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This paper presents the constitutive modeling of the flexomagnetic (FM) effect in structures involving
a non-zero magnetic field generated in the presence of inhomogeneous strain across the domain. In
order to evaluate the magneto-elastic (ME) structural response, the tensorial governing equations and
associated boundary conditions for the mechanical and magnetic variables are derived here using the
variational principle. Following this, these differential equations are solved to determine the effect of
FM over the bending response of a cantilever piezomagnetic nanobeam. Different magnetic boundary
conditions are analyzed to study the effect of direct and converse FM couplings over the ME
response. The significant influence of FM coupling over the ME response has been noted for thin
beams with low-dimensions, which wanes as the geometric dimensions are increased. Given the
significance of this size-dependent FM response in nano-structures, the theory for flexomagnetism
proposed here may be utilized in the development of smart ME nano-structures with the potential for
wide applications. Published by AIP Publishing. https://doi.org/10.1063/1.5060672

I. INTRODUCTION

With the developments in nanotechnology progressing at
a rapid pace, the increase in the applications using micro-
and nano-electromechanical systems (MEMs/NEMs) may be
noted. However, the classical theories of elasticity applicable
at the macroscale do not predict the elastic response at this
scale satisfactorily. At this scale, given the low-dimensions
of these structures, experiments have demonstrated the signif-
icant effect of strain gradients on the elastic response.1–3 The
importance of these gradients toward determining the
response of the structures has led to the formulation of strain
gradient elasticity (SGE) theories.4,5

Furthermore, it has been observed that a non-zero electri-
cal field is induced in a dielectric in the presence of non-
uniform strains. This coupling of the electric field and strain
gradient is referred to as the flexoelectric effect. This cou-
pling was theoretically studied in crystals almost 50 years
ago.6–8 Experimental studies were carried out by Cross and
coworkers over a number of dielectrics to evaluate the corre-
sponding coefficients.9–14 These experiments have been
carried out by investigating the bending deformation of struc-
tures, given the large strain gradients (flexure) generated by
this deformation. Extensive theoretical studies have also been
carried out to analyze the flexoelectric effects in solids, and
the development of actuators, sensors, and energy harvesters
from such structures.15–34

As discussed above, the major section of the literature
available on strain gradients is devoted to either strain gradi-
ent elasticity or the flexoelectric phenomenon. However,
magneto-elastic (ME) coupling in crystals, in the form of a
correlation between the strain gradient and the induced mag-
netic fields, is relatively unexplored. This coupling induces a

non-zero magnetic field in the presence of in-homogeneous
strains and is referred to as the flexomagnetic (FM) effect.
This may be considered as a component of the more general
flexomagnetoelectric effect, coined by Bobylev and Pikin35 to
study the coupling of magneto-electric and elastic responses
in liquid crystals. Such studies in multiferroics generally ana-
lyzed the converse effect of the electro-magnetic field over
the molecular reorientations.36 The ME linear coupling of
strain-gradient with the magnetic field is incorporated by an
addition of the associated coupling energy to the total free
energy of a ferroelectric.37 A similar approach has been
adopted for the development of a general expression of the
total free energy for a ME solid, including the flexo- and
piezo- electromagnetic effects, and the non-linear electro- and
magneto-strictions.38,39

Unlike the more commonly analyzed piezomagnetic
(PM) effect, which provides a coupling of the strain and mag-
netic fields, flexomagnetism involving strain gradients is
ignored owing to its negligible effect in the macro-structures.
However, due to the dimensional scaling exhibited by the
strain gradients, the FM effect gains significance as the geomet-
ric dimensions of the structure approach micro- and nano-
scales. Moreover, the PM effect is severely restricted by the
crystal symmetries. Eliseev et al.40–42 carried out extensive the-
oretical calculations for evaluating the form of the FM tensor
in various magnetic classes using the symmetry theory. It has
been suggested that all the 90 magnetic classes exhibit a
non-zero FM effect, at least close to the surface. Lukashev
et al. carried out studies over Mn-based antiperovskites to eval-
uate the coefficients of this coupling tensor from first princi-
ples.43,44 Therefore, a non-zero magnetic field may be induced
in such solids by the FM coupling. This indicates the potential
for the development of piezomagnetic-like structures without
the use of any conventional piezomagnetic materials.

Most of the literature cited above on the FM is restricted
to studying this effect over a scale of few crystals, with only
some of them focusing on flexo-coupling in structures like
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disks and cylinders.41 However, no such analysis has been
carried for evaluating the FM effects over the deformation of a
more general structure like a beam, where high strain gradients
can be produced upon bending, as discussed above. Also, a
clear description of the constitutive relations for the ME vari-
ables along with the three-dimensional governing equations
and the associated boundary conditions for these variables has
not been provided in the literature. They would be necessary
to determine the multi-field response of the FM structure.
Thus, we intend to present here the constitutive relations and
derive the necessary governing equations and boundary con-
ditions using the variational principles from the total free
energy provided in the literature.40 Furthermore, this paper
will analyze the effect of flexomagnetic coupling over the
magneto-elastic response for the bending deformation of a
piezo-magnetic beam. In studies pertaining to the nanostruc-
tures, where the ratio of the surface area to volume is non-
trivial, additional energy pertaining to the free surfaces of the
solid may also be considered. Some of the common examples
of the effects caused by such energies are the “surface elastic-
ity,” “surface piezoelectricity,” and “surface flexoelectricity.”45

However, the objective of the current study is to analyze the
flexomagnetic response over nanostructures. Thus, the energy
corresponding to such surface effects will not be considered in
the current study.

II. MODELING FLEXOMAGNETIC RESPONSE

A. Constitutive relations

The free energy density U of a non-centrosymmetric
ferromagnetic exhibiting the piezomagnetic (PM) and the
flexomagnetic (FM) effects has been evaluated using the
Landau-Ginsburg-Devonshire (LGD) phenomenological
approach.46 The expression for this free energy density may
be expressed in terms of the second order strain tensor ϵ,
third order strain gradient tensor η, and the magnetic field
vector H as follows:40,41

U(ϵ, η, H) ¼ �
1
2
H � a �H þ

1
2
ϵ:C:ϵþ

1
2
η

.

.

.

g .

.

.

η

þ ϵ:r .

.

.

η�H � d:ϵ�H � μ .

.

.

η, (1)

where given a displacement field vector u, the strain and
strain gradient tensors are defined as

ϵ ¼
1
2

∇� uþ u� ∇ð Þ, η ¼ ϵ� ∇ (2)

and the magnetic field vector H is expressed in terms of the
magnetic potential ψ as follows:47,48

H ¼ �∇ψ : (3)

The above definition for the magnetic potential is based on
the assumption that the circulation of the magnetic field
(curl H ¼ 0) around a closed contour enclosing the solid
being zero. The above result is applicable only if this contour
does not enclose any distribution of current, from either exter-
nal or internal sources.37 With the net contribution of the
magnetization toward the current being zero, we assume that

no external stationary currents are present in the ME solid
being analyzed here.

In the expression for free energy density given by
Eq. (1), a is the second order magnetic permeability tensor,
C is the fourth-order classical elasticity coefficient tensor,
and g is the sixth-order gradient elasticity coefficient tensor.
The fifth-order tensor r couples the strain and strain-gradient
tensors and is non-zero only for the non-centrosymmetric
solids. The energy corresponding to the tensors g and r is
incorporated in the free energy density given in Eq. (1) due
to the significance of SGE for structures at micro- and nano-
scales.49 Furthermore, the necessity of including the SGE in
such multifield studies is to avoid inconsistent boundary con-
ditions, as discussed by Yurkov for flexoelectric solids.50

The third-order tensor d may be referred to as the piezo-

magnetic tensor coupling the magnetic field vector and the
elastic strain. As mentioned previously, this odd-ordered
tensor is non-zero only for a non-centrosymmetric crystal
solid. Finally, the fourth-order μ tensor coupling the strain
gradient and the magnetic field is called the flexomagnetic

tensor. This flexomagnetic tensor may be considered as an
equivalent form of the fourth-order flexomagnetic coupling
tensor Qm provided by Eliseev et al.40 and is obtained from
a Legendre transform of the free-energy given in Eq. (1) with
respect to the magnetic variables.51 The tensor Qm couples
the magnetization vector and strain gradient tensor, and the
complete form of this tensor may be obtained from studies
carried out by Eliseev et al. over the form of Qm for all the
magnetic classes.40 Unlike piezomagnetism, flexomagnetism
is also exhibited by the centrosymmetric ferroics where the
piezomagnetic tensor d would be zero, thereby indicating the
presence of a non-zero magneto-elastic coupling in all crys-
talline structures irrespective of their symmetry.

Considering the variables ϵ, η, and H, the constitutive
relations may be expressed as40

σ ¼
@U

@ϵ
¼ C:ϵþ r .

.

.

η�H � d, (4a)

τ ¼
@U

@η
¼ g:ηþ ϵ:r�H � μ, (4b)

B ¼ �
@U

@H
¼ a �H þ d:ϵþ μ

.

.

.

η: (4c)

In the above relations, the second-ordered Cauchy-stress
tensor σ, the third-order higher-order stress tensor τ, and the
magnetic flux vector (also called the magnetic induction
vector) B are the energy-conjugates of ϵ, η, and H, respec-
tively. Similar to the piezomagnetic behavior, the effect of
the flexomagnetic tensor μ over the magnetic field in Eq.
(4c) will be referred to as the direct flexomagnetic behavior,
and the effect of μ over the mechanical higher order stress in
Eq. (4b) will be referred to as the converse flexomagnetic
effect. Therefore, a non-uniform strain causing a magnetic
flux to be induced across the domain will be referred to as
the direct flexomagnetic effect. Furthermore, a non-uniform
strain developed across the domain in the presence of
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magnetic field is the converse flexomagnetic effect. Overall,
for centrosymmetric crystals with d ¼ 0, a non-zero μ pro-
vides the ME coupling in non-piezomagnetic materials.

B. Governing equations

The governing equations and the associated boundary
conditions necessary for determining the magneto-elastic
response of a flexomagnetic structure may be obtained by
applying the variational principle over U. The first variation
of the total free energy over a volume Ω may be written for
the free energy density given in Eq. (1) using the constitutive
relations given above as follows:

δW(ϵ, η, H) ¼
ð

Ω

σ:δϵþ τ
.

.

.

δη� B � δHdV : (5)

The above variation is carried out in terms of the independent
variations of the displacements, normal gradients of the dis-
placements, and magnetic potential. Consider an external
work δV applied over the system as follows:

δV ¼

ð

Ω

b � δudV þ

ð

@Ω

t � δudA

þ

ð

@Ω

q � n � (δu� ∇)dAþ

þ

Γ

e � δudl, (6)

where b, t, q, and e are the prescribed values of the distribu-
ted mechanical forces over the volume Ω, smooth surface
@Ω, and edges Γ. n is the unit normal vector over smooth
surface @Ω. The variational principle δW ¼ δV gives the fol-
lowing governing differential equations:

@u: � ∇ � σ � ∇ � τð Þ ¼ b in Ω, (7a)

@ψ : ∇ � B ¼ 0 in Ω: (7b)

Equation (7b) is Maxwell’s equation, commonly referred to as
Gauss’s law for magnetism, which is obtained here from varia-
tional principles by an independent variation of the magnetic
potential across the domain. In this derivation, an assumption
regarding the absence of magnetic monopoles in the domain
has been made. The associated boundary conditions obtained
from the variational principle may be expressed as

n � σ �∇ � τð Þ � R: n � τð Þ �∇½ �

þ R: ∇� nð Þ½ � n� nð Þ:τ½ � ¼ t or u¼ u on @Ω, (8a)

n� nð Þ:τ ¼ q, or δu� ∇ ¼ δu� ∇ on @Ω, (8b)

m � n � τð Þ½ �½ � ¼ e, or u ¼ u on Γ, (8c)

n � B ¼ 0, or ψ ¼ ψ on @Ω, (8d)

where u and ψ are the prescribed values for the displacement
vector and applied magnetic potential at the surface @Ω and
edges Γ. In the above equations, R is the second-ordered
surface projection tensor defined as R ¼ I � n� n, with I

being a second-ordered identity tensor, m is the co-normal
vector to the tangent along the sharp edge Γ and normal to the
surface n,46 and [[ � ]] notation is used to denote a jump across
the sharp edge Γ. The governing differential equation and
associated boundary conditions for the variation of the
mechanical displacement u, given above, are identical to that
obtained for a strain gradient elastic solid.49 A detailed deriva-
tion of the same has been carried out in the literature49 and
hence not presented here for the sake of brevity.

Therefore, in this section, we have introduced the free
energy corresponding to a ferroic structure exhibiting the
PM and FM effects, while also considering the SGE.
Subsequently, the constitutive relations for such a material
have been provided in Eq. (4). The ME response of the struc-
ture may be evaluated from solving the governing differential
equations given in Eq. (7), together with the associated boun-
dary conditions provided in Eq. (8). In Sec. III, we intend to
present a case-study of ferroic beams and study the effect of
FM on its ME response.

III. BENDING RESPONSE OF ME BEAMS

A schematic of the cantilever ferroic nanobeam consid-
ered for the current study is illustrated in Fig. 1. As shown in
the figure, the geometric length and the height of the beam are
denoted by L and h, respectively. The width of the beam will
always be maintained as b ¼ 2� h. The Cartesian coordinate
system chosen for the current study is also shown in the sche-
matic. The x1-axis lies along the mid-plane across the length
of the undeformed beam such that x1 ¼ 0 and x1 ¼ L corre-
spond to the ends of the beam. The x3-axis lies transverse to
x1, along the thickness of the beam. Therefore, x3 ¼+h=2
are the top and bottom surfaces of the beam. The origin is
chosen at the left end of the beam as shown in the figure.

The boundary conditions corresponding to the magnetic
field may be chosen in order to exhibit the direct or converse

FIG. 1. Schematic of a cantilever piezomagnetic beam indicating the config-
urations for (a) direct FM effect and (b) converse FM effect, along with the
Cartesian coordinate system chosen for this study.
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FM effects. The configuration of the beam in both these con-
ditions is illustrated in Fig. 1. The bending response of ME
beams considering the two magnetic boundary conditions
will be evaluated separately here.

For the current study, the Euler-Bernoulli (E-B) beam
displacement hypothesis will be used to evaluate the
mechanical response. According to the Euler-Bernoulli
beam theory, the components of the displacement field u(x)
are given by

u1(x1, x3) ¼ u(x1)� x3
dw(x1)
dx1

, u3(x1, x3) ¼ w(x1), (9)

where u(x1) and w(x1) are the axial and transverse displace-
ments of the mid-plane of the beam, respectively. The
rationale behind the choice of this hypothesis for the
current study will be provided later. The only non-zero
component of the strain tensor ϵ11, and its gradients along
x1 and x3 evaluated using the definitions given in Eq. (2)
are given as

ϵ11 ¼
du

dx1
� x3

d2w

dx21
, η111 ¼

d2u

d2x1
� x3

d3w

dx31
,

η311 ¼ �
d2w

dx21
:

(10)

In general, the E-B theory presented above is suitable for
slender structures with the length of the beam atleast an
order greater than the transverse thickness. Thus, the axial

gradient of the strain η111 ( ¼ ϵ11,1) may be neglected in
comparison with its transverse gradient η311 ( ¼ ϵ11,3).
Therefore, for all the cases studied henceforth η111 is
neglected.

Also, given the slender beam assumption, the gradient
of the magnetic potential ψ across the length is also negli-
gible when compared to its variation across the thickness.52

Thus, the in-plane magnetic field can be neglected here.
This is analogous to the consideration of a non-zero trans-
verse electrical field E3, while neglecting the axial electri-
cal field E1 in slender piezoelectric and flexoelectric
beams.16,21,53 Thus, only the H3 component will be consid-
ered for the current study.

The total strain energy including the SGE from Eq. (1)
involves the C, r, and g tensors.

For the current study involving non-centrosymmetric
orthotropic ferroics, the fifth-ordered r and the sixth-ordered g

tensors need to be evaluated. However, only a limited literature
is available on these tensors for different crystal and elastic
symmetries. Thus, the strain gradient elasticity tensor g is eval-
uated using the definitions for isotropic centrosymmetric struc-
tures provided by Mindlin4 and Mindlin and Eshel,5 and the
strain-strain gradient coupling tensor r is ignored here. This is
an assumption used here due to the lack of proper models for
evaluating these tensors. A sixth-order gradient elasticity coef-
ficient tensor g derived by Zhou et al. for a linear elastic, iso-
tropic, and centrosymmetric solid involving three independent
material constants, also referred to as the generalized first
strain theory of elasticity, is given as54

gijklmn ¼ g1 (δijδkl þ δikδ jl)δmn þ (δimδln þ δinδlm)δ jk

� �
þ g2 δij(δkmδln þ δknδlm)þ δik(δ jmδln þ δ jnδlm)

� �

g3δilδ jkδmn þ g4δil(δ jmδkn þ δ jnδkm)þ g5 δim(δ jnδkl þ δ jlδkn)þ δin(δ jmδkl þ δ jlδkm)
� �

: (11)

Here, μ is the shear modulus (which is a scalar, unlike the
flexomagnetic coupling tensor μ). The five material con-
stants gi (i ¼ 1, 2, . . . , 5) are expressed in terms of the
Lamé parameter μ, and the material length scales l0, l1, and
l2 as follows:

54

g1 ¼ �
2
3

g2 þ g5ð Þ, g3 ¼
8
3
g2 þ

2
3
g5,

g2 ¼
μ

30
(27l20 � 4l21 � 15l22), g4 ¼

μ

3
(l21 þ 6l22),

g5 ¼
μ

3
(l21 � 3l22):

(12)

Thus, using the expressions for the strain, strain-gradients
derived from Euler-Bernoulli hypothesis, and the transverse
magnetic field in the tensorial form of the constitutive rela-
tions given in Eq. (4), we get the following relations:

σ11 ¼ C11ϵ11 � d31H3, τ311 ¼ g31η311 � μ31H3,

B3 ¼ a33H3 þ d31ϵ11 þ μ31η311:
(13)

In the above expressions, Voigt’s notation has been used
to simplify the representation as C11 ¼ C1111, d31 ¼ d311,
μ3311 ¼ μ31. Also, for simplicity, we have used g31 ¼ g311311,
which may be evaluated from Eq. (11) to be g311311 ¼
g3 þ 2g4. The Euler-Bernoulli displacement hypothesis is
used here owing to the lack of the literature on the evaluation
of complete flexomagnetic tensor μ. In the studies by Eliseev
et al.

40 and Lukashev and Sabirianov,43 only a single value
for the μ has been evaluated from the first principle studies.
We assume this value to be equal to μ31 with sufficient modifica-
tions owing to the difference of independent variables used in
energy functional here [Eq. (1)]. The use of any higher theory for
displacement to model the gradients comprehensively will invari-
ably require more than one component of the FM tensor, where
the relative ratios of these components will significantly deter-
mine the ME response. Considering that the objective of the
current study is to provide a phenomenological study of the FM
effect in ME beams, the Euler-Bernoulli beam theory has been
used here, much alike the studies involving flexoelectricity.16,21,33

The variation of free energy density δW over Ω given in
Eq. (5) may be simplified for the current study using the
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components in Eq. (13) as follows:

δW ¼

ð

Ω

σ11δϵ11 þ τ311δη311 � B3δH3dV : (14)

Using Eqs. (3) and (10), we can simplify the above expres-
sion in terms of the independent variations of u(x1), w(x1),
and ψ(x1, x3) as follows:

δW ¼ �

ðL

x1¼0
N11,1δudx1 �

ðL

x1¼0
M11,11 þ T311,11ð Þδwdx1 �

ðL

x1¼0

ðh=2

x3¼�h=2
B3,3δψdx3dx1 þ

h
N11δu

ix1¼L

x1¼0

þ
h
M11,1 þ T311,1ð Þδw

ix1¼L

x1¼0
�
h
M11 þ T311ð Þ

dδw

dx1

ix1¼L

x1¼0
þ

ðL

x1¼0

h
B3δψ

ix3¼h=2

x3¼�h=2
dx1, (15)

where the stress resultants N11, M11, and T311 are defined as
follows:

N11 ¼

ðx3¼h=2

x3¼�h=2
σ11dx3, M11 ¼

ðx3¼h=2

x3¼�h=2
x3σ11dx3,

T311 ¼

ðx3¼h=2

x3¼�h=2
τ311dx3:

(16)

From the variational principle, the mechanical governing dif-
ferential equations are given as follows:

δu: N11,1 ¼ 0, δw: M11,11 þ T311,11 ¼ 0 in Ω (17)

and the essential and natural boundary conditions are given as

N11 ¼ Fa or δu ¼ 0 at x1 ¼ 0, L, (18a)

M11,1 þ T311,1 ¼ Ft or δw ¼ 0 at x1 ¼ 0, L, (18b)

M11 þ T311 ¼ Mb or
dδw

dx1
¼ 0 at x1 ¼ 0, L: (18c)

Here, Fa, Ft, and Mb are the axial force, transverse force, and
bending moment applied at the longitudinal ends of the
beam, respectively. Furthermore, from Eq. (15), the govern-
ing differential equation corresponding to magnetic variables
may be expressed as

δψ : B3,3 ¼ 0 in Ω, (19)

with the associated boundary conditions throughout the
length of the beam being given as

either B3 ¼ 0 or ψ ¼ ψ for x3 ¼+
h

2
: (20)

We begin by solving the differential equation given in
Eq. (19), to determine the magnetic fields in terms of the
mechanical displacements. Thereafter, the mechanical gov-
erning equations are solved using these results, for the
magnetic fields, to obtain the axial and transverse displace-
ment components. The differential equations in Eq. (19)
will be solved for the two different prescribed boundary

conditions of the magnetic field given in Eq. (20). It may
be noted that the condition B3 ¼ 0 at x3 ¼+h=2 is used
for estimating the induced magnetic potential and may be
treated as the direct FM effect. On the other hand, satisfy-
ing the prescribed values of magnetic potential ψ at x3 ¼
+h=2 is analogous to studying the effect of applying a
voltage over a piezoelectric structure. This may be treated
as the converse FM effect.

A. Direct FM effect

It is obvious that the solution for the magnetic governing
equation given by Eq. (19) satisfying the natural boundary
condition given by Eq. (20) is

B3 ¼ 0 throughout the domain Ω: (21)

Using the constitutive relation for B given in Eq. (13),
definitions of the strain and strain gradients in Eq. (10),
and the magnetic field in Eq. (3), we obtain the magnetic
potential ψ in terms of the displacement gradients as
follows:

ψ ¼
1
a33

d31
du

dx1
� μ31

d2w

dx21

� �
x3 �

x23
2
d31

a33

d2w

dx21
þ C0, (22)

where C0 is any arbitrary constant. The magnetic potential
difference across the transverse surfaces Δψ (¼ ψ jx3¼h=2�
ψ jx3¼�h=2) may be evaluated to be

Δψ ¼ h
1
a33

d31
du

dx1
� μ31

d2w

dx21

� �
: (23)

Using the magnetic potential derived in Eq. (22) in the defi-
nition for H3, we get

H3 ¼ �
d31

a33

du

dx1
� x3

d2w

dx21

� �
þ
μ31

a33

d2w

dx21
: (24)

Using the above result for H3, the solution for the bending
response of the ferroic nanobeams in the case of the direct
FM effect may be obtained from solving the mechanical gov-
erning equations given in Eq. (17). The Cauchy and the higher
order stresses, for the above magnetic field, determined from
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the constitutive relations given in Eq. (13) are

σ11 ¼ C11 þ
(d31)2

a33

� �
du

dx1
� x3

d2w

dx21

� �
�
μ31d31

a33

d2w

dx21
,

τ311 ¼
μ31d31

a33

du

dx1
� x3

d2w

dx21

� �
� g31 þ

(μ31)
2

a33

� �
d2w

dx21
:

(25)

The stress resultants N11, M11, and T311 derived by using the
expressions for stresses given above in Eq. (16) are

N11 ¼ Af C11 þ
(d31)2

a33

� �
du

dx1
� Af

μ31d31

a33

d2w

dx21
,

M11 ¼ �If C11 þ
(d31)2

a33

� �
d2w

dx21
,

T311 ¼ Af

μ31d31

a33

du

dx1
� Af g31 þ

(μ31)
2

a33

� �
d2w

dx21
,

(26)

where Af ¼ b� h is the area of the cross section for the beam
and If ¼ bh3=12 is its second moment of area. Substituting
these resultants in the governing equations given in Eq. (17)
provides the following simultaneous system of differential
equations in axial and transverse displacements

ADFM d2u

dx21
� BDFM d3w

dx31
¼ 0,

� DDFM d4w

dx41
þ BDFM d3u

dx31
¼ 0,

(27)

where ADFM is the effective axial rigidity, DDFM is the effec-
tive bending rigidity, and BDFM is the bending-extension cou-
pling coefficient of the FM beam under the direct FM effect.
These coefficients are given by

ADFM ¼ Af C11 þ
(d31)2

a33

� �
, BDFM ¼ Af

μ31d31

a33
,

DDFM ¼ If C11 þ
(d31)2

a33

� �
þ Af g31 þ

(μ31)
2

a33

� �
:

(28)

From the definition of BDFM it may be importantly noted that
the bending-extension coupling is exhibited here due to the
simultaneous consideration of piezomagnetism and flexomag-
netism effects.

The effect of SGE in increasing the bending rigidity by a
factor Af g31 must be noted. However, having the strain gradient
η111 neglected, the axial rigidity ADFM is unaffected by the SGE.

The PM and FM couplings result in a change of the
bending rigidity as seen from the expression for DDFM in
Eq. (28). The ratio of the contributions of FM and PM cou-
pling toward the bending rigidity may be expressed as

DDFM
FM

DDFM
PM

¼
Af

(μ31)
2

a33

If
(d31)2

a33

/

μ31

h� d31

� �2

: (29)

Here the inverse proportionality to geometric height indicates
the size-dependence of the FM behavior. The FM effect will

gain significance in structures of low-dimensions where the
above ratio is not negligible. From the material properties
provided in the numerical studies of Sec. IV, for μ31 ¼ 10�10

N/A, this ratio would be significant only for sub-nanoscale
dimensions.

The associated mechanical boundary conditions from
Eq. (18) for the clamped-free (C-F) beam shown in Fig. 1 are
given as

ujx1¼0 ¼ 0, ADFM du

dx1
� BDFM d2w

dx21

� �����
x1¼L

¼ 0,

wjx1¼0 ¼ 0, �DDFM d3w

dx31
þ BDFM d2u

dx21
þ F

� �����
x1¼L

¼ 0,

dw

dx1

����
x1¼0

¼ 0, �DDFM d2w

dx21
þ BDFM du

dx1

� �����
x1¼L

¼ 0:

(30)

In the above expressions, the parameter F is the point force
applied at the free-end of the cantilever beam as indicated in
Fig. 1. Solving the governing equations given in Eq. (27)
along with the boundary conditions provided in Eq. (30), the
following expressions for the mid-plane axial displacement
u(x1), the mid-plane transverse displacement w(x1), and the
magnetic potential difference Δψ induced across the thick-
ness of the beam may be derived

u(x1) ¼
F

2D
DFM

BDFM

ADFM
x1(x1 � 2L),

w(x1) ¼
F

6D
DFM

x21(x1 � 3L),

Δψ(x1) ¼ h
F

D
DFM

C11μ31

a33C11 þ (d31)2

� �
(L� x1),

(31)

where

D
DFM

¼ DDFM �
(BDFM)2

ADFM
¼ If C11 þ

(d31)2

a33

� �

þ Af g31 þ
(μ31)

2C11

a33C11 þ (d31)2

� �
:

(32)

The bending-extension coupling due to FM causing a
non-zero u(x1) may be observed from Eq. (31). Also, the
contribution of FM to the rigidity coefficients may be noted
from Eq. (28) resulting in modified mechanical responses.
Furthermore, the magnetic potential induced across the thick-
ness is also modified due to the direct FM effect.

In the above results, neglecting the PM effect we would
get the magneto-elastic response fields to be

u(x1)j(d31¼0) ¼ 0,

w(x1)j(d31¼0) ¼
F

6eDDFM
x21(x1 � 3L),

Δψ(x1) ¼ h
F

eDDFM

μ31

a33

� �
(L� x1),

(33)

244101-6 S. Sidhardh and M. C. Ray J. Appl. Phys. 124, 244101 (2018)



where

eDDFM ¼ IfC11 þ Af g31 þ
(μ31)

2

a33

� �
: (34)

Thus, a non-zero ME coupling may be noted here from the
results for the transverse displacement being modified by a
non-zero FM coefficient, and a non-zero magnetic potential
being induced by the direct FM effect. Therefore, a ME cou-
pling without the use of the PM materials may be noted from
the current study.

B. Converse effect

Having solved the magneto-elastic response for the
direct effect, we proceed with the study for a converse effect
configuration with magnetic potentials being applied at the
surfaces as illustrated in Fig. 1. Thus, the boundary condi-
tions for the magnetic potential are given by

ψ(x3 ¼ h=2) ¼ Ψ1, ψ(x3 ¼ �h=2) ¼ 0: (35)

Solving the governing equation for the magnetic variables in
Eq. (19) using the constitutive relations for B3 in Eq. (13),
definition of H3 in Eq. (3), and the boundary conditions
given above results in the following result for the potential
distribution ψ(x1, x3) across the domain

ψ ¼ �
d31

2a33

d2w

dx21
x23 �

h2

4

� �
þ
Ψ1

h
x3 þ

h

2

� �
: (36)

Thereby, the magnetic field H3 is given as

H3 ¼
d31

a33

d2w

dx21
x3 �

Ψ1

h
: (37)

The stresses σ11 and τ311 for the above magnetic field may
be written as

σ11 ¼ C11
du

dx1
� x3

d2w

dx21
C11 þ

(d31)2

a33

� �
þ
Ψ1

h
d31,

τ311 ¼ �g31
d2w

dx21
� x3

d2w

dx21

μ31d31

a33
þ
Ψ1

h
μ31:

(38)

A non-zero increment in the higher order stress τ311 is
induced by the applied magnetic potential. This response to
an applied potential is the converse flexomagnetic effect, in
line with the converse piezomagnetic effect causing an addi-
tional σ11 due to the applied magnetic potential. Following
the procedure implemented previously for direct FM effect,
we evaluate the stress resultants and thereafter derive the gov-
erning equations and the associated boundary conditions for
studying the converse effect.

The stress resultants N11, M11, and T311 for the converse
effect evaluated using the definitions in Eq. (16) and the

stresses in Eq. (38) are

N11 ¼ C11Af

du

dx1
þ d31Af

Ψ1

h
,

M11 ¼ �If
d2w

dx21
C11 þ

(d31)2

a33

� �
,

T311 ¼ �g31Af

d2w

dx21
þ
Ψ1

h
Af μ31:

(39)

The governing equations are derived to be

ACFM d2u

dx21
¼ 0, � DCFM d4w

dx41
¼ 0, (40)

where the coefficients axial rigidity ACFM and bending rigidity
DCFM of the FM under the converse FM effect are given as

ACFM ¼ C11Af , DCFM ¼ If C11 þ
(d31)2

a33

� �
þ Af g31: (41)

The effect of SGE on bending rigidity, noted in direct effect,
is also present here. However, as noted above, the contribution
of FM to DCFM is observed to be absent. Moreover, the
bending-extension coupling experienced in direct effect config-
uration is also absent here. The associated boundary conditions
for the C-F beam in the current configuration from Eq. (18) are
given by

ujx1¼0 ¼ 0, ACFM du

dx1
þ d31Af

Ψ1

h

� �����
x1¼L

¼ 0, (42a)

wjx1¼0 ¼ 0, �DCFM d3w

dx31
þ F

� �����
x1¼L

¼ 0, (42b)

dw

dx1

����
x1¼0

¼ 0, �DCFM d2w

dx21
þAf

μ31

a33

Ψ1

h

� �����
x1¼L

¼ 0: (42c)

For an applied potential difference across the thickness, a
non-zero moment produced by the flexo-magnetic coupling
may be noted in the natural boundary condition corresponding
to dw=dx1 given above in Eq. (42c). This may be referred to as
a relaxation moment due to the FM effect. Solving the govern-
ing equations given in Eq. (40) along with the boundary condi-
tions provided in Eq. (42) results in the following expressions
for the mid-plane values of the axial displacement u(x1) and
transverse displacement w(x1) of the ferromagnetic beam

u(x1) ¼ �
d31

C11

Ψ1

h
x1,

w(x1) ¼
F

6DCFM
x21(x1 � 3L)þ Af

μ31

2DCFM

Ψ1

h
x21:

(43)

Additional transverse displacement caused due to the
relaxation-moment caused by the flexomagnetic coupling
may be observed in the expressions given above. Similar to
the observations for the direct effect configuration, upon
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ignoring the PM effect, the axial displacement would be
zero. However, the magneto-elastic coupling is evident from
the expression for the transverse displacement. Thus, a con-
verse ME coupling even without the use of PM materials
can be observed from the current study. Using the above
derived result for the transverse displacement in Eq. (36), we
get the total potential distribution across the domain as

ψ ¼ �
d31

2a33

F

DCFM
(x1 � L)þ

Af μ31

(DCFM)
Ψ1

h

� �
x23 �

h2

4

� �

þ
Ψ1

h
x3 þ

h

2

� �
: (44)

The contribution of the FM to the effective bending rigidity
under the direct effect given in Eq. (32) may be written as

D
DFM

FM ¼ Af

(μ31)
2C11

a33C11 þ (d31)2
: (45)

However, as mentioned above, the contribution of FM to the
bending rigidity under the converse effect is noted to be
absent, for the current formulation. Given a33 is greater than
zero it may be shown that, DDFM

. DCFM which indicates
that the bending rigidity of the beam under a converse effect
is lower than that under direct effect. Moreover, the coupling
coefficient B� for the converse effect is equal to zero.

IV. RESULTS AND DISCUSSION

The analytical results derived above will be numerically
analyzed here for quantitatively illustrating the effect of FM
over the response of the PM nanobeam. A CoFe2O4 cantile-
ver beam is chosen for the current study, with a downward
point force of F ¼ 1 nN being applied at the free end, as
depicted in the schematic. The geometric parameters are
varied for each study and mentioned wherever necessary.
The material properties of CoFe2O4 necessary for this study
are as follows:55–57

C11 ¼ 286GPa, C44 ¼ 45:3GPa,

a33 ¼ 157� 10�6N=A2, d31 ¼ 580:3N=Am:

The material length constants in order to evaluate the SGE
constants are all chosen equal to the lattice parameter for a
crystalline structure.58 The lattice parameter for CoFe2O4

nanoparticles has been experimentally noted to vary between 8
and 9 Å with temperature.59 Thus, the length parameters are all
chosen such that l0 ¼ l1 ¼ l2 ¼ 1 nm. Furthermore, the shear
modulus μ necessary for the evaluation of the higher order
elasticity constants is considered equal to C44 given above.

The flexomagnetic coupling tensor for Mn3GaN has
been evaluated from the density functional theory calcula-
tions to be equal to 10�4 A.40 Due to lack of the sufficient lit-
erature on evaluation of this parameter, we assume that the
FM coupling Qm for CoFe2O4 is of the same order as that of
Mn3GaN. Furthermore, we deduced this tensor from the
form of coupling between the magnetization and strain gradi-
ents, as given in Ref. 40 for estimating the magnetic flux

caused by the strain gradients, using a magnetic permeability
of free space μf ¼ 4π � 10�7 N/A2.55–57 Thus, the flexomag-
netic constant μ31 is evaluated to be approximately equal to
10�10 N/A, and is used here, unless otherwise mentioned.

Given the size-dependent nature of the FM effect as
noted from Eq. (29), we study the effect of different aspect
ratios and varying dimensions for a constant aspect ratio. In
all the studies carried out here, the aspect ratios are chosen in
such a way that the beams are slender, in keeping with the
assumptions involved in applying the Euler-Bernoulli dis-
placement hypothesis.

A. Direct FM effect

Initially, we begin with a slender beam of height h ¼ 10
nm and an aspect ratio L=h ¼ 20 to study the FM effect over
the transverse displacement of the PM beam for the direct
FM effect configuration. The transverse displacements of
the PM beam considering the FM effect (wjFM=0) given in
Eq. (31), and neglecting the FM effect (wjFM¼0) given in
Eq. (A2) (in Appendix) are evaluated for different values of
μ31. The ratio of these transverse displacements is compared
for varying μ31 and presented in Fig. 2. As seen from the
figure, for low values of μ31, the ratio of the transverse dis-
placement does not change appreciably (, 0:1%) by consid-
ering the FM effect. However, the effect of the flexomagnetic
coefficient on the transverse displacement becomes significant
for μ31 � 10�7 N/A. The influence of the FM effect on the
effective bending rigidity presented analytically in Eq. (32) is
significant only for high values of the FM coefficients.

The magnetic potential induced across the thickness
by the strain-gradient coupling is also expected to increase
with the reducing geometric dimensions of the structure
[see Eq. (31)]. The effect of the size-dependent character of
the strain gradients over the FM response may be studied
by comparing the response for different geometric dimen-
sions of the nanobeam. Figure 3 compares the induced Δψ at
the free-end of the cantilever beam for different thickness
and aspect ratios with μ31 ¼ 10�10 N/A. Foremost, the

FIG. 2. Comparison of the direct FM effect over variation of the mid-plane
transverse displacement at the free-end w(L) for the C-F beam (h ¼ 10 nm,
L=h ¼ 20).
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significantly higher magnetic potentials induced in the
thinner beam with L=h ¼ 50 when compared to the thicker
beam with L=h ¼ 20 confirms the above notion. Further, the
figure indicates that, as the geometric dimensions are increased
(height being increased for a particular aspect ratio), the effect
of FM coupling over the ME response becomes weaker, as
evidenced by the reduced magnetic potential induced across
the surfaces.

These studies indicate additional coupling of the magneto-
elastic variables in the slender and low-dimensional struc-
tures. Also, with a non-zero magnetic potential being induced
upon deformation, the FM effect may be used in the develop-
ment of nanosensors.

B. Converse FM effect

In this section, numerical results due to the converse FM
effect are presented using the model derived in Sec. III B.
For all the subsequent studies, the FM coefficient is taken to
be μ31 ¼ 10�9 N/A. The mid-plane transverse displacement
for a beam with L ¼ 500 nm, and L=h ¼ 20, for a non-zero
point force applied at the free-end and a magnetic potential
Ψ1 applied at the top surface, is shown in Fig. 4. The differ-
ence in the effective bending rigidity for the beam in both
configurations (DFM and CFM) is virtually indistinguish-
able. This may be attributed to low values of μ31 thereby the
contribution of the FM effect to DDFM being negligible.
However, the ME coupling in the converse effect configura-
tion is noted by a change in transverse displacement for a
non-zero applied magnetic potential. As discussed previ-
ously, this is a result of the restoring moment induced by
the FM effect acting along with the moment caused by the
downward mechanical load. This may be observed to be
acting against the downward mechanical load, thereby reduc-
ing the transverse displacement for Ψ1 . 0 in Fig. 4. Also,
for Ψ1 , 0, the FM induces a negative moment and adds to
moment caused by the external downward force thereby
increasing the displacement of the beam.

As noted previously, for the study over the direct FM
effect, the influence of the aspect ratio on the converse FM
effect, while maintaining L ¼ 500 nm, is studied and the
results are indicated in Fig. 5. The observations made above
regarding the restoring moment by the FM effect for a posi-
tive moment are also seen by the reduced numerical value of
the displacements for Ψ1 . 0. Comparing the expressions
for transverse displacement due to applied force and converse
FM from Eq. (43), we get

wjF¼0

wj
Ψ1¼0

/�
μ31Ψ1

F

h

L
: (46)

The above comparison confirms the opposing effects of the
downward mechanical force, and a positive magnetic poten-
tial applied at the top surface over the transverse displace-
ment. Furthermore, the inverse proportionality of the FM
effect to the aspect ratio (L/h), noted in the above comparison,

FIG. 5. Variation of mid-plane transverse displacement due to converse FM
effect at the free-end w(L) with respect to aspect ratio of the C-F beam for
different Ψ1 (L ¼ 500 nm).

FIG. 3. Variation of the magnetic potential induced across the surfaces, due
to the direct FM effect, at the free-end Δψ(L) with respect to thickness of the
C-F beam for different aspect ratios.

FIG. 4. Mid-plane transverse displacement w(x1) along length of a C-F
beam for varying Ψ1 due to the converse FM effect (L ¼ 500 nm, L=h ¼ 20,
F ¼ 1 nN).

244101-9 S. Sidhardh and M. C. Ray J. Appl. Phys. 124, 244101 (2018)



is confirmed by the reduced effect of the FM for lower aspect
ratios in Fig. 5. This is evidenced by the reduced difference in
the numerical values for the passive and active transverse dis-
placements in this figure.

Finally, the converse effect of FM on the mechanical
response of the cantilever beam of varying dimensions
keeping the aspect ratio constant (L=h ¼ 20) is indicated in
Fig. 6. With the aspect ratio being maintained a constant, the
influence of the converse FM effect decreases with increasing
dimensions. This indicates the size-dependent behavior of the
FM response.

Overall, the results from this study of the converse FM
effect point to the potential of the flexomagnetism in the
development of smart structures for application as actuators.

V. CONCLUSIONS

In this paper, we have studied the strain-gradient and mag-
netic field coupling exhibited by ferroics, called the flexomag-

netic effect. The constitutive relations for this magneto-elastic
coupling of the strain gradient tensor and the magnetic field
vector have been described by the flexomagnetic tensor. The
general tensorial form of the governing equations and the
associated essential and natural boundary conditions, for the
magneto-elastic variables, have been derived from the varia-
tional principles. The ME response of a solid considering the
flexomagnetic and piezomagnetic effects may be evaluated
using these constitutive relations and solving the governing
equations with a proper choice of boundary conditions. As an
example, we have studied the ME response of a cantilever
beam to determine the effect of the flexomagnetism over the
piezomagnetic beams. The analytical expressions for the ME
response under direct and converse FM effects have been
derived here. A quantitative evaluation of these analytical
results points to the size-dependent behavior of the FM cou-
pling, which will be of significance in the nanostructures. The
potential for flexomagnetic materials in the development of
magneto-elastic smart structures without using piezomagnetic
materials has also been identified in this study. With these

observations, it has been shown that the flexomagnetic effect-
based magnetoelastic actuators and sensors may be developed
for various applications.

APPENDIX: BENDING RESPONSE OF PM BEAMS

The magneto-elastic constitutive relations of a piezomag-
netic beam, while ignoring the flexomagnetic and size-effects,
are given as

σ11 ¼ C11ϵ11 � d31H3, B3 ¼ a33H3 þ d31ϵ11: (A1)

The magnetic governing equations are the same as derived
previously and given in Eq. (19). The associated boundary
conditions for the magnetic variables corresponding to the
direct and converse PM effect studies are given in Eq. (20).
Solving Eq. (19) for these boundary conditions, the expres-
sions for magnetic potential ψ and the transverse magnetic
field H3 may be obtained for both these configurations. Using
these expressions in the above constitutive relations, the stress
resultants may be evaluated from Eq. (16). Thereby, the
mechanical governing equations may be derived and solved
for the magneto-elastic response of the piezomagnetic beam.
The ME responses due to the direct PM effect are

u(x1) ¼ 0, w(x1) ¼
F

6D
x21(x1 � 3L),

H3(x1, x3) ¼
d31

a33

F

D
x3(x1 � L),

(A2)

where

D ¼ C11 þ
(d31)2

a33

� �
If :

The responses for the PM beam due to the converse PM
effect for an applied potential, as prescribed in Eq. (35), are

u(x1) ¼ �
d31

C11

Ψ1

h
x1, w(x1) ¼

F

6D
x21(x1 � 3L),

ψ(x1, x3) ¼ �
d31

2a33

F

D
x23 �

h2

4

� �
(x1 � L)þ

Ψ1

h
x3 þ

h

2

� �
:

(A3)
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