice of phases the type-II mass term is real. Hence the CP-violation comes

through the type-I mass term only. The total CP-asymmetry in this case is therefore given

by

ǫ1 = ǫI1

=
3M1k

2
1

16πv2vR

(hThf−1
diah

Th)11
(hTh)11

Im(e−iθ′R). (39)
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Let us consider the type-I term of the light neutrino mass matrix

mI
ν = mν −mII

ν

= − k21
vRx′

hf−1
diah

T e−iθ′R . (40)

We can find a diagonalising matrix U = OUphase for m
I
ν such that

UTmI
νU ≡ −DmI

= −dia(mI1 , mI2, mI3) (41)

where (mI1, mI2 , mI3) are real by choosing Uphase = eiθ
′

R
/2. Therefore, from equation (41) we

have

DmI
=
k21
vR

OT
(

hf−1
diah

T
)

O. (42)

Using (42) in equation (39) the CP-asymmetry ǫ1 can be rewritten as

ǫ1 =
3M1

16πv2

∑

i

[

(hTO)1iDmIii
(OTh)i1

]

∑

i [(h
TO)1i(OTh)i1]

Im(e−iθ′
R)

=
3M1

16πv2

∑

imIi(OTh)2i1
∑

i(OTh)2i1)
Im(e−iθ′

R). (43)

In the above equation (43) the theoretical upper bound on CP-asymmetry is thus given

by [6, 7]

|ǫ1,max| =
3M1

16πv2

∑

i

mIi . (44)

In the equation (44) mIs are the eigenvalues of the matrix mI
ν and are not the physical light

neutrino masses. As we saw above, the relation between neutrino masses and the theoretical

upper bound on ǫ1 is phase choice dependent.

It is desirable to express the ǫ1,max in terms of physical parameters. In order to calculate

the mIs we will assume a hierarchical texture of Majorana coupling

fdia =
M1

vR











1 0 0

0 αA 0

0 0 αB











, (45)

where 1 ≪ αA = (M2/M1) ≪ αB = (M3/M1). We identify the neutrino Dirac Yukawa

coupling h with that of charged leptons [4]. We assume h to be of Fritzsch type [29]

h =
(mτ/v)

1.054618











0 a 0

a 0 b

0 b c











. (46)
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We make this assumption because Fritzsch mass matrices are well motivated phenomeno-

logically. By choosing the values of a, b and c suitably one can get the hierarchy for charged

leptons and quarks. In particular [29]

a = 0.004, b = 0.24 and c = 1 (47)

can give the mass hierarchy of charged leptons. For this set of values the mass matrix h is

normalized with respect to the τ -lepton mass. The set of values of a, b and c are roughly in

geometric progression. They can be expressed in terms of the electro-weak gauge coupling

αw = g2

4π
= α

sin2θw
. In particular a = 2.9α2

w, b = 6.5αw and c = 1. Here onwards we will use

these set of values for the parameters of h. Using equation (45) and (46) in equation (42),

we now get

DmI =
v2

vR

(

hf−1
diah

T
)

dia

≃ v2

M1

(mτ/v)
2

(1.054618)2











0 0 0

0 A 0

0 0 B











, (48)

where the eigenvalues A and B are functions of αA and αB and their sum is given by

A+B =
1

2

[

a2 +
1

αA
(a2 + b2) +

1

αB
(b2 + c2)

]

. (49)

Using equation (48) we can write the maximum value of CP-asymmetry (44)

ǫ1,max =
3M1

16πv2
(mI2 +mI3)

=
3

16π

(mτ/v)
2

(1.054618)2
(A+B). (50)

Thus we see that, in type-I choice of phases, the leptogenesis parameter ǫ1 constrains the

hierarchy parameters αA and αB. In the following two sections, we will obtain numerical

bounds on αA and αB in a manner consistent with the bound M1 coming from the type-II

phase choice.

IV. ESTIMATION OF LEPTON ASYMMETRY

A net B − L asymmetry is generated when the gauge symmetry is broken. A partial

B − L asymmetry then gets converted to B-asymmetry by the high temperature sphaleron
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transitions. However these sphaleron fields conserve B −L. Therefore, the produced B −L

will not be washed out, rather they will keep on changing it to B-asymmetry. In a comoving

volume a net B-asymmetry is given by

YB =
nB

s
=

28

79
ǫ1YN1δ, (51)

where the factor 28
79

in front [37] is the fraction of B − L asymmetry that gets converted to

B-asymmetry. Here ǫ1 is given by equation (50). Further YN1
is density of lightest right

handed neutrino in a comoving volume given by YN1
= nN1

/s, where s = (2π2/45)g∗T
3 is the

entropy density of the Universe at any temperature T . Finally δ is the wash out factor at a

temperature just below the mass scale of N1. The value of YN1
depends on the source of N1.

For example, the value of YN1
estimated from topological defects [38] can be different from

thermal scenario [7, 14]. In the present case we will restrict ourselves to thermal scenario

only.

Recent observations from WMAP show that the matter-antimatter asymmetry in the

present Universe measured in terms of (nB/nγ) is [39]

(

nB

nγ

)

0

≡
(

6.1+0.3
−0.2

)

× 10−10, (52)

where the subscript 0 presents the asymmetry today. Therefore, rewriting equation (51) we

get
(

nB

nγ

)

0

= 7(YB)0 = 2.48(ǫ1YNδ). (53)

Substituting the type-II phase choice relation (38) in (53) and comparing with the observed

value (52) of the baryon asymmetry we get the bound

M1 ≥ 1.25× 108GeV

(

10−2

YN1
δ

)(

0.1eV

vL

)

. (54)

On the other hand, substitution of ǫ1,max from the type-I phase choice (50) in equation (53)

and then comparison with the observed value (52) gives the constraint

A+B ≥ 3.46× 10−3(10−2/YNδ)

(

(nB/nγ)0
6.1× 10−10

)(

2GeV

mτ

)

( v

174GeV

)2

, (55)

where the physical quantities are normalized with respect to their observed values. The

above equation, for the values of a, b and c from (47), gives only one constraint on the two

hierarchy parameters αA and αB. We will determine the individual parameters αA and
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αB by demanding that their values should reproduce the low energy neutrino parameters

correctly, while satisfying the inequalities M1 > O(108) GeV and αB > αA >> 1. Individual

bounds on αA and αB can also be obtained if we assume that the αA term and the αB term

in the sum A +B from equation (49) are roughly equal. We then get

αA = (M2/M1) ≤ 17 and αB = (M3/M1) ≤ 289. (56)

V. CHECKING THE CONSISTENCY OF F-MATRIX EIGENVALUES

The solar and atmospheric evidences of neutrino oscillations are nicely accommodated in

the minimal framework of the three-neutrino mixing, in which the three neutrino flavours

νe, νµ, ντ are unitary linear combinations of three neutrino mass eigenstates ν1, ν2, ν3 with

masses m1, m2, m3 respectively. The mixing among these three neutrinos determines the

structure of the lepton mixing matrix [35] which can be parameterized as

UPMNS =











c1c3 s1c3 s3e
iδ

−s1c2 − c1s2s3e
iδ c1c2 − s1s2s3e

iδ s2c3

s1s2 − c1c2s3e
iδ −c1s2 − s1c2s3e

iδ c2c3











dia(1, eiα, ei(β+δ)), (57)

where cj and sj stands for cosθj and sinθj . Here we are interested only in the magnitudes

of elements of UPMNS. Hence for simplicity, we neglect all phases in it. The best fit values

of the neutrino masses and mixings from a global three neutrino flavors oscillation analysis

are [40]

θ1 = θ⊙ ≃ 34◦, θ2 = θatm = 45◦, θ3 ≤ 10◦, (58)

and

∆m2
⊙ = m2

2 −m2
1 ≃ m2

2 = 7.1× 10−5 eV2

∆m2
atm = m2

3 −m2
1 ≃ m2

3 = 2.6× 10−3 eV2. (59)

Using equation (19) we rewrite the f-matrix

f = (
eV

vL
)











(mν/eV ) +
4

(1.054165)2
1

(M1/GeV)











a2

αA
0 ab

αA

0 a2 + b2

αB

bc
αB

ab
αA

bc
αB

b2

αA
+ c2

αB





















, (60)
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where the neutrino mass matrix mν is given by equation(31). The constrained eigenvalues

αA and αB are given by equation (56).

In the following, we choose M1 to be larger than the bound given by type-II phase choice

(54) and m1 such that m2
1 << ∆sol. For such m1 and M1, we choose suitable αA and αB

that are compatible with the low energy neutrino oscillation data. In particular here we

choose m1 = 1.0× 10−3eV , M1 = 1.0× 108 GeV, αA = 17, αB = 170 and θ3 = 6◦. Then we

get

fdia =
2.16× 10−3eV

vL











1 0 0

0 17.3 0

0 0 169.7











. (61)

Thus, for the above values of m1 and M1, the assumed hierarchy of right-handed neutrino

masses is consistent with global low energy neutrino data. Comparing equation (61) with

(45) we get
M1

vR
=

2.16× 10−3eV

vL
. (62)

This implies that vR = O(1010) GeV for vL = 0.1 eV. These values of vL and vR are

compatible with genuine see-saw vLvR = γv2 for a small value of γ ≃ O(10−4) [26]. On the

other hand if we choose the parameters m1 = 1.0× 10−3 eV, M1 = 1.0× 109 GeV, αA = 17,

αB = 65 and θ3 = 6◦ we get

fdia =
1.6× 10−3eV

vL











1 0 0

0 16.76 0

0 0 64.68











. (63)

Once again we have consistency between the assumed hierarchy of right-handed neutrino

masses and global low energy neutrino data. Again comparing equation (63) with (45) we

get
M1

vR
=

1.6× 10−3eV

vL
. (64)

Thus for vL = 0.1 eV one can get vR = O(1011 GeV). Again these values are compatible

with see-saw for γ ≃ O(10−3).

Here we demonstrated the consistency of our choice of the matrix f with neutrino data for

two different choices of αA and αB. For other choices of these parameters, to be consistent

with 1 << αA << αB, one can choose appropriate values of m1 ≤ 10−3 eV and M1 ≥ 108

GeV in equation (60) which will reproduce the correct eigenvalues of the matrix f .
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VI. CONCLUSION

In this work we derived an upper bound on the CP-violating parameter ǫ1 in left-right

symmetric models by assuming the case of spontaneous CP-violation. Further we assumed a

normal mass hierarchy among the heavy Majorana neutrinos. A class of left-right symmetric

models are then considered in which we assume neutrino Dirac masses are of the Fritzsch

type. We found that keeping the Majorana phase in type-II mass term of the light neutrinos,

gives rise to a lower bound on the lightest right handed neutrino mass, whereas keeping the

phase in type-I mass term, gives rise to bounds on the mass ratios M2/M1 and M3/M1. We

further checked that these bounds are consistent with the present neutrino oscillation data.
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