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Abstract

There-dimensional numerical simulations are carried out to investigate the dynamics of a drop undergoing evaporation and falling

due to gravity. In order to accurately capture the interfacial phenomena dynamic adaptive grid refinement has been incorporated.

The results are presented in terms of spatio-temporal evolution of the shape of the drop, along with the contours of the vapour

concentration generated due to evaporation. This study has implications in natural phenomena, such as rainfall, dew formation

and several industrial applications undergoing phase change. A parametric study of this phenomenon will be presented at the

conference.
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1. Introduction

Multiphase flows with phase-change are ubiquitous and have several industrial applications, for instance, energy

generation, manufacturing, combustion. The dynamics of bubbles and drops is dominated by surface tension, where

disjoint regions of one phase exist in another phase. Phase change in multiphase flows can occur due to chemical

reaction, evaporation, melting, etc. In literature, several papers can be found discussing chemically reactive flows1,2,

which is not the subject of present discussion. In this case, when the temperature and pressure are favourable for

the reaction to occur, a change in phase can take place and the mass of a new species (product of chemical reaction)

increases at the expense of existing ones (reactants). In the present paper, we discuss the dynamics of a blob of heavier

fluid falling under the action of gravity inside a lighter fluid initially kept at a higher temperature, and undergoing

evaporation.

If the static pressure at the interface of the blob fluid is less (more) than the saturation vapour pressure at the

given temperature, evaporation (condensation) can occur at the interface. Due to the relevance in many industrial

applications, such as spray combustion, film evaporation and boiling, and naturally occurring phenomena in oceans

and clouds, several investigations on evaporation/condensation have been conducted3,4,5. Phase change phenomena
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Fig. 1. The schematic showing the initial configuration of the drop of radius R. The inner and outer fluids are designated by B and A, respectively.

depend on several factors, including environmental conditions. Thus, computationally, it is an extremely difficult

problem, and most of the previous studies are experimental in nature.

Recently, with increase in computational power many researchers have tried to incorporate phase-change models

to their multiphase flow solvers6,7,8,9,10. Although accurate in describing the interface, the method of Esmaeeli &

Tryggvason7 is computationally expensive because of the explicit interface tracking and usage of linked lists for

describing the elements on the interface. Workers in this area also have tried using one-fluid approaches, like volume-

of-fluid (VOF), diffuse-interface and level-set methods to compute phase-change phenomena (see e.g Schlottke &

Weigand8).

However, to the best of our knowledge the effect of viscosity and density ratios with temperature dependent fluid

properties have not been investigated on falling drop undergoing evaporation. Recently, the dynamics of bubbles

(ρrb < 1) and drops (ρrb > 1) has been studied by Tripathi et al.11 under isothermal condition. Here ρrb is the

density ratio, defined in the next section. They showed that the dynamics of a bubble and drop is inherently different;

although a drop can be made to behave as a mirror image of a bubble in the stokes flow regime when the viscosity

ratio is adjusted based on certain criteria discussed in their paper.

In the present work, the effect of phase change on the dynamics of a falling drop is investigated for different

viscosity and density ratios in three-dimensions. However, some results of a typical case corresponding to air-water

system have been reported in this paper. An open-source code, Gerris, created by Popinet12 is used and a phase-

change model, similar to that of Schlottke & Weigand8 is incorporated into Gerris in order to handle the complex

phenomena occurring at the interface.

2. Formulation

We consider three-dimensional numerical simulation of a drop (at temperature Tc) of radius R falling under the

action of gravity, g inside another fluid initially kept at a higher temperature (temperature Th). The schematic showing

the initial configuration of the drop is presented in Fig. 1. The inner and outer fluids are designated by ‘B’ and ‘A’,

respectively. At time, t = 0 the drop is placed at a height, H = 42R from the bottom of the computational domain

of size 30R × 30R × 60R. The viscosity and density ratios are defined as ρrb ≡ ρB/ρA and µrb ≡ µB/µA, respectively,
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wherein ρ and µ represent density and viscosity, respectively. The Cartesian coordinate system (x, y, z) is used in order

to formulate the problem, where x, y and z represent the horizontal, spanwise and vertical directions, respectively. The

gravity is assumed to be acting in the negative z direction. The evaporation model is discussed below.

2.1. Evaporation model in the dimensional form

The interfacial mass source per unit volume, ṁv is given by

ṁv = A
(Davρg

1 − ω

)
∇ω · n̂, (1)

whereA is the area of the interface per unit volume, and ω is the mass fraction of vapour inside the gas phase, given

by

ω =
cvρv

caρg

, (2)

where ca and cv are the volume fraction of dry air (fluid A) and vapour phase (which is set to zero everywhere at

t = 0), respectively. The gas-liquid interface is assumed to be at the saturation condition, such that the gradient of

vapour mass fraction across the interface can be estimated as,

n̂ · ∇ω ≈ ωn − ωsat

xn − xsat

, (3)

where xn and xsat are the locations of a neighbouring point lying in the gas phase and the location of the interface,

respectively. Correspondingly, ωn and ωsat are the vapour mass fractions at xn and xsat, respectively.

The saturation vapour mass fraction is calculated, using Dalton’s law of partial pressure, as

ωsat = Mgv

psat

p
, (4)

where Mgv is the molar mass ratio of vapour to gas-mixture, p is the pressure field, and psat is the saturation vapour

pressure depending on the local temperature as follows (employing the Wagner equation)

ln

(
psat

pcr

)
=

a1τ + a2τ
1.5 + a3τ

3 + a4τ
6

1 − τ , (5)

where pcr is the critical pressure, and τ = 1−T/Tcr, wherein Tcr is the critical temperature. For water, the coefficients

ai(i = 1 to 4) in the above equation are, a1 = −7.76451, a2 = 1.45838, a3 = −2.77580 and a4 = −1.23303. The

critical pressure (pcr) and temperature (Tcr) for water are 220.584 kPa and 647 K, respectively. The values of Th and

Tc are fixed at 343 K and 293 K, respectively.

2.2. Dimensionless governing equations

The dimensionless governing equations are given by

∇ · (ρu) = −ṁv, (6)

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇p +

1

Ga
∇ ·
[
µ(∇u + ∇uT )

]
− ρ�ez +

δ

Bo
[n̂∇ · n̂σ + ∇sσ] , (7)

∂ca

∂t
+ ∇ · (uca) = 0, (8)

∂(ρcpT )

∂t
+ ∇ · (uρcpT ) =

1

GaPr
∇ · (λ∇T ) − ṁv

Ja

, (9)

∂cv

∂t
+ ∇ · (cvu) = ∇ ·

(
1

Pe
∇cv

)
+

ṁv

ρrv

. (10)
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where u(u, v,w) and T represent the velocity and temperature fields, respectively, wherein u, v and w are the velocity

components in the x, y and z, directions, respectively; t represents time; ṁv is the mass source per unit volume;

Ga(≡ ρAVR/µA), Pe(≡ VR/Dav), Ja(≡ cp,A(Th − Tc)/∆hv), Pr(≡ ρAcp,A/λA) and Bo(≡ ρAgR2/σ0) denote the Galilei

number, the Peclet number, the Jackob number, the Prandtl number and the Bond number, respectively. In Eq. (7), �ez

is the unit vector in the vertical direction, δ(= |∇cb|) is the Dirac distribution function, n̂(= −∇ca/|∇ca|) is the outward

unit normal to the interface, and ∇s(≡ ∇ − n̂(n̂ · ∇)) is the surface gradient operator.

Eqs, (6)-(10) are dimensionless equations (written after dropping tildes), which are non-dimensionalized as

(x, y, z) = R (x̃, ỹ, z̃) , t =
R

V
t̃, (u, v) = V (̃u, ṽ), p = ρAV2 p̃,

µ = µ̃µA, ρ = ρ̃ρA, cp = c̃pcp,A, λ = λ̃λA, σ = σ̃σ0, ṁv =
˙̃mvρA

√
g/R, T = T̃ (Th − Tc) + Tc, δ =

δ̃

R
, (11)

where the tildes designate dimensionless quantities, the velocity scale is V =
√

gR, and σ0 is the surface tension at

the liquid gas interface at reference temperature Tc.

The dimensionless density, viscosity, thermal conductivity and specific heat are given by

ρ = (1 − ca)ρrb +
[
(ca − cv) + ρrvcv

]
, (12)

µ = e−T (1 − ca)µrb +
(
1 + T 3/2

) [
(ca − cv) + µrvcv

]
, (13)

λ = (1 − ca)λrb + [(ca − cv) + λrvcv] , (14)

cp =
(1 − ca)cp,rbρrb + ca

[
(ca−cv)+cp,rvcvρrv

(ca−cv)+ρrvcv

]

ρ
, (15)

where ρrb = ρB/ρA, ρrv = ρv/ρA, µrb = µB/µA, µrv = µv/µA, λrb = λB/λA, λrv = λv/λA, cp,rb = cp,B/cp,A and

cp,rv = cp,v/cp,A, respectively. The dimensionless interfacial source term for mass transfer (ṁv) is given by

ṁv = A
(
ρrg

Pe(1 − ω)

)
∇ω · n̂, (16)

where ρrg =
cv

ca
ρrv+
(
1 − cv

ca

)
. In Eq. (7), surface tension of the liquid gas interface is given by the following constitutive

equation

σ = 1 −MT T, (17)

where MT = γT T1/σ0.

2.3. Numerical method

In this work, Gerris12, an open-source fluid flow solver, has been used to simulate the evaporating water drop

falling under gravity. The Gerris source code has been modified to account for evaporation. The volumetric mass

source term calculated from equation (16) is subtracted from the liquid phase and added to the gas phase. This

modified mass source scaled with the densities of the liquid and gas phases serves as the volume source term for the

continuity equation (6). This method is similar to the approach of Hardt & Wondra13. The drop dynamics is simulated

using the volume-of-fluid (VoF) approach with dynamic adaptive grid refinement based on the vorticity magnitude,

vapour concentration and bubble interface. This solver also minimizes the spurious currents at the interface (which

are known to appear when the density and the viscosity ratios are high) by incorporating a balanced force continuum

surface force formulation14 for the inclusion of the surface force term in the Navier-Stokes equations.

The dynamic adaptive mesh refinement feature of Gerris comes as a great advantage in this problem as it allows

us to maintain the distributed source term within a thin region near the interface. This helps in obtaining a good

approximation to a sharp mass source located at the interface8 and one does not require to modify the VoF advection

equation (equation (8)). The solver has been validated by comparing with several known numerical and experimental

results for rising bubble and falling drop problems15,16.
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Fig. 2. The time evolution of shape of the drop along with the vapour volume fraction obtained using the parameter values ρrb = 1000, µrb = 55,

ρrv = 0.9, µrv = 0.7, λrb = 26, λrv = 1, cp,rb = 4, cp,rv = 2, Ga = 50, Bo = 0.1, Pr = 10, Pe = 10, Ja = 50, andMT = 0.2. From left to right:

t =0.5, 2, 2.5 and 3. The maximum value of the contour level is 3 × 10−4.
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Fig. 3. Mass of the vapour versus time for the parameter values the same as those used in Fig. 2.

3. Results and Discussion

The time evolution of the shape of the drop and the contours of vapour volume fraction obtained for ρrb = 1000,

µrb = 55, ρrv = 0.9, µrv = 0.7, λrb = 26, λrv = 1, cp,rb = 4, cp,rv = 2, Ga = 50, Bo = 0.1, Pr = 10, Pe = 10,

Ja = 50, andMT = 0.2 are shown in figure 2. It can be seen that as the time progresses the shape of the drop tends

to elongate in the lateral direction. Due to the evaporation, a circular shaped envelope of liquid vapour is formed at

the initial time (e.g. see the result at t = 0.5 in figure 2). The amount of vapour produced keeps on increasing as the

time progresses (see figure 3). As the drop moves in the downward direction a wake region is created at the upper part

of the drop, which increases the evaporation rate in the low pressure region. Also the vapour produced at the bottom

part of the drop moves into the wake region due to buoyancy, thus creating a ‘fore-aft’ asymmetric vapour envelope

(shown at later times). It can also be seen that the drop has been deformed slightly to an oblate shape as it moves in

the downward direction.
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4. Conclusion

The three-dimensional dynamics of a falling drop under the action of gravity and undergoing evaporation is investi-

gated using an open-source code, Gerris. Our three-dimensional simulation reveals that as time progress a a ‘fore-aft’

asymmetric vapour envelope is produced due to the propagation of the vapour towards the wake region behind the

drop, and due to preferential evaporation in low pressure region. We expect to observe vortex shedding in the contour

of vapour at later times. Parametric study of our three-dimensional simulations will be presented at the meeting.

Acknowledgement

The authors gratefully acknowledged Professor Rama Govindarajan for valuable suggestions. They also thank

Indian Institute of Technology Hyderabad for providing support.

References

1. T. R. Bussing and E. M. Murman, “Finite-volume method for the calculation of compressible chemically reacting flows,” AIAA J. 26, 1070

(1988).

2. V. Moureau et al., “Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids,” J. Comput.

Phys 202, 710 (2005).

3. H. L. Penman, “Natural evaporation from open water, bare soil and grass,” Proceedings of the Royal Society of London. Series A. Mathe-

matical and Physical Sciences 193, 120 (1948).

4. D. Brutin, B. Sobac, B. Loquet, and J. Sampol, “Pattern formation in drying drops of blood,” J. Fluid Mech. 667, 85 (2011).
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