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Abstract

Both neutrinoless double beta decay and leptogenesis require neutrinos to be Majorana fermions. A re-

lation between these two phenomena can be derived once the mechanism of neutrino mass generation is 

specified. Using the current data from the neutrino oscillations, we constrain the Majorana phases of the 

neutrino mixing matrix by minimising the effective neutrino mass in neutrinoless double beta decay. Given 

these Majorana phases at the effective neutrino mass floor, we show that it is possible to obtain a large 

enough CP asymmetry (≥ 10−8) required for adequate leptogenesis, without additional phases at high 

scale. Such scenario pushes the lower bound on M1 (the mass of the lightest of the heavy neutrinos in the 

Type-I see-saw mechanism) to a higher value compared to the usual Davidson-Ibarra bound. In particular, 

we find that M1 ≥ 1010 (109) GeV for the case of Normal (Inverted) hierarchy. We extend our analysis to 

the case when one of the heavy neutrinos decouples (two right handed neutrino models). In this case we 

find M1 ≥ 1010 (1011) GeV for the case of Normal (Inverted) hierarchy.

 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

At present the Standard Model (SM) of particle physics, which is based on the gauge group 

SU(3)C ×SU(2)L×U(1)Y , is considered to be the best candidate to explain elementary particles 
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Table 1

Global fit 3σ ranges of neutrino oscillation parameters [10].

Parameters Normal Hierarchy (NH) Inverted Hierarchy (IH)

�m2
21

10−5 eV2 6.79 − 8.01 6.79 − 8.01

|�m2
31

|
10−3 eV2 2.427 − 2.625 2.412 − 2.611

sin2 θ12 0.275 − 0.350 0.275 − 0.350

sin2 θ23 0.418 − 0.627 0.423 − 0.629

sin2 θ13 0.02045 − 0.02439 0.02068 − 0.02463

δ(◦) 125 − 392 196 − 360

and their interactions in nature. However, it doesn’t address certain issues like sub-eV masses of 

three generations of active neutrinos. Moreover, it does not explain the observed baryon asym-

metry of the Universe, measured to be nB/nγ = (6.09 ±0.06) ×10−10 [1,2]. Therefore, we need 

to go beyond the SM of particle physics to address these issues.

The current neutrino oscillation experiments [3–5] confirmed non-zero, but tiny neutrino 

masses and also mixing between different flavours. The mixing matrix, relating the flavour 

eigenstates to mass eigenstates, is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-

trix [6–8]. It is parameterized as [9]

UPMNS =

⎛

⎝

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞

⎠Uph , (1)

where Uph = diag(1, eiα1 , eiα2) and the symbols cij and sij stand for cos θij and sin θij respec-

tively. Of the three phases in UPMNS, α1, α2 are called the Majorana phases and δ is called the 

Dirac phase.

In terms of the mixing matrix UPMNS the neutrino mass matrix can be given as

mν = U†mdiagU
∗ (2)

where mdiag = diag(m1, m2, m3). Thus the neutrino mass matrix mν consists of nine parameters: 

three masses, three mixing angles and three phases. At present the oscillation experiments mea-

sure two mass square differences: namely solar (�m2
sol) and atmospheric (�m2

atm), three mixing 

angles θ23, θ12 and θ13 to a good degree of precision. Data indicate that |�m2
atm| ≫ �m2

sol. 

Without loss of generality, we can define �m2
sol = �m2

21 = m2
2 − m2

1 and �m2
atm = �m2

31 =
m2

3 − m2
1 ≃ m2

3 − m2
2 = �m2

32. Matter effects in solar neutrino oscillations require �m2
21 > 0, 

but, so far, the sign of �m2
31 is not determined. The case of �m2

31 > 0 is called Normal hierarchy

(NH) and that of �m2
31 < 0 is called Inverted hierarchy (IH). For NH the smallest neutrino mass 

(mmin) is m1, whereas it is m3 for IH. The 3σ ranges of the oscillation parameters are given in 

Table 1. At present the value of Dirac phase δ is quite ambiguous. T2K experiment [11] prefers 

a value δ ≈ −π/2 whereas NOvA experiment [12] prefers δ ≈ 0. The best fit values for global 

fits is δ ≈ −3π/4 for NH and δ ≈ −π/2 for IH [10].

The oscillation experiments do not give us any hint about the nature of neutrino being either 

Dirac or Majorana. However, the neutrinoless double beta decay (0νββ) experiments [13] can 

explore the Majorana nature of neutrinos. At present, the best lower limit on half-life of the 

0νββ using 76Ge is T 0ν
1/2 > 8.0 × 1025 yrs at 90% C.L. from GERDA [14]. For 136Xe isotope, the 
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derived lower limits on half-life from KamLAND-Zen experiment are T 0ν
1/2 > 1.6 ×1026 yrs [15]. 

The proposed sensitivity of the planned nEXO experiment is T 0ν
1/2 ≈ 6.6 × 1027 yrs [16]. The 

above mentioned lower limits on T 0ν
1/2 lead to an upper limit on effective neutrino mass |mee|

about 10−2 eV. In future these experiments will increase their sensitivities down to the floor of 

|mee| i.e. |mee|min, obtained by minimising |mee| with respect to the oscillation parameters.

Since Majorana neutrinos violate lepton number by two units they can also lead to leptogene-

sis. Therefore, within a given neutrino mass model, we can expect a correlation between the two 

lepton number violating processes, namely 0νββ-decay and leptogenesis. The phenomenon of 

0νββ-decay depends on the effective neutrino mass: |mee| which involves only the low energy 

neutrino parameters, while the leptogenesis involves low energy oscillation parameters as well as 

unknown high energy parameters. The relation between 0νββ-decay and leptogenesis has been 

well studied in the literature for |mee| > |mee|min. See for instance [17–28]. In this work, we con-

sider the following issues: Suppose the Majorana phases of UPMNS take the values which lead to 

the worst case scenario for 0νββ-decay, i.e. |mee| takes the value |mee|min. In such a situation, is 

it possible to get sufficient CP asymmetry for adequate leptogenesis, without additional phases 

from the high energy scale? If the answer is affirmative, then how does the bound on M1 (the 

mass of the lightest of the heavy neutrinos in Type-I see-saw mechanism) in such a scenario, 

compare with the usual Davidson-Ibarra bound [29]? We also consider the question of whether 

this bound depends on the hierarchy of the light neutrino masses and also on the number of heavy 

neutrinos.

Here we first minimise |mee| as a function of mmin and find the ranges of values of Ma-

jorana phases α1 and α2 which yield |mee|min. With these phases as inputs, we compute the 

CP-asymmetries ǫl
1 (l = e, μ, τ ) responsible for leptogenesis [17–19,30–45] within a frame work 

of type-I seesaw mechanism [46–54]. The latter requires only the addition of three right handed 

neutrinos Ni (i = 1, 2, 3) to the SM. Since these particles are electrically neutral and have no 

charges under the SM gauge group, they can have bare Majorana masses Mi (i = 1, 2, 3). As a 

result the CP-violating out-of-equilibrium decay of the lightest of these heavy neutrinos (N1) in 

the early Universe could generate a net lepton asymmetry, which is then converted to observed 

baryon asymmetry of the Universe by electroweak sphalerons [31,55]. We obtain a lower bound 

on M1 (mass of N1) at the effective neutrino mass floor, both for NH and for IH in the scenario 

with three right handed neutrinos as well as in the scenario of two right handed neutrinos, by im-

posing the constraint ǫl
1 ≥ 10−8, which can give rise adequate leptogenesis. We see that the lower 

bound on M1 is pushed to a higher value compared to the usual Davidson-Ibarra bound [29] due 

to restrictive choice of Majorana phases at the effective neutrino mass floor.

The paper is organised as follows. In the section 2, we minimise the effective neutrino mass 

parameter |mee| as a function of mmin and obtain the allowed ranges of Majorana phases for 

various different values of mmin. We then obtain the flavour dependent CP-asymmetry parameters 

in section 3 corresponding to the set of low energy parameters which minimise |mee|. In section 4, 

we repeat this calculation for the case where there are only two heavy right handed neutrinos 

(which corresponds to setting mmin = 0). We present our conclusion in the last section 5.

2. Effective Majorana mass and its minimisation

The most promising way to find the Majorana nature of neutrinos is through 0νββ decay 

experiments. The 0νββ decay rate is proportional to the effective Majorana mass |mee|, which is 

given by,
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|mee| = |m1 cos2 θ12 cos2 θ13 + m2 cos2 θ13 sin2 θ12e
−2iα1 + m3 sin2 θ13e

−2i(α2−δ)|. (3)

As we see from Eq. (3), the value of effective Majorana mass depends on light neutrino masses 

m1, m2, m3, mixing angles θ12, θ13 and three CP-phases δ, α1 and α2. Given the minimum mass 

(mmin), the other two neutrino masses can be defined in terms of the �m2
21 and the �m2

31. 

For NH, m1 is mmin and m2 =
√

m2
min + �m2

21, m3 =
√

m2
min + �m2

31. For IH, m3 is mmin

and �m2
31 is negative. The expressions for the other two masses are m1 =

√

m2
min + |�m2

31|, 

m2 =
√

m2
min + |�m2

31| + �m2
21. At present, both the mixing angles, θ12 and θ13, are strongly 

constrained by the neutrino oscillation data, while the three phases, which are responsible for 

CP-violation [56–59], are essentially unconstrained.

First, we consider the dependence of the minimum of |mee| on mmin qualitatively based on 

Eq. (3). Here we take the ranges of the three phases to be (−π, +π). We need to consider the 

cases of NH and IH separately. For NH, we consider four different mass sub-ranges for mmin =
m1.

i). m1, (10−2 − 1) eV: In this case m1 ≃ m2 ≃ m3. The first term in Eq. (3) is positive and has 

the largest magnitude. To obtain the minimum of |mee| the second and third term have to be 

negative. This leads to the conditions α1 = ±π/2 and α2 = δ ± π/2.

ii). m1, (10−3 − 10−2) eV: Here m2 � 0.01 eV and m3 ≃ 0.05 eV. Given sin2 θ12 ≈ 0.35 and 

sin2 θ13 ≈ 0.02, the |mee| is dominated by the second term and the third term is negligibly 

small. Hence the minimum of |mee| occurs for α1 ≈ ±π/2, and depends very weakly on α2

and δ. In this case, the magnitudes of m1 and m2 are comparable and hence the complete 

cancellations between the first two terms of Eq. (3) is possible. In such a situation, it is 

possible for |mee| → 0.

iii). m1, (10−4 − 10−3) eV: Here again the second term of Eq. (3) has the largest magnitude 

with the first and third having similar magnitudes. Requiring both these to have sign op-

posite to that of the second term imposes the conditions α1 = ±π/2 and α2 ≈ δ ± π . The 

minimisation procedure leads to a lower bound on |mee| ≃ 10−3 eV.

iv). m1, (10−6 − 10−4) eV: This case is similar to the third case except that the first term is 

negligibly small. The minimisation condition is equivalent to the requirement that the terms 

two and three must have opposite sign. This occurs when α2 = α1 + δ − (2n + 1)π/2 for 

appropriate integer values of n. Here also we obtain a lower bound on |mee| ≃ 10−3 eV.

Turning to the case of IH, we consider the following two sub-ranges for mmin = m3.

i). m3, (10−6 − 10−2) eV: This case similar to first case of NH. Hence the conditions on α1

and α2 are same.

ii). m3, (10−2 − 1) eV: The smallness of m3 and sin2 θ13 make the third term in Eq. (3) com-

pletely negligible and the minimization of |mee| completely independent of α2 and δ. Re-

quiring a cancellation between the first two terms, we get α1 = ±π/2.

To verify the qualitative deductions made above, we calculated the minimum of |mee| as a 

function of mmin through simulations. For illustration, we kept the Dirac phase fixed at δ =
−π/2. As shown above, the minimization of |mee| fixes (α2 − δ). Choosing a different value 

of δ merely changes α2, on which there is no experimental constraint at the moment. We varied 

mmin within its sub-range, the neutrino oscillation parameters within their 3σ ranges and the two 
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Fig. 1. Minimum of |mee| as a function of mmin in case of normal hierarchy (Blue) and inverted hierarchy (Purple). The 

Pink shaded region defined by mmin > 0.12 eV is ruled out by PLANCK data [2]. (For interpretation of the colours in 

the figure(s), the reader is referred to the web version of this article.)

Majorana phases α1 and α2 in (−π , +π). We randomly chose a set of values of the neutrino 

parameters within their respective ranges and calculated |mee|. We repeated this procedure 107

times and picked the minimum value of |mee| and the corresponding values of α1 and α2. The 

variation of |mee| with respect to mmin as shown in Fig. 1, where |mee| = 10−3 (10−2) eV for 

NH (IH) as mmin → 0. We note that |mee| → 0 for the case of NH if mmin is in the sub-range 

(10−3 − 10−2) eV [60–62].

The four panels of Fig. 2 show the values of α1 and α2 which minimise |mee| for the four 

sub-ranges of mmin in the case of NH. The two panels of Fig. 3 shows similar results in the case 

of IH. The relation between α1 and α2, in all the six panels match those expected from qualitative 

discussion. The values of Majorana phases, α1 and α2, obtained by minimising |mee| are plotted 

in Fig. 4 as a function of mmin. We note that the values of α1 and α2 in Fig. 4 are consistent with 

those in Fig. 2 (NH) and Fig. 3 (IH). Had we chosen a value of δ other than −π/2, the value of 

α1 is unaffected and the value of α2 would be shifted by (δ + π/2).

3. Flavoured CP-asymmetry with three right handed neutrinos

In the previous section we derived the constraints on α1 and α2 as a function of mmin by 

minimizing |mee|. We utilize these values of the phases in the present section to compute the CP-

asymmetry parameter ǫl
1 of leptogenesis. In Type-I seesaw mechanism, the SM is extended by the 

inclusion of three right handed neutrinos, which have no gauge charges. These neutrinos can have 

bare Majorana masses. They can also couple to left handed lepton doublet and the Higgs doublet 

through yukawa couplings. These couplings give rise to a Dirac mass matrix of the neutrinos on 

spontaneous symmetry breaking. In this extended model, the leptonic mass terms are

Lmass = −
(

1

2
(NiR)c(MR)ijNjR +

v
√

2
ℓLi(Ye)ijℓRj +

v
√

2
ℓLi(Yν)ijNjR + h.c.

)

, (4)

where v is the vacuum expectation value of the Higgs. In Eq. (4) i, j run from 1 to 3, ℓLi

represents the SU(2)L doublets, ℓRi and NjR are right handed charged lepton and neutrino fields 

respectively. The seesaw mechanism leads to a light neutrino mass matrix, mν = −mT
DM−1

R mD , 

where mD = Yνv/
√

2 is the Dirac mass matrix and MR is the mass matrix of right handed 

neutrinos. Without loss of generality we consider MR to be diagonal and in this basis mD contains 

the rest of the physical parameters that appear in mν .

5
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Fig. 2. The allowed values of α1 and α2, when |mee| attains its minimum in the ranges: a). mmin = (10−2 − 1) eV, b). 

mmin = (10−3 − 10−2) eV, c). mmin = (10−4 − 10−3) eV, d). mmin = (10−6 − 10−4) eV. The hierarchy is assumed to 

be NH. Dirac phase δ is fixed at −π/2.

Fig. 3. The allowed values of α1 and α2, when |mee| attains its minimum in the ranges: a). mmin = (10−2 − 1) eV. b). 

mmin = (10−6 − 10−2) eV. The hierarchy is assumed to be IH. Dirac phase δ is fixed at −π/2.

The Majorana mass of the heavy neutrinos Ni (i = 1, 2, 3) can give rise to lepton number 

violation. Therefore, the CP-violating out-of-equilibrium decay of Ni to ℓ H and ℓ̄H † in the 

early Universe can give rise to a net lepton asymmetry. This lepton asymmetry is then converted 

to an observed baryon asymmetry via electroweak sphalerons. We assume that the masses of the 
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Fig. 4. Values of Majorana phases obtained by minimising |mee |: α1 (Green) and α2 (Blue) versus mmin for a). Normal 

hierarchy, b). Inverted hierarchy. Dirac phase δ is fixed at −π/2.

right handed neutrinos have the pattern M1 ≪ M2 ≪ M3, so that the lepton asymmetry arises 

purely due to the decay of the lightest right handed neutrino N1.

The baryon asymmetry in a comoving volume, generated by the decay of N1, can be given 

as

YB = Cǫl
1κ ×

n
eq
N1

(T → ∞)

s
, (5)

where C ∼ O(1) is the sphaleron conversion factor and κ = Ŵ/H(T ), where Ŵ is total decay 

rate of lightest right handed neutrino and H(T ) = (2π2/45)g∗T 3 is the Hubble expansion pa-

rameter. The factor (n
eq
N1

/s)(T → ∞) = 135ζ(3)/(4π4g∗) with g∗ ≈ 100 being the relativistic

degrees of freedom above electroweak phase transition. In a weak wash out regime where κ ≈ 1, 

one gets YB ∼ ǫl
1/g∗ ≈ 10−10. This implies that ǫl

1 ∼ 10−8. On the other hand, in a strong wash 

out regime κ < 1 and can be obtained by solving the required Boltzmann equations [38]. For 

a typical value κ ∼ 0.01, one gets YB ∼ κǫl
1/g∗ ≈ 10−10. This implies that ǫl

1 ∼ 10−6 which 

is two orders of magnitude larger than the value of ǫl
1 in case of weak wash out regime. In 

the following we will be interested to obtain a lower bound on M1 at the effective neutrino 

mass floor (where the Majorana phases α1 and α2 are obtained by minimising |mee|) irrespec-

tive of weak or strong wash out regime. Therefore, it is sufficient for our purpose to consider 

the CP-violating parameter ǫl
1 > 10−8 which can give rise adequate leptogenesis. We note that 

the use of Boltzmann equations only yields a precise value of κ . However, it does not im-

prove the lower bound on M1. See for instance [38]. Hence the lower bound obtained on M1

in case of weak wash out regime by demanding adequate baryogenesis should be valid in case 

of strong wash out regime too. In order to obtain the lower bound on M1 in what follows we 

use Casas-Ibarra parameterization [63] for the Yukawa matrix connecting light and heavy neu-

trinos.

For a given flavour l, the neutrino yukawa coupling matrix can be written in Casas-Ibarra 

parameterization [63] as,

(Yν)i l =
1

v

√

MiRij
√

mjU
∗
l j . (6)

In Eq. (6) mj , Mi, (j, i = 1, 2, 3) are mass eigenvalues of the light and heavy Majorana neutrinos 

respectively and U is the PMNS matrix. The matrix R in Eq. (6) is a complex orthogonal matrix. 

It is parameterized in terms of three complex angles zi (i = 1, 2, 3) as

7
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R=

⎛

⎝

cos z2 cos z3 cos z2 sin z3 sin z2

− cos z3 sin z1 sin z2− cos z1 sin z3 cos z1 cos z3− sin z1 sin z2 sin z3 cos z2 sin z1

− cos z1 cos z3 sin z2+ sin z1 sin z3 − cos z3 sin z1− cos z1 sin z2 sin z3 cos z1 cos z2

⎞

⎠ .

(7)

The CP-asymmetry generated in a particular flavour l (l = e, μ, τ), is given by

ǫl
1 = −

3M1

16πv2

Im

(

∑

jk

m
1/2
j m

3/2
k U∗

ljUlkR1jR1k

)

∑

j

mj |R1j |2
, (8)

where mj and mk are appropriate light neutrino mass eigen value.

In terms of Casas-Ibarra parameterization, Eq. (8) can be written as [64]

ǫl
1 = −

3M1

16πv2

1

m1|R11|2 + m2|R12|2 + m3|R13|2

× {m2
1 Im[U∗

l1Ul1R11R11] + m
1/2
1 m

3/2
2 Im[U∗

l1Ul2R11R12]

+m
1/2
1 m

3/2
3 Im[U∗

l1Ul3R11R13] + m
1/2
2 m

3/2
1 Im[U∗

l2Ul1R12R11]

+m2
2 Im[U∗

l2Ul2R12R12] + m
1/2
2 m

3/2
3 Im[U∗

l2Ul3R12R13]

+m
1/2
3 m

3/2
1 Im[U∗

l3Ul1R13R11] + m
1/2
3 m

3/2
2 Im[U∗

l3Ul2R13R12]

+m2
3 Im[U∗

l3Ul3R13R13]}. (9)

We consider the following question: Is it possible to get large enough ǫl
1, with no phases in the 

matrix R and all the CP violation coming purely through the phases in the PMNS matrix, so 

that adequate leptogenesis occurs? A related question we consider is: If the phases in the PMNS 

matrix take values which minimize |mee|, then what effect do such phases have on ǫl
1 and on the 

lower bound on M1? To explore these questions, we set the phases in R to be zero and assume 

zi to be real. Hence R becomes a real orthogonal matrix. Only the decays of the lightest right 

handed neutrino creates CP-asymmetry. Therefore only the elements of the first row of R enter 

in the expression ǫl
1. In our parameterization of R, these elements depend only on sinz2 and 

sin z3, i.e., ǫl
1 is independent of sin z1. For simplicity, we assume sinz2 = sin z3 = sin z. It must 

be noted that the total CP-asymmetry, ǫ1 = ǫe
1 + ǫ

μ
1 + ǫτ

1 = 0 when the matrix R is real. Under 

the assumptions we made, the expression in Eq. (9) simplifies to

ǫl
1 = −

3M1

16πv2

1

m1|R11|2 + m2|R12|2 + m3|R13|2

× {
√

m1m2 (m2 − m1) Im[U∗
l1Ul2]R11R12

+
√

m1m3 (m3 − m1) Im[U∗
l1Ul3]R11R13

+
√

m2m3 (m3 − m2) Im[U∗
l2Ul3]R12R13}. (10)

This expression contains various low energy parameters, the mass of the lightest right handed 

neutrino, the Higgs vacuum expectation value and an extra free parameter sinz which comes 

from high energy scale. Here we study the dependence of CP-asymmetry on the parameters 

mmin and sin z using the latest oscillation data at the floor of |mee|.

8
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Fig. 5. Allowed points in the plane of sin z versus mmin when |mee| is minimised, which give rise to ǫ1 > 10−8 ǫl . The 

left column shows the figures for l = e(Fig.a), μ(Fig.c), τ(Fig.e), where we assumed the hierarchy to be NH and the 

right column shows the figures for l = e(Fig.b), μ(Fig.d), τ(Fig.f ), where we assumed the hierarchy to be IH. The red 

points correspond to M1 = 109 GeV and the green points correspond to M1 = 1010 GeV. In generating these figures, we 

set sin z2=sin z3=sin z and fixed δ = −π/2.

Below, we present the results of our numerical study. As in section 2, we use the best-fit values 

for the mass-squared differences and the mixing angles. For the purpose of illustration, the value 

of δ is fixed to be −π/2 and the values of α1 and α2 are chosen to be those which minimize |mee|. 
We consider only those values of mmin and sin z for which ǫ1 � 10−8. We take into account the 

Davidson-Ibarra bound [29] by considering the values of M1 ≥ 108 GeV. Our results are shown 

in Fig. 5.

9
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Fig. 6. Values of Majorana phases obtained by maximising |mee|: α1 (Green) and α2 (Blue) versus mmin: a). Normal 

hierarchy, b). Inverted hierarchy. Dirac phase δ is fixed at −π/2.

We considered three values of M1 = 108, 109, 1010 GeV. When M1 = 108 GeV, all values 

of ǫl
1 (l = e, μ.τ) are less than 10−8 independent of mmin and sin z, both for NH and IH. For 

M1 = 109 GeV, the asymmetries ǫ
μ
1 , ǫτ

1 become larger than 10−8 only for IH and that too for 

a single point sin z = 1 and mmin ≃ 10−3 eV. For M1 = 1010 GeV, a large set of values of sin z

and mmin are allowed. For NH, all three asymmetries have values in the range 10−8 to 10−7 for 

the mmin range (10−6, 0.1) eV and sin z range (10−3, 1). In the case of IH, ǫl
1 > 10−8 is possible 

only if sin z > 0.2 and mmin in the range (10−4, 0.2) eV. Hence adequate leptogenesis requires 

the lightest heavy neutrino mass M1 to be � 1010 GeV when the oscillation parameters are at 

the floor of |mee|. From Eq. (10) we see that ǫl
1 → 0 if the light neutrino masses are almost 

degenerate. Hence there are no allowed points for mmin ≥ 0.2 eV for both NH and IH.

Note that the lower bound M1 obtained here is two orders of magnitude larger than Davidson-

Ibarra bound [29]. We believe this occurs due to the following two reasons:

• The restricted choice of Majorana phases α1 and α2 obtained from the minimization of 

|mee|.
• The choice of R is to be real.

One way to lower this bound is to consider R to be complex [29]. However here we consider 

alternative values of α1 and α2 which does not minimise |mee|. As an example we maximise 

|mee| and found the values of α1 and α2. These values of α1 and α2 are plotted in Fig. 6 as 

function of mmin. The CP asymmetry parameter ǫl
1 is computed using these values of α1 and α2

while all the other parameters are varied in the ranges mentioned previously. In Fig. 7 we plot the 

allowed values of sin z versus mmin which satisfy the constraint |ǫl
1| > 10−8. From this figure, we 

find the allowed value of M1 = 109 GeV for both NH and IH. This lower value is applicable only 

if sin z < 0.25 and mmin < 10−3 eV in the case of NH. On the other hand for IH, the lower value 

of M1 = 109 GeV requires that sin z = 1 and mmin ≃ 10−3 eV, which is similar to the situation 

when |mee| is minimized.

In presenting our numerical results, we have fixed the value of δ = −π/2. From the expres-

sions of |mee| and ǫe
1 , it is easy to see that they depend on α1 and (α2 − δ). For a different input 

value of δ, we can obtain the same values for |mee| and ǫe
1 by changing the value of α2 appropri-

ately. However, the other two CP asymmetries, ǫ
μ
1 and ǫτ

1 , have a more complicated dependence 

of δ, α1 and α2. Hence, it is worth studying how the limits of ǫl
1 and on M1 change if a different 

10
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Fig. 7. Allowed points in the plane of sin z versus mmin when |mee| is maximised, which give rise to ǫ1 > 10−8 ǫl . The 

left column shows the figures for l = e(Fig.a), μ(Fig.c), τ(Fig.e), where we assumed the hierarchy to be NH and the 

right column shows the figures for l = e(Fig.b), μ(Fig.d), τ(Fig.f ), where we assumed the hierarchy to be IH. The red 

points correspond to M1 = 109 GeV and the green points correspond to M1 = 1010 GeV. In generating these figures, we 

set sin z2=sin z3=sin z and fixed δ = −π/2.

value of δ is used as an input. In computing the limits on M1 for different values of δ, we have 

fixed the values of α1 and α2 such that |mee| is minimized.

We present our results for the input values of δ = −0.1π in Fig. 8, where sin z is plotted 

against mmin. As in the case of the earlier figures, the red points are the allowed solutions for 

M1 = 109 GeV and the green points are the allowed solutions for M1 = 1010 GeV. We note 

that the plots in Fig. 8 are quite similar to those in Fig. 5. Very similar features are also seen 

in Fig. 9 where the input value of δ = −0.9π . Thus, we see that the CP asymmetries related 

11
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Fig. 8. Allowed points in the plane of sin z versus mmin when |mee| is minimised, which give rise to ǫ1 > 10−8 ǫl . The 

left column shows the figures for l = e(Fig.a), μ(Fig.c), τ(Fig.e), where we assumed the hierarchy to be NH and the 

right column shows the figures for l = e(Fig.b), μ(Fig.d), τ(Fig.f ), where we assumed the hierarchy to be IH. The red 

points correspond to M1 = 109 GeV and the green points correspond to M1 = 1010 GeV. In generating these figures, we 

set sin z2=sin z3=sin z and fixed δ = −0.1π .

to leptogenesis are not sensitively dependent on the value of δ. By adjusting the values of the 

Majorana phases α1 and α2, it is possible to get adequate CP asymmetry for M1 � 109 GeV, for 

any value of δ.

Here, we also briefly discuss the effect of the approximation sinz2 = sin z3 = sin z that was 

made in generating the numerical results. The CP asymmetries depend on the three elements 

of the first row of the R matrix, R11, R12 and R13, each of which can vary in the range (0,1), 

12
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Fig. 9. Allowed points in the plane of sin z versus mmin when |mee| is minimised, which give rise to ǫ1 > 10−8 ǫl . The 

left column shows the figures for l = e(Fig.a), μ(Fig.c), τ(Fig.e), where we assumed the hierarchy to be NH and the 

right column shows the figures for l = e(Fig.b), μ(Fig.d), τ(Fig.f ), where we assumed the hierarchy to be IH. The red 

points correspond to M1 = 109 GeV and the green points correspond to M1 = 1010 GeV. In generating these figures, we 

set sin z2=sin z3=sin z and fixed δ = −0.9π .

subject to the orthogonality constraint. With the above approximation, we have R11 = cos2 z, 

R12 = cos z sin z and R13 = sin z. When sin z � 1, we see that all the three R1j � 1. In the limit 

sin z ≪ 1, we have R11 ≃ 1 and R12, R13 ≪ 1. On the other hand, when sinz ≃ 1, we have 

R11, R12 ≪ 1 and R13 ≃ 1. Thus, despite making the simplifying assumption of setting two 

angles to be the same, we are able to explore most of the allowed values of R11, R12 and R13. 

Hence, our results are not dependent on this simplifying approximation.

13
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4. Flavoured CP-asymmetry with two right handed neutrinos

It is possible to generate two independent mass square differences with only two non zero 

light neutrino masses, i.e., we can set mmin ≡ 0. This scenario can be achieved in the limit the 

heaviest right handed neutrino decouples. We implement this decoupling by setting the third row 

of the yukawa coupling matrix in Eq. (6) to be zero. Since one of the light neutrino masses is 

zero, one of the Majorana phases becomes unphysical and can be set equal to zero. Hence, the 

CP-asymmetries depend only on two phases δ and α1. We consider the cases of NH and IH 

separately.

4.1. NH (m1 = 0)

In this case, the effective Majorana mass is

|mee| = m2 cos2 θ13 sin2 θ12e
−2iα1 + m3 sin2 θ13e

2iδ. (11)

As before, we need a cancellation between two terms to minimize |mee|, which leads to the 

condition α1 + δ = (2n + 1)π/2. Because of the wide difference in the values of sin2 θ12 and 

sin2 θ13 the cancellation is never complete and the minimum of |mee| in this case is of order 

10−3 eV, as illustrated in Fig. 1.

The condition that the third row of the matrix Yν should consist of zeros leads to the following 

form of R,

R =

⎛

⎝

0 cos z sin z

0 − sin z cos z

1 0 0

⎞

⎠ , (12)

where we assume z to be a real angle, as we did in three right handed neutrino case. The expres-

sion for the CP-asymmetry is

ǫl
1 = −

3M1

16πv2

1

m2|R12|2 + m3|R13|2
√

m2m3 (m3 − m2) [Im(U∗
l2Ul3)]R12R13. (13)

In Fig. 10 (left panel) we have plotted ǫl
1 as a function of sin z. We inputted M1 = 1010 GeV, 

δ = −π/2 and α1 ≃ −π , with the Majorana phase being obtained by minimizing |mee|. For this 

value of M1, |ǫl
1| ∼ 10−8 is possible. Lower values M1 do not give rise to adequate leptogenesis. 

We also checked if smaller values of M1 will be allowed if the Majorana phase is fixed by 

maximizing |mee|. In Fig. 10 (right panel), we find that a value of M1 = 1010 GeV is required 

to obtain ǫl
1 ≃ 10−8 for the values of the phases, δ = −π/2 and α1 ≃ −π/2. Since ǫl

1 ∝ M1 for 

M1 < 1010 GeV we cannot get ǫl
1 > 10−8.

4.2. IH (m3 = 0)

In this case, the effective Majorana mass is

|mee| = m1 cos2 θ12 cos2 θ13 + m2 cos2 θ13 sin2 θ12 e−2iα1 . (14)

As before, we need a cancellation between two terms to minimize |mee|, which leads to 

the condition α1 = (2n + 1)π/2. An exact cancellation is not possible because m2 � m1 and 

cos2 θ12 ≃ 2 sin2 θ12. We are led to a lower limit on |mee| of the order 10−2 eV, as illustrated in 

Fig. 1.
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Fig. 10. The CP-asymmetry corresponding to different flavours of leptons ǫe
1

, ǫ
μ
1

, ǫτ
1

. The inputs used are M1 = 1010

GeV, δ = −π/2 and the hierarchy is NH. (a) The value of the Majorana phase is α1 ≃ −π , which minimizes |mee|. (b). 

The value of the Majorana phase is α1 ≃ −π/2, which maximizes |mee|.

Fig. 11. The CP-asymmetry corresponding to different flavours of leptons ǫe
1

, ǫ
μ
1

, ǫτ
1

. The inputs used are δ = −π/2 and 

the hierarchy is IH. (a) The value of the Majorana phase is α1 ≃ −π , which minimizes |mee| and M1 = 1010 GeV. (b). 

The value of the Majorana phase is α1 ≃ −π/2, which maximizes |mee| and M1 = 1012 GeV.

Once again we impose the condition that the third row of the matrix Yν should consist of 

zeros. This leads to the following form of R,

R =

⎛

⎝

cos z sin z 0

− sin z cos z 0

0 0 1

⎞

⎠ , (15)

where we again assume z to be a real angle. The expression for the CP-asymmetry is

ǫl
1 = −

3M1

16πv2

1

m1|R11|2 + m2|R12|2
√

m1m2 (m2 − m1) [Im(U∗
l1Ul2)]R11R12. (16)

As in the case of NH, we input M1 = 1010 GeV and δ = −π/2. The value of α1 is taken to be 

≃ π/2, which is the smallest value that minimizes |mee|. In Fig. 11(left panel), we have plotted ǫl
1

as a function of sin z. Here again, a value of M1 = 1010 GeV is needed to obtain |ǫl
1| ∼ 10−8. We 

also checked the parameter space for ǫl
1 ≥ 10−8 by maximizing |mee|. In Fig. 11(right panel), we 

need M1 = 1012 GeV to obtain ǫl
1 ≃ 10−8, for δ = −π/2 and α1 ≃ −π . Further smaller values 

of M1 cannot give rise to adequate leptogenesis. Thus, in the case of mmin → 0, the lower limit 

on M1, needed to generate adequate leptogenesis, rises to 1010 GeV.
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5. Conclusions

In this work, we studied the correlation between the low energy lepton number violating pro-

cess 0νββ-decay and the high energy lepton number violating flavour dependent leptogenesis, 

using oscillation parameters at the effective neutrino mass floor, which is obtained by minimizing 

|mee| with respect to mmin. This is done with the motivation of exploring the question: What ef-

fect do Majorana phases have on the CP asymmetries of the leptogenesis, if they take the values 

that lead to the worst case scenario for 0νββ-decay? Our calculation is done in a type-I see-

saw framework where three heavy right handed neutrinos are added to the SM. We expressed 

the Yukawa matrix connecting light and heavy neutrinos through Casas-Ibarra parameterization, 

which involves the light and heavy neutrino masses, the low energy neutrino oscillation param-

eters involved in PMNS matrix and an unknown orthogonal matrix R, usually accommodating 

the high energy phases. In general, the orthogonal matrix R is complex and can give rise to addi-

tional CP violation. We considered the consequences of setting the high energy phases to be zero 

and assuming this R matrix to be real. To keep the algebra simple, we parameterized R in terms 

of a single angle z. We then explored the possibility of obtaining adequate leptogenesis purely 

from the phases of PMNS matrix when they take the values which can minimise |mee|. Due to the 

restrictive choice of Majorana phases, we show that the lower bound on M1 is pushed to a higher 

side in comparison to the usual Davidson-Ibarra bound. In particular, a right handed neutrino 

mass of 1010 GeV is needed to obtain adequate leptogenesis in case of NH. For IH, M1 = 109

GeV is possible provided m3 ≃ 10−3 eV and sin z = 1. However, if we choose other Majorana 

phases in the PMNS matrix which not necessarily minimise |mee|, then adequate leptogenesis 

purely through the PMNS matrix is possible for M1 = 109 GeV for both NH and IH. We verified 

it by choosing a set of Majorana phases which are obtained by maximizing |mee|.
We also considered the case where the lightest neutrino mass is zero which corresponds to the 

case where one of the heavy right handed neutrino decouples. Here again, we explore obtaining 

the necessary CP asymmetry purely from the phases in the PMNS matrix, by choosing the high 

scale mixing matrix R to be real. When the Majorana phases are fixed by the minimization of 

|mee|, the lower bound on M1 is found to be 1010 (1011) GeV for NH (IH). On the other hand, if 

the Majorana phases are fixed by the maximization of |mee|, the lower limit on M1 is found to 

be 1010 (1012) GeV for NH (IH). Thus our results show that the lower bound on M1 in two right 

handed neutrino models is larger than the case of three right handed neutrinos. The most likely 

reason for the increased lower limit on M1 is the presence of only one Majorana phase in the 

case of two right handed neutrinos, as opposed to two Majorana phases in the case of three right 

handed neutrinos.
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Appendix A

In this appendix, we discuss the form of the complex rotation matrix R in the Casas-Ibarra 

parametrization, in the limit one of the light neutrino masses becomes zero and one of the heavy 

neutrino states decouples. The yukawa matrix (Yν)il in Eq. (6), in general, is a 3 × 3 matrix. If 
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the heavy neutrino state M3 decouples, the elements of the 3th row of this matrix vanish. From 

Eq. (6), we obtain

(Yν)3l =
√

M3

v

[

R31
√

m1(U
†)1l + R32

√
m2(U

†)2l + R33
√

m3(U
†)3l

]

. (17)

Suppose the light neutrino mass m1 is set to zero, as we should for vanishing mmin in the case of 

NH. Then condition that the LHS of the above equation should vanish gives rise to the constraints 

R32 = 0 = R33. Orthogonality of R implies that R31 = 1 and R11 = 0 = R21. The four remaining 

elements of R, R12, R13, R22 and R23, form a 2 × 2 complex orthogonal matrix, defined by one 

complex angle z. In the case of vanishing mmin for IH, we need to set m3 = 0. It is easy to see 

from Eq. (17) that the decoupling of M3 leads to the condition R33 = 1 which makes the third 

row and the third column of R trivial. The upper 2 ×2 block of R is a complex orthogonal matrix, 

once again parametrized by a single complex angle z.

The above argument can be extended to a general case. Suppose we want the heavy eigenstate 

with mass Mi to decouple and we also want the light mass mj to be set to zero. The requirement 

that the ith row of (Yν)il should vanish leads to the condition Rij = 1 which means that the 

ith row and j th column of R are trivial. The remaining four elements of R then form a 2 × 2

complex orthogonal matrix parametrized by a single complex angle z.
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