
Finding, Hitting and Packing Cycles in

Subexponential Time on Unit Disk Graphs∗†

Fedor V. Fomin1, Daniel Lokshtanov2, Fahad Panolan3,

Saket Saurabh4, and Meirav Zehavi5

1 Department of Informatics, University of Bergen, Bergen, Norway

fomin@ii.uib.no

2 Department of Informatics, University of Bergen, Bergen, Norway

daniello@ii.uib.no

3 Department of Informatics, University of Bergen, Bergen, Norway

fahad.panolan@ii.uib.no

4 Department of Informatics, University of Bergen, Bergen, Norway; and

The Institute of Mathematical Sciences, HBNI, Chennai, India

saket@imsc.res.in

5 Department of Informatics, University of Bergen, Bergen, Norway

meirav.zehavi@ii.uib.no

Abstract

We give algorithms with running time 2O(
√

k log k) · nO(1) for the following problems. Given an

n-vertex unit disk graph G and an integer k, decide whether G contains

a path on exactly/at least k vertices,

a cycle on exactly k vertices,

a cycle on at least k vertices,

a feedback vertex set of size at most k, and

a set of k pairwise vertex-disjoint cycles.

For the first three problems, no subexponential time parameterized algorithms were previously

known. For the remaining two problems, our algorithms significantly outperform the previously

best known parameterized algorithms that run in time 2O(k0.75 log k) · nO(1). Our algorithms are

based on a new kind of tree decompositions of unit disk graphs where the separators can have

size up to kO(1) and there exists a solution that crosses every separator at most O(
√

k) times.

The running times of our algorithms are optimal up to the log k factor in the exponent, assuming

the Exponential Time Hypothesis.
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1 Introduction

Unit disk graphs are the intersection graphs of unit circles in the plane. That is, given

n-unit circles in the plane, we have a graph G where each vertex corresponds to a circle

such that there is an edge between two vertices when the corresponding circles intersect.

Unit disk graphs form one of the most well studied graph classes in computational geometry

because of their use in modelling optimal facility location [40] and broadcast networks such

as wireless, ad-hoc and sensor networks [25, 33, 42]. These applications have led to an

extensive study of NP-complete problems on unit disk graphs in the realms of computational

complexity and approximation algorithms. We refer the reader to [10, 18, 29] and the citations

therein for these studies. However, these problems remain hitherto unexplored in the light of

parameterized complexity with exceptions that are few and far between [1, 8, 23, 32, 38].

In this paper we consider the following basic problems about finding, hitting and packing

cycles on unit disk graphs from the viewpoint of parameterized algorithms. For a given graph

G and integer k,

Exact k-Cycle asks whether G contains a cycle on exactly k vertices,

Longest Cycle asks whether G contains a cycle on at least k vertices,

Feedback Vertex Set asks whether G contains a vertex set S of size k such that the

graph G \ S is acyclic, and

Cycle Packing asks whether G contains a set of k pairwise vertex-disjoint cycles.

Along the way, we also study Longest Path (decide whether G contains a path on exactly/at

least k vertices) and Subgraph Isomorphism (SI). In SI, given connected graphs G and

H on n and k vertices, respectively, the goal is to decide whether there exists a subgraph

in G that is isomorphic to H. We also assume that a unit disk graph is given by a set of n

points in R
2 and there is a graph where vertices correspond to the points and there is an

edge between two vertices if and only if the distance between the two points is at most 2.

In parameterized complexity each of these problems serves as a testbed for development

of fundamental algorithmic techniques such as color-coding [2], the polynomial method

[34, 35, 41, 4], matroid based techniques [20] for Longest Path and Longest Cycle, and

kernelization techniques for Feedback Vertex Set [39]. We refer to [12] for an extensive

overview of the literature on parameterized algorithms for these problems. For example,

the fastest known algorithms solving Longest Path are the 1.66k · nO(1) time randomized

algorithm of Björklund et al. [4], and the 2.597k · nO(1) time deterministic algorithm of

Zehavi [43]. Moreover, unless the Exponential Time Hypothesis (ETH) of Impagliazzo,

Paturi and Zane [30] fails, none of the problems above can be solved in time 2o(k) · nO(1) [30].

While all these problems remain NP-complete on planar graphs, substantially faster –

subexponential – parameterized algorithms are known on planar graphs. In particular, by

combining the bidimensionality theory of Demaine et al. [13] with efficient algorithms on

graphs of bounded treewidth [17], Longest Path, Longest Cycle, Feedback Vertex

Set and Cycle Packing are solvable in time 2O(
√

k)nO(1) on planar graphs. The paramet-

erized subexponential “tractability” of such problems can be extended to graphs excluding

some fixed graph as a minor [15]. The bidimensionality arguments cannot be applied to

Exact k-Cycle and this was one of the motivations for developing the new pattern-covering

technique, which is used to give a randomized algorithm for Exact k-Cycle running in time

2O(
√

k log2 k)nO(1) on planar and apex-minor-free graphs [19]. The bidimensionality theory

was also used to design (efficient) polynomial time approximation scheme ((E)PTAS) [14, 22]

and polynomial kernelization [24] on planar graphs.

It would be interesting to find generic properties of problems, similar to the theory of bidi-

mensionality for planar-graph problems, that could guarantee the existence of subexponential



F. V. Fomin, D. Lokshatnov, F. Panolan, S. Saurabh, and M. Zehavi 65:3

parameterized algorithms or (E)PTAS on geometric classes of graphs, such as unit disk

graphs. The theory of (E)PTAS on geometric classes of graphs is extremely well developed

and several methods have been devised for this purpose. This includes methods such as

shifting techniques, geometric sampling and bidimensionality theory [29, 27, 26, 28, 11, 37, 23].

However, we are still very far from a satisfactory understanding of the “subexponential”

phenomena for problems on geometric graphs. We know that some problems such as In-

dependent Set and Dominating Set, which are solvable in time 2O(
√

k)nO(1) on planar

graphs, are W[1]-hard on unit disk graphs and thus the existence of an algorithm of running

time f(k) · nO(1) is highly unlikely for any function f [36]. The existence of a vertex-linear

kernel for some problems on unit disk graphs such as Vertex Cover [9] or Connected

Vertex Cover [32] combined with an appropriate separation theorem [1, 8, 38] yields

a parameterized subexponential algorithm. A subset of the authors of this paper used a

different approach based on bidimensionality theory to obtain subexponential algorithms

of running time 2O(k0.75 log k) · nO(1) on unit disk graphs for Feedback Vertex Set and

Cycle Packing in [23]. No parameterized subexponential algorithms on unit disk graphs

for Longest Path, Longest Cycle, and Exact k-Cycle were known prior to our work.

Our Results. We design subexponential parameterized algorithms, with running time

2O(
√

k log k) · nO(1), for Exact k-Cycle, Longest Cycle, Longest Path, Feedback

Vertex Set and Cycle Packing on unit disk graphs and unit square graphs. It is also

possible to show by known NP-hardness reductions for problems on unit disk graphs [10]

that an algorithm of running time 2o(
√

k) · nO(1) for any of our problems on unit disk graphs

would imply that ETH fails. Hence our algorithms are asymptotically almost tight. Along

the way we also design Turing kernels (in fact, many to one) for Exact k-Cycle, Longest

Cycle, Longest Path and SI. That is, we give a polynomial time algorithm that given

an instance of Exact k-Cycle or Longest Cycle or Longest Path or SI, produces

polynomially many reduced instances of size polynomial in k such that the input instance

is a Yes-instance if and only if one of the reduced instances is. As a byproduct of this

we obtain a 2O(k log k) · nO(1) time algorithm for SI when G is a unit disk graph and H

is an arbitrary connected graph. It is noteworthy to remark that a simple disjoint union

trick implies that Exact k-Cycle, Longest Cycle, Longest Path, and SI do not

admit a polynomial kernel on unit disk graphs [6]. Finally, we note that we do not use

Turing kernels to design our subexponential time algorithms except for Exact k-Cycle.

The subexponential time parameterized algorithm for Exact k-Cycle also uses a “double

layering” of Baker’s technique [3].

All our subexponential time algorithms have the following theme in common. If an

input n-vertex unit disk graph G contains a clique of size poly(k) (such a clique can be

found in polynomial time), then we have a trivial Yes-instance or No-instance, depending

on the problem. Otherwise, we show that the unit disk graph G in a Yes-instance of

the problem admits, sometimes after a polynomial time preprocessing, a specific type of

(ω, ∆, τ)-decomposition, where the meaning of ω, ∆ and τ is as follows. The vertex set of G is

partitioned into cliques C1, . . . , Cd, each of size at most ω = kO(1). We also require that after

contracting each of the cliques Ci to a single vertex, the maximum vertex degree ∆ of the

obtained graph G̃ is O(1), while the treewidth τ of G̃ is O(
√

k). Moreover, the corresponding

tree decomposition of G̃ can be constructed efficiently. We use the tree decomposition of G̃

to construct a tree decomposition of G by “uncontracting” each of the contracted cliques Ci.

While the width of the obtained tree decomposition of G can be of order ω · τ = kO(1), we

show that each of our parameterized problems can be solved in time f(∆) · ωf(∆)·τ . Here

we use dynamic programming over the constructed tree decomposition of G, however there

ICALP 2017
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is a twist from the usual way of designing such algorithms. This part of the algorithm is

problem-specific – in order to obtain the claimed running time, we have to establish a very

specific property for each of the problems. Roughly speaking, the desired property of a

problem is that it always admits an optimal solution such that for every pair of adjacent

bags X, Y of the tree decomposition of G, the number of edges of this solution “crossing” a

cut between X and Y is O(
√

k). We remark that the above decomposition is only given in

the introduction to present our ideas for all the algorithms in a unified way.

In this paper we restrict our attention to solving Exact k-Cycle and Feedback

Vertex Set on unit disk graphs. We refer to the full version of the paper for all the proofs

and the results.

2 Preliminaries

For a positive integer t, we use [t] as a shorthand for {1, 2, . . . , t}. Given a function f : A→ B

and a subset A′ ⊆ A, let f |A′ denote the restriction of the function f to the domain A′. For a

function f : A→ B and B′ ⊆ B, f−1(B′) denote the set {a ∈ A : f(a) ∈ B′}. For t, t′ ∈ N,

a set [t]× [t′], i ∈ [t] and j ∈ [t′] we use (∗, j) and (i, ∗) to denote the sets {(i′, j) : i′ ∈ [t]}
and {(i, j′) : j′ ∈ [t′]}, respectively. For a set U , we use 2U to denote the power set of U .

We use standard notation and terminology from the book of Diestel [16] for graph-

related terms which are not explicitly defined here. Given a graph G, V (G) and E(G)

denote its vertex-set and edge-set, respectively. When the graph G is clear from context,

we denote n = |V (G)| and m = |E(G)|. Given U ⊆ V (G), we let G[U ] denote the

subgraph of G induced by U , and we let G \ U denote the graph G[V (G) \ U ]. For an edge

subset E, we use V (E) to denote the set of endpoints of edges in E and G[E] to denote

the graph (V (E), E). For X, Y ⊆ V (G), we use E(X) and E(X, Y ) to denote the edge

sets {{u, v} ∈ E(G) : u, v ∈ X} and {{u, v} ∈ E(G) : u ∈ X, v ∈ Y }, respectively.

Moreover, we let N(U) denote the open neighborhood of G. In case U = {v}, we denote

N(v) = N(U). Given an edge e = {u, v} ∈ E(G), we use G/e to denote the graph

obtained from G by contracting the edge e. In other words, G/e denotes the graph on

the vertex-set (V (G) \ {u, v}) ∪ {x{u,v}}, where x{u,v} is a new vertex, and the edge-set

E(G) = E(G[V (G) \ {u, v}]) ∪ {{x{u,v}, w} | w ∈ N({u, v})}. A graph H is called a minor

of G, if H can be obtained from G by a sequence of edge deletion, edge contraction and

vertex deletion. Given k ∈ N, we let Kk denote the complete graph on k vertices. For a set

X, we use K[X] to denote the complete graph on X. Given a, b ∈ N, an a× b grid is a graph

on a · b vertices, vi,j for (i, j) ∈ [a] × [b], such that for all i ∈ [a − 1] and j ∈ [b], it holds

that vi,j and vi+1,j are neighbors, and for all i ∈ [a] and j ∈ [b− 1], it holds that vi,j and

vi,j+1 are neighbors. For ease of presentation, for any function f : D → [a]× [b], i ∈ [a] and

j ∈ [b], we use f−1(i, j), f−1(∗, j), and f−1(i, ∗) to denote the sets f−1((i, j)), f−1((∗, j)),

and f−1((i, ∗)), respectively.

We also need the standard notions of pathwidth, treewidth and nice tree decomposition.

These definitions are given in the appendix for easy perusal (also in the appended version).

However, we use slightly different but equivalent definition of path decomposition.

◮ Definition 1. A path decomposition of a graph G is a sequence P = (X1, X2, . . . , Xℓ),

where each Xi ⊆ V (G) is called a bag, that satisfies the following conditions.⋃
i∈[ℓ] Xi = V (G).

For every edge {u, v} ∈ E(G) there exists i ∈ [ℓ] such that {u, v} ⊆ Xi.

For every vertex v ∈ V (G), if v ∈ Xi∩Xj for some i ≤ j, then v ∈ Xr for all r ∈ {i, . . . , j}.
The width of P is maxi∈[ℓ] |Xi| − 1.

The pathwidth of G, pw(G), is the minimum width of a path decomposition of G.
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◮ Proposition 2 ([5, 7]). Given a graph G and an integer k, in time 2O(k) · n, we can either

decide that tw(G) > k or output a tree decomposition of G of width 5k. Furthermore, given a

graph G and a tree decomposition T of G, a nice tree decomposition T ′ of the same width as

T can be computed in linear time.

Given a set of geometric objects, O, we say that a graph G represents O if each vertex

in V (G) represents a distinct geometric object in O, and every geometric object in O

is represented by a distinct vertex in V (G). In this case, we abuse notation and write

V (G) = O. The intersection graph of O is a graph G that represent O and satisfies

E(G) = {{u, v} : u, v ∈ O, u ∩ v 6= ∅}. Let P = {p1 = (x1, y1), p2 = (x2, y2), . . . , pn =

(xn, yn)} be a set of points in the Euclidean plane. In the unit disk graph model, for

every i ∈ [n], we let di denote the disk of radius 1 whose centre is pi. Accordingly, we

denote D = {d1, d2, . . . , dn}. Then, the unit disk graph of D is the intersection graph

of D. Alternatively, the unit disk graph of D is the geometric graph of G such that

E(G) = {{pi = (xi, yi), pj = (xj , yj)} | pi, pj ∈ D, i 6= j,
√

(xi − xj)2 + (yi − yj)2 ≤ 2}.

3 Clique-Grid Graphs

In this section, we introduce a family of “grid-like” graphs, called clique-grid graphs, that

is tailored to fit our techniques. Given a unit disk graph G, we extract the properties of

G that we would like to exploit, and show that they can be captured by an appropriate

clique-grid graph. Let us begin by giving the definition of a clique-grid graph. Roughly

speaking, a graph G is a clique-grid graph if each of its vertices can be embedded into a

single cell of a grid (where multiple vertices can be embedded into the same cell), ensuring

that the subgraph induced by each cell is a clique, and that each cell can interact (via edges

incident to its vertices) only with cells at “distance” at most 2. Formally,

◮ Definition 3 (clique-grid graph). A graph G is a clique-grid graph if there exists a function

f : V (G)→ [t]× [t′], for some t, t′ ∈ N, such that the following conditions are satisfied.

1. For all (i, j) ∈ [t]× [t′], it holds that f−1(i, j) is a clique.

2. For all {u, v} ∈ E(G), it holds that if f(u) = (i, j) and f(v) = (i′, j′) then |i − i′| ≤ 2

and |j − j′| ≤ 2.

Such a function f is a representation of G.

We note that a notion similar to clique-grid graph was also used by Ito and Kadoshita [31].

For the sake of clarity, we say that a pair (i, j) ∈ [t] × [t′] is a cell. The following lemma

states that a unit disk graph is a clique-grid graph, and its proof is deferred to [21].

◮ Lemma 4. Let D be a set of points in the Euclidean plane, and let G be the unit disk

graph of D. Then, a representation f of G can be computed in polynomial time.

Due to Lemma 4, throughout this paper, we assume that along with a input unit disk

graph G, we are given a representation f of G. We conclude this section by introducing the

definition of an ℓ-NCTD which is useful for doing our dynamic programming algorithms.

◮ Definition 5. A tree decomposition T = (T, β) of a clique-grid graph G with representation

f is a nice ℓ-clique tree decomposition, or simply an ℓ-NCTD, if for the root r of T , it holds

that β(r) = ∅, and for each node v ∈ V (T ), it holds that

There exist at most ℓ cells, (i1, j1), . . . , (iℓ, jℓ), such that β(v) =
⋃ℓ

t=1 f−1(it, jt), and

The node v is of one of the following types.

ICALP 2017
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Leaf: v is a leaf in T and β(v) = ∅.
Forget: v has exactly one child u, and there exists a cell (i, j) ∈ [t] × [t′] such that

f−1(i, j) ⊆ β(u) and β(v) = β(u) \ f−1(i, j).

Introduce: v has exactly one child u, and there exists a cell (i, j) ∈ [t]× [t′] such that

f−1(i, j) ⊆ β(v) and β(v) \ f−1(i, j) = β(u) \ f−1(i, j).

Join: v has exactly two children, u and w, and β(v) = β(u) = β(w).

A nice ℓ-clique path decomposition, or simply an ℓ-NCPD, is an ℓ-NCTD where T is a

path. In this context, for convenience, we use the notation referring to a sequence presented

in Section 2.

4 Turing Kernels

In this section we give an overview of a Turing kernel (actually a compression) for SI. The

reason for stating our result in this way is, that this is how we use it in the next section to

design a subexponential algorithm for Exact k-Cycle. We refer to the appended version

for a Turing kernel for SI and Longest Cycle. More precisely, we show the following.

◮ Theorem 6. Let (G, f, H, k) be an instance of SI on unit disk graphs, then in polynomial

time, one can output a set I of instances of SI on clique-grid graphs such that (G, f, H, k)

is a Yes-instance if and only if at least one instance in I is a Yes-instance, and for all

(Ĝ, f̂ : V (Ĝ)→ [t̂]× [t̂′], Ĥ, k̂) ∈ I, Ĝ is either an induced subgraph of G or K
k̂
, t̂, t̂′ ≤ 2k̂,

|f̂−1(i, j)| < k̂ for any (i, j) ∈ [t̂]× [t̂′], Ĥ = H, k̂ = k, |V (Ĝ)| = O(k3), and |E(Ĝ)| = O(k4).

Proof Sketch. First, suppose that there exists a cell (i, j) ∈ [t]× [t′] such that |f−1(i, j)| ≥ k,

then by Definition 3, G[f−1(i, j)] is a clique on at least k vertices. In particular, the pattern

H is a subgraph of G[f−1(i, j)], and therefore it is also a subgraph of G. Thus, in this

case, we conclude the proof by setting I to be the set that contains only one instance,

(Kk, f̂ : V (Kk)→ [1]× [1], H, k). From now on, suppose that for all cells (i, j) ∈ [t]× [t′], it

holds that |f−1(i, j)| < k.

Now, our kernelization algorithm works as follows. For every (p, q) ∈ [t]× [t′], it computes

Gp,q = G[
⋃

p≤i<min{p+2k,t+1}
q≤j<min{q+2k,t′+1}

f−1(i, j)].

Accordingly, it computes fp,q : V (Gp,q)→ [min{2k, t}]× [min{2k, t′}] as follows. For every

v ∈ V (Gp,q), compute fp,q(v) = (i− p + 1, j − q + 1) where (i, j) = f(v). Note that for all

(i, j) ∈ [min{2k, t}]× [min{2k, t′}], it holds that f−1
p,q (i, j) = f−1(i + p− 1, j + q − 1). Thus,

since f is a representation of G, it holds that fp,q is a representation of Gp,q. Finally, our

kernelization algorithm outputs I = {Ip,q = (Gp,q, fp,q, H, k) : (p, q) ∈ [t]× [t′]}.
To conclude the proof, it remains to show that (G, f, H, k) is a Yes-instance if and only if

at least one instance in I is a Yes-instance. Since for all (Gp,q, fp,q, H, k) ∈ I, it holds that

Gp,q is an induced subgraph of G, we have that if (G, f, H, k) is a No-instance, then every

instance in I is No-instance as well. Next, suppose that (G, f, H, k) is a Yes-instance. Then,

let H ′ be a subgraph of G that is isomorhpic to H. In order to complete the proof, we introduce

a notion of ℓ-stretched. We say that H ′ is ℓ-stretched if there exist cells (i, j), (i′, j′) ∈ [t]× [t′]
such that the following conditions are satisfied: (i) |i−i′| ≥ 2ℓ or |j−j′| ≥ 2ℓ (or both); and (b)

V (H ′) ∩ f−1(i, j) 6= ∅ and V (H ′) ∩ f−1(i′, j′) 6= ∅. One can show (see the appended version)

that for any subgraph H ′ of G that is isomorphic to H, it holds that H ′ is not 2k-stretched.

Using this claim we can conclude. Denote imin = min{i ∈ [t] : (
⋃

j∈[t′] f−1(i, j))∩V (H ′) 6= ∅},



F. V. Fomin, D. Lokshatnov, F. Panolan, S. Saurabh, and M. Zehavi 65:7

imax = max{i ∈ [t] : (
⋃

j∈[t′] f−1(i, j))∩V (H ′) 6= ∅}, jmin = min{j ∈ [t′] : (
⋃

i∈[t] f−1(i, j))∩
V (H ′) 6= ∅} and jmax = max{j ∈ [t′] : (

⋃
i∈[t] f−1(i, j))∩V (H ′) 6= ∅}. From the above claim,

it holds that both imax − imin < 2k and jmax − jmin < 2k. Therefore, H ′ is a subgraph of

Gimin,jmin
, which implies that Ip,q is a Yes-instance. ◭

5 Exact k-Cycle

In this section we prove the following theorem.

◮ Theorem 7. Exact k-Cycle on unit disk graphs can be solved in 2O(
√

k log k)nO(1) time.

By Theorem 6, we have seen that SI admits a polynomial sized Turing kernel. Hence to

give an algorithm of running time 2O(
√

k log k)|V (G)|O(1), we can restrict to instances returned

by Theorem 6. More precisely, because of Theorem 6, we can assume that the input to our

algorithm is (G, f : V (G)→ [t]× [t′], k) where G is a clique-grid graph with a representation

f , |f−1(i, j)| < k for all (i, j) ∈ [t] × [t′], and t, t′ ≤ 2k. Without loss of generality we can

assume that f is a function from V (G) to [2k]× [2k], because [t]× [t′] ⊆ [2k]× [2k].

Given an instance (G, f : V (G)→ [2k]× [2k], k), the algorithm applies a method inspired

by Baker’s technique [3] and obtains a family, F, of 2O(
√

k log k) instances of Exact k-Cycle.

The family F has following properties.

1. In each of these instances the input graph is an induced subgraph of G and has size kO(1).

2. The input (G, f : V (G)→ [2k]× [2k], k) is a Yes-instance if and only if there exists an

instance (H, f∗ : V (H)→ [2k]× [2k], k) ∈ F which is a Yes-instance.

3. More over, for any instance (H, f∗ : V (H)→ [2k]× [2k], k) ∈ F, H has a nice 7
√

k-clique

path decomposition (7
√

k-NCPD).

We will call the family F satisfying the above properties as good family. Let (H, f∗ : V (H)→
[2k] × [2k], k) be an instance of F. Let P = (X1, . . . , Xq) be a 7

√
k-NCPD of H. We first

prove that if there is a cycle of length k in H, then there is a cycle C of length k in H

such that for any two distinct cells (i, j) and (i′, j′) of f , the number of edges with one end

point in (i, j) and other in (i′, j′) is at most 4. Let C be such a cycle in H. Then using the

property of C we get the following important property.

For any i ∈ [q], the number of edges of V (C) with one end point in Xi and other in⋃
i<j≤q Xj is in O(

√
k).

The above mentioned property allows us to design a dynamic programming (DP) algorithm

over 7
√

k-NCPD, P, for Exact k-Cycle in time 2O(
√

k log k). Now we are ready to give

formal details about the algorithm. As explained before, we assume that the number of

vertices in the input graph is bounded by kO(1).

◮ Lemma 8. Let (G, f : V (G)→ [2k]× [2k], k) be an instance of Exact k-Cycle, where

G is a clique-grid graph with representation f , |f−1(i, j)| < k for all (i, j) ∈ [2k]× [2k] and

|V (G)| = kO(1). Given (G, f : V (G)→ [2k]× [2k], k), there is an algorithm running in time

2O(
√

k log k) that outputs a good family F.

Proof. Let C be a k length cycle in G. First we define a column of the 2k× 2k grid. For any

j ∈ [2k] the set of cells {(i, j) : i ∈ [2k]} is called a column. There are 2k columns for the

2k × 2k grid. We partition 2k columns of the 2k × 2k grid with k blocks of two consecutive

columns and label them from the set of labels [
√

k]. That is, both columns 2i− 1 and 2i,
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where i ∈ [k], are labelled with i mod
√

k. Then by pigeon hole principle there is a label

ℓ ∈ {1, 2, . . . ,
√

k} such that the number of vertices from V (C) which are in columns labelled

ℓ is at most
√

k. As |V (G)| ≤ kO(1), the number of vertices of G in columns labelled ℓ is at

most kO(1). We guess the vertices of V (C) which are in the columns labelled ℓ. The number of

potential guesses is bounded by kO(
√

k). Let Y be the set of guessed vertices of V (C) which are

in the columns labelled by ℓ. Notice that |Y | ≤
√

k. Then we delete all the vertices in columns

labelled ℓ, except the vertices of Y . Let S be the set of deleted vertices. By the property 2

of clique-grid graph, G \ (S ∪ Y ) is a disjoint union of clique-grid graphs each of which is

represented by a function with at most 2
√

k columns. That is, let G1 = G[
⋃2(ℓ−1)

j=1 f−1(∗, j)],

and Gi+1 = G[
⋃min{i·2ℓ+2

√
k,2k}

j=i·2ℓ+1 f−1(∗, j)] for all i ∈ {1, . . . , ⌈
√

k⌉}. Notice that Gi is clique-

grid graph with representation fi : V (Gi) → [2k] × [2
√

k] defined as, fi(u) = (r, j), when

f(u) = (r, (i−1)2ℓ+j). By the property 2 of clique-grid graph, G\(S∪Y ) = G1⊎. . .⊎G⌈
√

k⌉+1.

◮ Claim 1. G \ S has a nice 7
√

k-clique path decomposition (7
√

k-NCPD).

Proof. First, for each i ∈ {1, . . . , ⌈
√

k⌉+ 1}, we will define a path decomposition of Gi (in

the next paragraph) such that each bag is a union of at most 6
√

k many cells of fi. As

G \ (S ∪ Y ) = G1 ⊎ . . . ⊎ G⌈
√

k⌉−1, and |Y | ≤
√

k, by adding Y to each bag of all path

decompositions we can get a required nice 7
√

k-clique path decomposition for G \ S.

Now, for each Gi, we define a path decomposition Pi = (Xi,1, Xi,2, . . . Xi,2k−2) where

Xi,j = f−1
i (j, ∗) ∪ f−1

i (j + 1, ∗) ∪ f−1
i (j + 2, ∗). We claim that Pi is a path decomposition of

Gi. Notice that
⋃k−1

j=1 Xi,j = f−1
i (∗, ∗) = V (Gi). By property 2 of clique-grid graph, we have

that for each edge {u, v} ∈ E(G), there exists j ∈ [2k − 2] such that {u, v} ∈ Xi,j . For each

u ∈ V (G), u is contained in at most three bags and these bags are consecutive in the sequence

(Xi,1, Xi,2, . . . Xi,2k−2). Hence Pi is a path decomposition of Gi. Since Xi,j = f−1
i (j, ∗) ∪

f−1
i (j + 1, ∗) ∪ f−1

i (j + 2, ∗), number of columns in fi is at most 2
√

k and each cell of fi is a

cell of f , each Xi,j is a union of 6
√

k many cells of f . Since G \ (S ∪Y ) = G1 ⊎ . . .⊎G⌈
√

k⌉+1,

the sequence P ′ = (X1,1, . . . X1,2k−2, X2,1, . . . X2,2k−2, . . . , X⌈
√

k⌉−1,1, . . . X⌈
√

k⌉−1,2k−2) is a

path decomposition of G \ (S ∪ Y ). More over, the vertices of each bag is a union of vertices

from at most 6
√

k cells of f . Also, since |Y | ≤
√

k, the sequence P = (X1,1 ∪ Y, . . . X1,k−2 ∪
Y, . . . X⌈

√
k⌉−1,k−2 ∪Y ) obtained by adding Y to each bag of P ′ we get a path decomposition

of G \ S. More over, the vertices of each bag in P is a union of vertices from at most 7
√

k

cells of f . We can turn the path decomposition P to a 7
√

k-NCPD by an algorithm similar

to the one mentioned in Proposition 2. ◭

The algorithm constructs a family F as follows. For each ℓ ∈ {1, . . . , ⌈
√

k⌉} and for two

subsets of vertices S and Y such that S ∪ Y is a set of vertices in the columns labelled ℓ

and |Y | ≤
√

k, our algorithm includes an instance (G \ S, f |V (G)\S , k) in F. The number of

choices of S and Y is bounded by 2O(
√

k log k) and thus the size of F is bounded by 2O(
√

k log k).

We claim that F is indeed a good family. Let C be a cycle of length k in G. Then, there is an

ℓ ∈ {1, . . . , ⌈
√

k⌉} such that at most
√

k vertices from V (C) are in the columns labelled by ℓ.

Let S′ be the set of vertices in the columns labelled by ℓ. Let Y = S′ ∩V (C) and S = S′ \Y .

The instance (G \ S, f |V (G)\S , k) in F is a Yes instance. This concludes the proof. ◭

Now we can assume that we are solving Exact k-Cycle on (H, f, k), where (H, f, k) ∈ F

(here we rename the function f |V (H) with f for ease of presentation). Now we prove that if

there is a cycle of length k in H, then there is a cycle C of length k in H such that for any

two cells (i, j) and (i′, j′) of f , the number of edges of E(C) with one end point in (i, j) and

other (i′, j′) is at most 5.
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•
•
ur

ur′

•
•
vr

vr′

•
•

•
•

ur

ur′

vr

vr′

Figure 1 Illustration of Lemma 9. Figure on the left is the cycle C = [urvr]Q1[u
r

′ v
r

′ ]Q2 and the

one on the right is the cycle C′ = [uru
r

′ ]
←−

Q1[vrv
r

′ ]Q2.

◮ Lemma 9. Let (H, f : V (H) → [2k] × [2k], k) be a Yes instance of Exact k-Cycle.

Then there is a cycle C of length k in H such that for any two distinct cells (i, j) and (i′, j′)
of f , the number of edges of E(C) with one end point in (i, j) and other (i′, j′) is at most 5.

Proof. Let C be a k length cycle such that the number edges of E(C) whose end points

are in different cells is minimized. We claim that for any two disjoint cells (i, j) and

(i′, j′), the number of edges of E(C) with one end point in (i, j) and other (i′, j′) is

at most 5. Suppose not. Then there exist (i, j) and (i′, j′) such that the number of

edges of E(C) with one end point in (i, j) and other in (i′, j′) is at least 6. Let C =

P1[u1v1]P2[u2v2]P3[u3v3]P4[u4v4]P5[u5v5]P6[u6v6] where for each {ur, vr}, r ∈ [6], one end

point is in the cell (i, j) and other in the cell (i′j′), and each subpath Pℓ, ℓ ∈ [6], can be

empty too. Since C is a cycle, at least 3 edges from {{ur, vr} : i ∈ [6]} form a matching. Let

{ur1
, vr1
}, {ur2

, vr2
} and {ur3

, vr3
} be a matching of size 3, where {r1, r2, r3} ⊆ [6]. Then,

by pigeon hole principle there exist r, r′ ∈ {r1, r2, r3} such that either ur, ur′ ∈ f−1(i, j) or

ur, ur′ ∈ f−1(i′, j′). Without loss of generality assume that ur, ur′ ∈ f−1(i, j) (otherwise

we rename cell (i, j) with (i′, j′) and vice versa). That is, C = [urvr]Q1[ur′vr′ ]Q2 such that

ur, ur′ ∈ f−1(i, j) and vr, vr′ ∈ f−1(i′, j′). Then, since f−1(i, j) and f−1(i′, j′) are cliques,

C ′ = [urur′ ]
←−
Q1[vrvr′ ]Q2 is a k length cycle in G, such that the number edges of E(C ′)

whose end points are in different cells is less than that of E(C), which is contradiction to our

assumption. See Fig. 1 for an illustration of C and C ′. This completes the proof. ◭

Next we design a DP algorithm that finds a cycle of length k, if it exists, satisfying

properties of Lemma 9.

◮ Lemma 10. Let (H, f : V (H)→ [2k]× [2k], k) ∈ F be an instance of Exact k-Cycle.

and P be a 7
√

k-NCPD of H. Then, given (H, f : V (H) → [2k] × [2k], k) and P, there is

an algorithm A which runs in time 2O(
√

k log k), and outputs Yes, if there is a cycle C in H

such that for any two distinct cells (i, j) and (i′, j′) of f , the number of edges with one end

point in (i, j) and other (i′, j′) is at most 5. Otherwise algorithm A will output No.

Proof Sketch. Algorithm A is a DP algorithm over the 7
√

k-NCPD P = (X1, . . . Xq) of H.

For any ℓ ∈ [q], we define Hℓ be the induced subgraph H[
⋃

i≤ℓ Xi] of H. Define C to be the

set of k-length cycles in H such that for any C ∈ C and two disjoint cells (i, j) and (i′, j′) of

f , the number of edges of E(C) with one end point in (i, j) and other (i′, j′) is at most 5. Let

C ∈ C. Since P is a 7
√

k-NCPD and the fact that for any two distinct cells (i, j) and (i′, j′)
of f , the number of edges of C with one end point in (i, j) and other (i′, j′) is at most 5, we

have that for any bag Xℓ of P, the number of vertices of V (C) ∩Xℓ which has a neighbour

in V (H) \Xℓ is bounded by O(
√

k). This allows us to keep only 2O(
√

k log k) states in the DP

algorithm. Fix any ℓ ∈ [q] and define CL the set of paths of C (or the cycle C itself) when

we restrict C to Hℓ. That is CL = Hℓ[E(C)]. Let ĈL = {{u, v} | there is a u-v path in CL}.
Notice that

⋃
P ∈ĈL

P is the set of vertices of degree 0 or 1 in CL and
⋃

P ∈ĈL

P ⊆ Xℓ. Since
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Xℓ is a union of vertices from at most 7
√

k many cells of f and for any two distinct cells

(i, j) and (i′, j′) of f , the number of edges of E(C) with one end point in (i, j) and other

(i′, j′) is at most 5, and by property 2 of the clique-grid graph, we have that the cardinality

of
⋃

P ∈ĈL

P is at most 5 · 24 · 7
√

k = 840
√

k. In our DP algorithm we will have state indexed

by (ℓ, ĈL, |E(CL)|) which will be set to 1. Formally, for any ℓ ∈ [q], k′ ∈ [k] and a family

Z of vertex disjoint sets of size at most 2 of Xℓ with the property that the cardinality of⋃
Z∈Z Z is at most 840

√
k, we will have a DP table entry A[ℓ,Z, k′]. For each ℓ ∈ [q], we

maintain the following correctness invariant.

Correctness Invariants: (i) For every C ∈ C, let CL = Hℓ[E(C)]. For every C ∈ C, let

ĈL = {{u, v} | there is a connected component P in CL and P is a u-v path as well}. Then

A[ℓ, ĈL, |E(CL)|] = 1, (ii) for any family Z of vertex disjoint sets of size at most 2 of Xℓ with

0 < |⋃Z∈Z Z| ≤ 840
√

k, k′ ∈ [k], and A[ℓ,Z, k′] = 1, there is a set Q of |Z| vertex disjoint

paths in Hℓ where the end points of each path are specified by a set in Z and |E(Q)| = k′,
and (iii) if A[ℓ, ∅, k] = 1, then there is a cycle of length k in Hℓ.

The correctness of the our algorithm will follow from the correctness invariant. We fill

the DP table entries similar to the way it is done for dynamic programming algorithms on

graphs of bounded treewidth. That is, we fill the table entries by considering various cases

for bags (introduce and forget) and using the previously computed DP table entries. A

complete detailed proof is provided in the appended version. ◭

Theorem 7 follows from Theorem 6 and Lemmata 8, 9, and 10.

6 Feedback Vertex Set

In this section, we show that Feedback Vertex Set (FVS) admits a subexponential-time

parameterized algorithm. More precisely, we prove the following.

◮ Theorem 11. FVS on unit disk graphs can be solved in time 2O(
√

k log k)nO(1).

For an algorithm for FVS and other problems such as Cycle Packing, we need more

compact representations of clique-grid graphs. In the next section we introduce these notions.

6.1 The Cell Graph of a Clique-Grid Graph

We introduce two compact representations of clique-grid graphs. By examining these

representations, we are able to infer information on the structure of clique-grid graphs that

are also unit disk graphs.

◮ Definition 12 (backbone). Given a clique-grid graph G with representation f : V (G)→
[t]× [t′], an induced subgraph H of G is a backbone for (G, f) if for any two distinct cells

(i, j), (i′, j′) ∈ [t] × [t′] for which there exist u ∈ f−1(i, j) and v ∈ f−1(i′, j′) such that

{u, v} ∈ E(G), there also exist u′ ∈ f−1(i, j) and v′ ∈ f−1(i′, j′) such that {u′, v′} ∈ E(H).

If no induced subgraph of H is a backbone for (G, f), then H is a minimal backbone for

(G, f).

First, we bound the maximum degree of a minimal backbone.

◮ Lemma 13. Let G be a clique-grid graph with representation f , and let H be a minimal

backbone for (G, f). Then, for all (i, j) ∈ [t] × [t′], it holds that |f−1(i, j) ∩ V (H)| ≤ 24.

Furthermore, the maximum degree of H is at most 599.
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Proof. By Condition 2 in Definition 3, we have that for all cells (i, j) ∈ [t] × [t′], it holds

that f−1(i, j) ∩ V (H) ≤ |{(i′, j′) ∈ [t]× [t′] \ {(i, j)} | |i− i′| ≤ 2, |j − j′| ≤ 2}| ≤ 24. Thus,

for all (i, j) ∈ [t] × [t′], the degree in H of a vertex in f−1(i, j) ∩ V (H) is bounded by

|(⋃{(i′,j′)∈[t]×[t′] | |i−i′|≤2,|j−j′|≤2} f−1(i, j) ∩ V (H)) \ {v}| ≤ |{(i′, j′) ∈ [t] × [t′] | |i − i′| ≤
2, |j − j′| ≤ 2}| · 24− 1 = 25 · 24− 1 = 599. ◭

We compute a minimal backbone as follows. Initializes H = G; then, for every vertex

v ∈ V (G), it checks if the graph H \{v} has the same backbone as H, in which case it updates

H to H \ {v}. Thus, a minimal backbone H for (G, f) can be computed in polynomial time.

To analyze the treewidth of a backbone, we need the following.

◮ Proposition 14 ([23]). Let G be a unit disk graph with maximum degree ∆. Then G

contains a
tw

100∆3
× tw

100∆3
grid as a minor.

◮ Lemma 15. Given a clique-grid graph G that is a unit disk graph, a representation f of G

and an integer ℓ ∈ N, in time 2O(ℓ) · nO(1), one can either correctly conclude that G contains

a
ℓ

100 · 5993
× ℓ

100 · 5993
grid as a minor, or obtain a minimal backbone H for (G, f) with a

nice tree decomposition T of width at most 5ℓ.

We will use Lemma 15 with ℓ = O(
√

k). Next, we define a more compact representation of a

clique-grid graph.

◮ Definition 16 (cell graph). Given a clique-grid graph G with representation f : V (G)→
[t] × [t′], the cell graph of G, denoted by cell(G), is the graph on the vertex-set {vi,j : i ∈
[t], j ∈ [t′], f−1(i, j) 6= ∅} and edge-set {{vi,j , vi′,j′} : (i, j) 6= (i′, j′),∃u ∈ f−1(i, j)∃v ∈
f−1(i′, j′) such that {u, v} ∈ E(G)}.

By Definitions 12 and 16, and the that for any graph G and a minor H of G, it holds

that tw(H) ≤ tw(G), we conclude the following.

◮ Observation 17. For a clique-grid graph G, a representation f of G and a backbone H

for (G, f), it holds that cell(G) is a minor of H and tw(cell(G)) ≤ tw(H).

Note that a nice tree decomposition of cell(G) of width 5ℓ corresponds to a 5ℓ-NCTD of

G. In other words, from Lemma 15 and Observation 17, we directly have the following..

◮ Corollary 18. Given a clique-grid graph G that is a unit disk graph, a representation f

of G and an integer ℓ ∈ N, in time 2O(ℓ) · nO(1), one can either correctly conclude that G

contains a
ℓ

100 · 5993
× ℓ

100 · 5993
grid as a minor, or compute a 5ℓ-NCTD of G.

6.2 Outline of an Algorithm for FVS

First, we observe that if we find a large grid, we can answer No (see also [15, 12]).

◮ Observation 19. Let (G, k) be an instance of FVS. If G contains a 2
√

k × 2
√

k grid as a

minor, then (G, k) is a No-instance.

This observation leads us to the following.

◮ Lemma 20. Let (G, O, k) be an instance of FVS on unit disk graphs. Then, in time

2O(
√

k log k)·|V (G)|O(1), one can either solve (G, O, k) or obtain an equivalent instance (G, f, k)

of FVS on clique-grid graphs together with an O(
√

k)-NCTD of G.
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Proof. First, by using Lemma 4, we obtain a representation f of G. Then, by using

Corollary 18 with ℓ = 200 · 5993 ·
√

k = O(
√

k), we either correctly conclude that G contains

a 2
√

k × 2
√

k grid as a minor, or compute an O(
√

k)-NCTD of G. In both cases, by

Observation 19, we are done. ◭

Because of Lemma 20, to prove Theorem 11, we can focus on FVS on clique-grid graphs,

where the input also contains a O(
√

k)-NCTD. That is, the input of FVS on clique-grid

graphs is a tuple (G, f, k, T ) where G is a clique-grid graph with representation f and

T = (T, β) is a O(
√

k)-NCTD of G. Notice that if there is a cell (i, j) of f , such that

|f−1(i, j)| ≥ k + 3, then there is no feedback vertex set of size at most k in G, because

f−1(i, j) is a clique of size at least k + 3 in G.

◮ Observation 21. Let (G, f, k, T ) be an instance of FVS, where G is a clique-grid graph

with representation f . If there is a cell (i, j) in f such that |f−1(i, j)| ≥ k+3, then (G, f, k, T )

is a No-instance.

The following observation follows from the fact that T = (T, β) is a O(
√

k)-NCTD and

|f−1(i, j)| ≤ k + 2 for any cell (i, j) of f .

◮ Observation 22. For any v ∈ V (T ), |β(v)| = O(k1.5).

Notice that G has a feedback vertex set of size at most k if and only if there is a vertex

subset F ⊆ V (G) of cardinality at least |V (G)| − k such that G[F ] is a forest. Hence, instead

of stating the problem as finding a k sized feedback vertex set in G, we can state it as finding

an induced subgraph H of G with maximum number of vertices such that H is a forest.

Max Induced Forest (MIF) Parameter: k

Input: A clique-grid graph G with representation f and an integer k such that T is a

c
√

k-NCTD of G and for any cell (i, j) in f , |f−1(i, j)| ≤ k + 2, where c is a constant

Question: Is there subset W ⊆ V (G) such that G[W ] is a forest and |W | ≥ |V (G)| − k

◮ Observation 23. Let (G, f, k, T ) be an instance of MIF. Then (G, f, k, T ) is a Yes-

instance of MIF if and only if (G, f, k, T ) is a Yes-instance of FVS.

By Lemma 20 and Observations 21 and 23, to prove Theorem 11, it is sufficient that we

prove the following result (which is the focus of the rest of this section).

◮ Lemma 24. MIF on clique-grid graphs can be solved in time 2O(
√

k log k) · nO(1).

Proof sketch. We explain a DP algorithm which given as input (G, f, k, T ) where G is a

clique-grid graph with representation f , T = (T, β) is a c
√

k-NCTD, c is a constant and

|f−1(i, j)| ≤ k + 2 for any cell (i, j) of f and outputs Yes if there is an induced forest with

at least |V (G)| − k vertices and outputs No otherwise. Here we use the term solution for

a vertex subset S ⊆ V (G) with the property that G[S] is a forest. First notice that any

solution S contains at most 2 vertices from f−1(i, j) for any cell (i, j). Now, the following

claim follows from the fact that T is a c
√

k-NCTD and any solution contain at most 2

vertices from f−1(i, j) for any cell (i, j).

◮ Claim 2. For any v ∈ V (T ) and any solution S, |S ∩ β(v)| ≤ 2c
√

k.

We first briefly explain what is the table entries in a standard DP algorithm for our

problem on graphs of bounded treewidth [12]. Then we explain that in fact many of the entries

we compute in the standard DP table is redundant in our case, because of Observation 22 and

Claim 2. That is, Observation 22 and Claim 2, shows that only 2O(
√

k log k)|V (G)|O(1) many
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states in the DP table are relevant in our case. Recall that for any v ∈ V (T ), γ(v) denote

the union of the bags of v and its descendants. The standard DP table for our problem will

have an entry indexed by (v, U, U1 ⊎ U2 . . . Uℓ = U) where v ∈ V (T ), U ⊆ β(v). The table

entry A[v, U, U1 ⊎ U2 . . . Uℓ] stores the following information: the maximum cardinality of a

vertex subset W ⊆ G[γ(v)] such that W ∩β(v) = U , G[W ] is a forest with a set of connected

components C and for any C ∈ C, either V (C)∩β(v) = ∅ or V (C)∩β(v) = Ui for some i ∈ [ℓ].

Notice that the total number of DP table entries is bounded by twO(tw)|V (G)|O(1) where tw

is the width of the tree decomposition T . One can easily show that the computation of the

DP table at a node can be done in time polynomial in the size of the tables of its children.

By Observation 22 and Claim 2, we know that for any bag β(v) in T , the potential number

of subsets of β(v) which can be part of any solution is at most 2O(
√

k log k). This implies that

we only need to compute the DP table entries for indices (v, U, U1 ⊎ U2 . . . Uℓ = U) where

v ∈ V (T ), U ⊆ β(v) and |U | ≤ 2c
√

k. Thus, the size of DP table, and hence the time to

compute it takes 2O(
√

k log k)nO(1) time. This concludes the description. ◭
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