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Abstract 
The construction and application of biological network models is an 
approach that offers a holistic way to understand biological processes 
involved in disease. Chronic obstructive pulmonary disease (COPD) is 
a progressive inflammatory disease of the airways for which 
therapeutic options currently are limited after diagnosis, even in its 
earliest stage. COPD network models are important tools to better 
understand the biological components and processes underlying 
initial disease development. With the increasing amounts of literature 
that are now available, crowdsourcing approaches offer new forms of 
collaboration for researchers to review biological findings, which can 
be applied to the construction and verification of complex biological 
networks. We report the construction of 50 biological network models 
relevant to lung biology and early COPD using an integrative systems 
biology and collaborative crowd-verification approach. By combining 
traditional literature curation with a data-driven approach that 
predicts molecular activities from transcriptomics data, we 
constructed an initial COPD network model set based on a previously 
published non-diseased lung-relevant model set. The crowd was given 
the opportunity to enhance and refine the networks on a website (
https://bionet.sbvimprover.com/) and to add mechanistic detail, as 
well as critically review existing evidence and evidence added by other 
users, so as to enhance the accuracy of the biological representation 
of the processes captured in the networks. Finally, scientists and 
experts in the field discussed and refined the networks during an in-
person jamboree meeting. Here, we describe examples of the 
changes made to three of these networks: Neutrophil Signaling, 
Macrophage Signaling, and Th1-Th2 Signaling. We describe an 
innovative approach to biological network construction that combines 
literature and data mining and a crowdsourcing approach to generate 
a comprehensive set of COPD-relevant models that can be used to 
help understand the mechanisms related to lung pathobiology. 
Registered users of the website can freely browse and download the 
networks.
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Introduction
Molecular networks, such as the KEGG (Kyoto Encyclopedia of 

Genes and Genomes) pathways1,2, aid in understanding the complex 

interplay of signaling pathways in disease. Biological network mod-

els (hereafter referred to as networks) depict the inter-relationships 

between multiple signaling pathways and how their perturbations 

may dysregulate biological processes, eventually leading to the 

disease.

In previously published reports, we described the construction of a 

set of 90 networks that captured a large range of biological proc-

esses relevant to non-diseased lung tissue3–7. The generation of this 

set of networks relied on both manual curation of published litera-

ture and a data-driven reverse causal reasoning (RCR) methodol-

ogy8 to augment the causal biological framework underlying the 

network architecture (Figure 1). We used the Biological Expres-

sion Language (BEL) to represent precise biological relationships 

in a computable and standardized format8. We have built upon this 

approach and describe here a unique, three-phase systems biology 

and crowdsourcing approach to construct a comprehensive set of 

50 molecular networks that describe the biological processes rel-

evant to chronic obstructive pulmonary disease (COPD) and lung 

biology (Figure 2). COPD is the fourth leading cause of death 

worldwide and its incidence is increasing among chronic diseases 

in the USA9,10. COPD is a chronic, progressive inflammatory dis-

ease induced by cigarette smoking, inhalation of pollutants, dust, 

chemicals, or other foreign matter, which ultimately manifests as 

tissue destruction in the alveolar compartments and airflow limita-

tion, leading to reduced oxygen exchange11–15. COPD affects a wide 

spectrum of biological processes in lung tissue, such as oxidative 

stress, inflammation, apoptosis, proliferation, and senescence16,17. 

Understanding the mechanisms involved in these processes is 

important in understanding the onset of the disease and in iden-

tifying drug targets to develop effective COPD treatments18,19. As 

recently reported by the Global Initiative for Chronic Obstructive 

Lung Disease (GOLD), current pharmacologic therapies cannot 

cure the disease but only reduce the symptoms, and the frequency 

and severity of exacerbations, i.e., slow down the rate of disease 

progression11; thus it appears most efficient to target the COPD-

specific pathomechanisms at the earliest distinguishable state, when 

the extent of irreversible damage is still small, and their molecu-

lar processes are not yet convoluted with secondary processes and 

comorbidities, e.g., bacterial and viral infections, as they occur dur-

ing the exacerbations typical for later stages of COPD. Since smok-

ing cessation/replacement appears to be the most efficient therapy 

in smoking-related COPD11, the models of early onset COPD can 

also be expected to be valuable tools for the development and test-

ing of reduced risk products that may prevent COPD progression in 

a comparable manner as cessation does.

The networks reported here were created first from a literature scaf-

fold and expanded via data enhancement using RCR (Phase 1), then 

they were made available online to the entire scientific commu-

nity for critical review during the Network Verification Challenge 

(NVC) “Open Phase” (Phase 2) under the umbrella of the systems 

biology verification (sbv) IMPROVER project20 (Figure 1). Finally, 

a prioritized subset of 15 of these networks was discussed during an 

in-person jamboree meeting where the crowd-submitted revisions 

were reviewed and decisions to improve the networks were final-

ized (Phase 3). The final versions of the networks are available at 

https://bionet.sbvimprover.com for the public to view, and for reg-

istered users in the NVC to continue to discuss.

A variety of COPD networks have been created by various research 

groups, including networks focused on muscle to study skeletal 

muscle abnormalities21, networks to compare COPD and asthma22, 

and a knowledge management framework to integrate COPD clini-

cal and experimental data23. To our knowledge, this is the first set 

of crowd-verified networks available to the broader scientific com-

munity as a unified collection on a freely accessible web-based 

platform. Ultimately, this interface will allow for continuous input 

and improvement in the networks, leading to better understanding, 

diagnosis, and treatment of COPD.

Methods
Results

Data File

2 Datasets

http://dx.doi.org/10.6084/m9.figshare.1284583

Phase 1: COPD enhancements using data and literature

Ninety non-diseased lung networks published previously in the 

areas of cell proliferation, cell stress, inflammation, DNA damage, 

      Amendments from Version 1

The changes made in the manuscript are as follows:

- We further explained the sentence on page starting “Networks 

that were not enhanced with COPD-specific mechanisms from 

the literature or RCR included …” by adding : “Although there 

may be papers that report on the correlation between COPD and 

these processes, network model building requires mechanistic 

information that will provide causal links within the model”.

- We have added several references to demonstrate how the 

biological signal is interpreted in a meaningful manner using the 

causal network models (p. 17).

- When describing the improvements on the Th1-Th2 signaling 

network, we have used “more comprehensive” instead of 

“comprehensive” (p. 11).

- We have specified in the text (p. 15) that the 886 pieces of 

evidence added by the crowd is supported by 479 unique PMIDs.

- We have added a clearer legend for Figure 4 explaining what 

the different shaped nodes represent in the networks.

- We have modified Figure 1 and the figure legend explaining the 

difference between BEL and OpenBEL (p. 4).

- Figure 2 was slightly modified to better reflect the structure of 

the articles in which the networks were originally described. More 

specifically, the icon for mucus hypersecretion was moved to 

inflammation and response to DNA damage to cell fate.

- We have indicated appropriate references in the discussion 

for readers, who wish to find more background information 

about the network models and see how they compare with other 

approaches to interpret data (p. 16). 

See referee reports
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Figure 1. Network construction using a systems biology and crowdsourcing approach. Networks were constructed using published 
literature and data sets, and opened to the public for comment and editing in the Network Verification Challenge. The three phases of COPD 
network construction are shown. (A and B) Phase 1: COPD augmentation using literature and data. (C and D) Phase 2: Online verification by 
the public during an “open phase”, and Phase 3: Face-to-face jamboree meeting where scientists and subject matter experts gathered to 
discuss the networks and make final decisions for the next versions. *BEL was a proprietary language developed by Selventa. In the interest 
of the growing community of researchers using BEL, an openBEL language derived from BEL has been developed and released as open 
source. One of the main differences between the two is that in the openBEL, the namespace (i.e. databases in which the biological entity is 
defined) is clearly stated, allowing for a better standardization of used ontologies and databases.

cell death, tissue repair, and angiogenesis were used as the initial 

scaffolds for COPD enhancement during Phase 13–7. Biological 

pathways implicated in COPD disease pathophysiology, includ-

ing B-cell and T-cell activation, airway remodeling, extracellular 

matrix (ECM) degradation, efferocytosis, mucus hypersecretion, 

and emphysema were all captured within the modified network 

models. In total, 200 new nodes and 487 new edges were added: 

415 of the edges were added to incorporate COPD mechanisms 

implicated in the literature, and 72 edges were added to incorporate 

100 mechanisms predicted from COPD data by RCR to be relevant 

to COPD (Figure 3). Because the models were built to represent 

COPD in humans, human evidence was preferred and made up the 

majority of the networks (74%).

During Phase 1, the networks with the most significant number of 

COPD enhancements in terms of percentage of the network with 

new nodes were the Mucus Hypersecretion (44%), Th2 Signaling 

(37%), Macrophage Activation (28%), Fibrosis (25%), Autophagy 

(11%), and Apoptosis (5%) networks. Networks that were not 

enhanced with COPD-specific mechanisms from the literature or 

RCR included the DNA Damage and Notch Signaling networks. 

Although both these networks relevant to the development of 

COPD, they were not augmented beyond the original, non-diseased 

network scaffolds, because no studies on the differences in signaling 

between non-diseased and diseased states were available. Although 

there may be papers that report on the correlation between COPD 

and these processes, network model building requires mechanistic 

information that will provide causal links within the model.

Phase 2: Networks enhanced with lung- and COPD-relevant 

mechanisms by the crowd during the open phase

Prior to deploying the COPD-enhanced biological networks on the 

NVC website for verification by the scientific community, the set 

of 90 networks was agglomerated by the model-building expert 
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Figure 2. Fifty networks available during the network verification challenge and their associated biological processes.

team to yield a more concise set of 50 networks that combined 

and standardized related/complementary cellular pathways (See 

Methods for details). For example, a new “Th1 Signaling” net-

work model was created by merging three of the original networks 

that were relevant to the functional biology present in T-helper 1 

cell populations: Th1 Differentiation, Th1 Response, and T-cell 

Recruitment and Activation. For a list of the original models that 

correspond to the agglomerated models and a description of the 

new models, see Dataset.

During Phase 2, a global community of scientists participated in 

the NVC by contributing their expertise to one or several of the 
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network models. Scientists could contribute by verifying existing 

evidence for network edges using a system that allowed users to 

vote on evidence to indicate agreement or disagreement with its 

appropriateness within the network structure and boundary con-

ditions. Participants were also encouraged to add new mechanis-

tic biology in the form of network edges. In total, the 50 network 

models received 2456 evidence votes, 1795 of which supported 

the confirmation of evidence and 661 that favored the rejection of 

evidence (see Dataset). The Neutrophil Signaling network model 

received the largest share of voting activity, with 241 total votes 

or approximately 10% of all votes cast. Other network models that 

received large shares of the votes included the Macrophage Signal-

ing (180 votes) and Th1 and Th2 Signaling network models (105 

votes) (see Dataset). In addition to verifying existing literature evi-

dence supporting edges in the network models, NVC participants 

could add novel biological information in the form of new literature 

evidence (for an existing edge) or contribute new network edges to 

incorporate new biological components into the network structure. 

In this way, the community of participants collectively contributed 

a significant amount of new information into the networks; among 

the 50 network models, a total of 885 new pieces of evidence, 351 

new nodes, and 451 new edges were added (Figure 3).

Phase 3: Jamboree discussion and final decisions for next version 

networks

Following Phase 2, a jamboree (Phase 3) was organized for a 

group of invited participants to discuss the network enhancements 

submitted by the crowd. To represent the crowd community, the 

top 20 active performers who created the most pieces of evidence 

and submitted at least 20 votes during the NVC were invited to an 

in-person jamboree to discuss network refinements as a group. 

Additional subject matter experts in the network biology, COPD, 

lung biology, and biological processes represented by the networks 

were invited to participate in the discussions and contribute their 

expert feedback independent from the network-building experts. 

Among the 50 network models evaluated during the online NVC, 

15 were prioritized and selected for discussion during Phase 3 

based on the level of crowd-sourced activity and their importance 

in COPD onset as considered by the network-building experts (see 

Dataset). The goal of Phase 3 was to provide an additional layer of 

“verification” for the online enhancements and to provide holistic 

comments on the network models at the molecular/biological entity 

level. In doing so, the three network models that had received the 

largest amounts of crowd activity (Neutrophil Signaling, Macro-

phage Signaling, and Th1 Signaling) also underwent significant 

additional enhancements to improve granularity with respect to 

COPD onset and pathogenesis. In total, 167 nodes and 296 edges 

were added among all the network models reviewed during the 

jamboree sessions, and the three inflammatory networks received 

89% of the nodes and 89% of the edges (148 nodes and 263 edges) 

(Figure 3). Many of these changes came from the identification of 

missing mechanistic details of processes that occur in COPD (e.g. 

chemotaxis mechanisms in the Macrophage Signaling network 

model described in the examples in the “Macrophage signaling” 

section below).

In addition to adding mechanistic details of processes that occur 

in COPD, enhancements were incorporated to improve the gran-

ularity and connectivity within the network structures. In sev-

eral instances, the improvements involved the creation of more 

Figure 3. Nodes and edges added in each phase of COPD network construction. Summary of nodes and edges added to all networks 
and to three example networks in each phase. A) Nodes added in each phase. B) Edges added in each phase.
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detailed linear pathways connecting biological components. In one 

example, in the Apoptosis network model, the original network 

pathway indicated that the X-ray repair complementing defective 

repair in Chinese hamster cells 6 (XRCC6) protein decreased the 

process of apoptosis24. During the Phase 3 discussions, additional 

literature evidence provided a more detailed mechanistic under-

standing of this phenomenon: XRCC6 was reported to decrease the 

activity of the BCL2-associated X protein (BAX) protein, which 

is known to increase mitochondrial permeability and therefore 

promote apoptosis (Figure 4A). The overall effect of the negative 

regulation of BAX by XRCC6 was therefore a decrease in apop-

totic cell death25. By improving the granularity of this pathway in 

the Apoptosis network, a more comprehensive representation was 

achieved for components that are related to critical cellular proc-

esses mediating disease onset.

A similar improvement was incorporated into the Mechanisms of 

Cellular Senescence network model: the original network pathway 

indicated that the chemical acrolein (a common component of ciga-

rette smoke) increased cell senescence26. During Phase 3 discus-

sions, the pathway connecting these two components was expanded 

using additional literature evidence. In several studies, acrolein was 

found to decrease the activity of sirtuin 1 (SIRT1), which is a known 

negative regulator of the forkhead box O3 (FOXO3) transcription 

factor, and FOXO3 activity is known to promote cellular senes-

cence (Figure 4B)26–28. Therefore, the overall observed effect was 

acrolein acting to potentiate cellular senescence in exposed cells, 

which is a well-characterized mechanism of action for this toxic 

chemical. Again, the generation of more comprehensive network 

models of biological processes in close proximity to disease onset 

allowed for a greater mechanistic understanding of how environ-

mental factors can contribute to COPD development.

Exemplary outcomes of the three-phase COPD network 
building process
Th1 and Th2 signaling
As part of the pulmonary inflammatory process network building6, 

five networks (T-cell activation and recruitment, Th1 differentiation, 

Th2 differentiation, Th1 Response, Th2 response) were built to 

describe Th1 and Th2 signaling in the non-disease lung context. 

As described previously, during the preparation phase to NVC, two 

networks were built around the Th1 and Th2 cells.

Phase 1: COPD augmentation of T-helper cell networks

Mechanisms that describe T-cell activation and recruitment induced 

by neutrophils, macrophages, and dendritic cells were added to 

the T-cell networks during Phase 1. These immune cells secrete 

various chemokines that were reported to recruit T-cell populations 

Figure 4. Improvements in the granularity of two representative network pathways. Cyan squares represent abundances, triangles 
activities, purple squares the movement of abundances from one cellular location to another, and diamonds biological processes. During 
Phase 3 of COPD network construction, improvements were made by adding mechanistic details to over-simplistic edges. A) In the Apoptosis 
network model, the original connection (left) simply indicated that XRCC6 decreased the process of apoptosis. The improved pathway 
connection (right) indicates that XRCC6 decreases the activity of BAX, which normally functions to facilitate the transport of calcium ions 
through the mitochondrial pores and thereby increases apoptosis. B) In the Mechanisms of Cellular Senescence network model, the original 
connection (left) simply indicated that acrolein increased the process of cellular senescence. The improved pathway connection (right) 
indicates acrolein mediates its effects on senescence via the activity of SIRT1 and the FOXO3 transcription factor. Triangle denotes activity, 
diamond denotes biological process or pathology, circle denotes abundance, rounded square represents transport, and square denotes 
protein abundance nodes. Solid edges denote causal relationships, dotted edges denote non-causal relationships such as a protein 
connected to its own activity.
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(i.e. CD8+ cytotoxic T-cells) to injured tissue in an acute inflam-

matory state29. Alveolar macrophages secrete interleukin 15 (IL15), 

which is capable of activating both the interleukin 2 (IL2) and IL15 

receptors on T-cells and acts as a potent inducer of cell migration to 

the lung. Dendritic cells within the lung play an important role in 

this process by secreting chemokine (C-C motif) ligand 3 (CCL3) 

in response to cigarette smoke, which helps recruit CD8+ T-cells 

to the lung29. Chemokine (C-C motif) receptor 5 (CCR5) is the 

receptor for CCL3 and its presence in the lung has been shown to 

correlate with the severity of COPD30. CCL3 is one example of a 

node that was added during the literature-based COPD enhance-

ment process in Phase 1 (Figure 5A). Many of the disease-relevant 

mechanisms identified in the literature curation phase were cor-

roborated by mechanisms predicted from COPD-relevant data sets 

using RCR (see Methods), including T-cell activation mechanisms 

(CD28 molecule (CD28) and T cell receptor beta locus (T\RB), and 

chemokines and cytokines that activate and are secreted by T-cells 

(chemokine (C-C motif) receptor 3 (CCR3), CCR5, IL2, interleukin 

4 (IL4), interleukin 6 (IL6), interleukin 10 (IL10) and interleukin 

13 (IL13)). The prediction of these mechanisms in COPD data sets 

showed that T-cell activation and migration in response to smoke-

exposed lung represents an important process in the innate immune 

response. In total, 30 nodes and 34 edges were added to the Th1 

and Th2 networks during the internal COPD enhancement process.

Figure 5. Enhancement of the T-cell networks during COPD network construction. A) During the literature-based COPD enhancement 
process in Phase 1, the protein CCL3, important for leukocyte migration and activation of T-cells, was added to the T-cell networks. 
B) During the open phase in Phase 2, the negative regulation of EGR2 on T-cell activation is a mechanistic detail that was added by the 
crowd. Overexpression studies demonstrated that EGR2 increased the activity of the E3 ubiquitin ligase CBL-B, which subsequently inhibited 
T-cell activation. C) During the jamboree discussions in Phase 3, the IFNG/IL-4 feedback loop mediating differentiation of Th1 vs. Th2 cellular 
subtypes via the activities of IRF1 and IRF2 was added to the new Th1-2 Signaling network model. D) During the jamboree discussions in 
Phase 3, the T-helper cell-produced chemokine effect on immune cells (e.g. IL-25 activates memory T-cells) was added to the new Th1-2 
Signaling network. Triangle denotes activity, diamond denotes biological process or pathology, and square denotes protein abundance nodes. 
Solid edges denote causal relationships, dotted edges denote non-causal relationships such as a protein connected to its own activity.
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Phases 2 and 3: T-cell network crowd improvements

During the open phase (Phase 2), the Th1 and Th2 networks 

received 105 votes from the scientific community, as well as 10 

new nodes, 9 new edges, and 13 new pieces of evidence. One such 

addition to the Th1 Signaling network was the regulatory influence 

of early growth response 2 (EGR2) on T-cell activation; the submit-

ted evidence demonstrated that overexpression of EGR2 promoted 

increased activity of the E3 ubiquitin ligase CBL-B and subsequent 

inhibition of T-cell activation31 (Figure 5B).

During the Phase 3 jamboree sessions, the group decided to com-

bine the individual Th1 Signaling and Th2 Signaling networks into 

a single, unified network model titled Th1-Th2 Signaling to bet-

ter represent the interplay between the T-helper cell populations 

in vivo. It was also decided to add granularity to transcriptional 

pathways mediating Th1 versus Th2 cellular activation and differ-

entiation; one example was the addition of two transcription fac-

tors, interferon regulatory factors 1 and 2 (IRF1 and IRF2), that are 

known to act downstream of interferon-gamma (IFNG) to suppress 

IL4 expression in Th2 cell populations32. IFNG is secreted by Th1 

cells and this pathway potentiates Th1 responses while suppressing 

Th2 responses in the tissue. The addition of this feedback mecha-

nism during Phase 3 contributed to a more comprehensive network 

describing the interactions between Th1 and Th2 cells (Figure 5C). 

Further network enhancements discussed in the jamboree largely 

emphasized the downstream effects of T-helper cells in potentiating 

inflammatory signaling by activating additional immune cells in a 

disease context. For example, secretion of IL5 activates eosinophils, 

whereas secretion of IL10 and IFNG activates macrophages in the 

diseased tissue33–35. This interplay between immune cell popula-

tions was incorporated into the new Th1-Th2 Signaling network 

model and better captures the signaling interconnectivity present 

during disease development (Figure 5D). In total, 12 new nodes 

and 28 new edges were added to the Th1-Th2 Signaling network 

model during the jamboree discussions, thereby creating a more 

comprehensive biological network of T-helper cell activity and 

their interactions with other immune cells in the context of COPD.

Macrophage signaling
As part of the pulmonary inflammatory process network building6, 

three networks (Macrophage Differentiation, Macrophage Activa-

tion, and Macrophage-mediated Recruitment of Neutrophils) were 

built to describe macrophage biology in the non-disease lung con-

text. During the preparation phase to NVC, these three networks 

were merged to obtain an overall picture of macrophage biology.

Phase 1: COPD augmentation of macrophage networks

Macrophages play roles in many COPD disease processes such as 

clearance of apoptotic neutrophils, tissue destruction, and recruitment 

of other immune cells by their secretion of cytokines36. Macro-

phage signaling mechanisms were added to the network in Phase 1, 

with a focus on components related to efferocytosis (Figure 6A). 

Efferocytosis is a well-conserved mechanism for the phagocytic 

removal of apoptotic cells by innate immune cells, such as mac-

rophages, and the process is critical for the resolution of inflam-

mation via the removal of dying cells and antigenic cellular debris. 

Phagocytically impaired macrophages have been shown to dis-

play decreased expression of peroxisome proliferator-activated 

receptor gamma (PPARy) and efferocytosis-specific bridge mol-

ecules, such as growth arrest-specific 6 (GAS6) and milk fat glob-

ule-EGF factor 8 protein (MFGE8)37. The number of apoptotic cells 

was shown to increase in COPD because of exposure of lung tissue 

to toxic chemicals present in cigarette smoke; for example, and their 

accumulation was exacerbated by the simultaneous smoke-induced 

impairment of the phagocytic ability of alveolar macrophages38. 

Apoptotic cells exhibit surface changes that distinguish them from 

viable cells, and these changes were recognized by efferocytic 

receptors including CD36 molecule (CD36), CD14 molecule 

(CD14), and Stabilin-1/2 (STAB1:STAB2)39. Reduced efferocyto-

sis observed in COPD because of oxidant-driven and Rho-mediated 

inactivation increased the likelihood of aberrant antigen exposure 

from apoptotic cells, thereby perpetuating the chronic inflamma-

tory state that is a hallmark of COPD40–42. In adding efferocytosis 

mechanisms to the macrophage network, we focused on the surface 

receptors and bridge proteins such as CD36 and GAS6. In total, 45 

nodes and 61 new edges were added to the macrophage model dur-

ing the internal COPD enhancement phase.

Phases 2 and 3: Macrophage network crowd improvements

During the open phase (Phase 2), 180 total votes were cast for net-

work evidence, with 23 new nodes and 39 new edges added by the 

crowd. In addition, 72 new pieces of evidence were contributed to 

support pre-existing edges in the network. The surfactant protein 

A1 (SFTPA1), which was observed to be increased in COPD43, was 

added to the network. Its effect on macrophages of increasing inter-

leukin-1 receptor-associated kinase 3 (IRAK3) and interleukin 1, 

beta (IL1B) were also added to the network during the open phase. 

Granularity enhancements around IFNG and nucleotide-binding 

oligomerization domain containing 2 (NOD2), both components of 

inflammatory signaling, were also added to augment the network 

models with causal relationships proximal to COPD.

During the Phase 3 jamboree discussions, several network enhance-

ments were made in macrophage chemotaxis and differentiation 

(Figure 6B). Within the chemotaxis process, the nodes chemokine 

(C-C motif) ligand 2 (CCL2) binding to chemokine (C-C motif) 

receptor 2 (CCR2) and leading to macrophage chemotaxis were 

added. The CD69 molecule (CD69) associated with macro-

phage activation by cigarette smoke was also added. In addition, 

the effects of activated macrophages on other immune cells were 

expanded within the network model, including chemokine (C-X-C 

motif) ligand 1 (CXCL1) and chemokine (C-X-C motif) ligand 2 

(CXCL2) leading to neutrophil chemotaxis, and chemokine (C-X-C 

motif) ligand 9 (CXCL9) and chemokine (C-X-C motif) ligand 10 

(CXCL10) binding to CXCR3 and leading to T cell recruitment. In 

total, 30 new nodes and 48 new edges were added to the Macro-

phage Signaling network during Phase 3, thereby providing a more 

comprehensive network of macrophage activation and its effect on 

other immune cells active in COPD.

Neutrophil signaling
As part of the pulmonary inflammatory process network building6, 

two networks (Neutrophil Response and Neutrophil Chemotaxis) 

were built to describe neutrophil biology in the non-disease lung 

context. During the preparation phase to NVC, these two networks 

were merged to constitute the Neutrophil Signaling network.
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Figure 6. Enhancement of the macrophage networks during COPD network construction. A) During the literature-based COPD 
enhancement process in Phase 1, efferocytosis mechanisms were added to the macrophage networks to take into account its dysregulation 
effect in COPD. B) During the jamboree discussions in Phase 3, chemotaxis and differentiation mechanisms were identified and subsequently 
added to the latest version of the Macrophage Signaling network. Triangle denotes activity, diamond denotes biological process, and square 
denotes protein abundance nodes. Solid edges denote causal relationships, dotted edges denote non-causal relationships such as a protein 
connected to its own activity.
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Phase 1: COPD augmentation of neutrophil networks

During Phase 1, the Neutrophil Signaling network was enhanced 

primarily with components related to lipid-response pathways. In 

response to lung damage, leukocytes and tissue-resident cells were 

reported to interact to generate lipid mediators that enhance the 

airway immune response and engage defense mechanisms44. Neu-

trophils, endothelial cells, and macrophages generate prostaglandins 

and leukotrienes from arachidonic acid during the initial inflam-

matory response, which amplifies the inflammation signals in the 

local area and potentiates the process of tissue destruction45. Sub-

sequently, the prostaglandins PGE2 and PGD2 are generated in a 

cyclooxygenase-dependent way to promote synthesis of lipid medi-

ators with anti-inflammatory activity, such as the lipoxins. Lipoxins 

inhibit neutrophil recruitment to inflamed sites and suppress their 

pro-inflammatory actions, but promote recruitment of macrophage 

precursors46. Lipoxin A4 stimulates macrophages to phagocytose 

apoptotic neutrophils, and resolvins and protectins, which represent 

another class of lipid mediators, activate anti-inflammatory path-

ways and stimulate clearance of inflammatory infiltrates by macro-

phage phagocytosis47–49. In total, 9 nodes and 20 edges were added 

to the network model including lipid mediators such as lipoxin A4, 

resolvin E1, and neuroprotectin D1 (Figure 7A).

Phases 2 and 3: Neutrophil network crowd improvements

The Neutrophil Signaling network was the network most edited 

by the crowd during the open phase, with the addition of 116 new 

nodes, 160 new edges, 181 new pieces of evidence, and 241 votes 

cast. The new edges described neutrophil chemotaxis including new 

nodes like platelet factor 4 (PF4) and protease-activated receptor 

2 (F2RL1). Chemokines such as chemokine (C-X-C motif) ligand 

8 (CXCL8) and chemokine (C-X-C motif) ligand 12 (CXCL12), 

and members of the serine/threonine kinase (AKT) family that have 

also been shown to induce neutrophil chemotaxis were added to the 

network (Figure 7B)50.

Figure 7. Enhancement of the neutrophil network during COPD network construction. A) During the literature-based COPD enhancement 
process in Phase 1, lipids and their effects on neutrophil chemotaxis were added to the new Neutrophil Signaling network. B) During Phases 
2 and 3, neutrophil adhesion and chemotaxis mechanisms were added to the new Neutrophil Signaling network. Triangle denotes activity, 
diamond denotes biological process, circle denotes abundance, and square denotes protein abundance nodes. Solid edges denote causal 
relationships, dotted edges denote non-causal relationships such as a protein connected to its own activity.

A

B

bp(GO:”neutrophil

chemotaxis”)

bp(GO:”neutrophil

chemotaxis”)

bp(GO:”cell

adhesion”)

cat(p(HGNC:PTGR1)) a(CHEBI:acetylcholine) cat(p(HGNC: ALOX12)) cat(p(HGNC: ALOX15)) cat(p(HGNC: PTGS2))

a(CHEBI:leukotriene 

B4)

a(CHEBI:leukotriene

D4)

a(CHEBI:lipoxin

A4)

a(LMSD:Neuroprotectin

D1)

a(LMSD:Resolvin

E1)

cat(p(HGNC: LTB4R)) cat(p(HGNC: FPR2)) p(HGNC: CCR5)

p(HGNC: C5) p(HGNC: CCL3) p(HGNC: PF4) act(p(HGNC: SELL))

cat(p(HGNC: CCR5))

cat(p(HGNC: ITGAM)) kin(p(PFH: “MAPK

p38 Family))

cat(p(HGNC: F2R))

cat(p(HGNC: F2RL1)) kin(p(PFH:”AKT

Family))

p(HGNC: PRTN3) p(HGNC: F2) p(HGNC: WAS) p(HGNC: CDC42)

p(HGNC: ITGAM) p(HGNC: CXCR4) p(HGNC: ICAM1)

p(HGNC: CXCL8)

p(HGNC: CXCL12)

p(HGNC: WAS,

pmod(P,Y,291))

Page 12 of 31

F1000Research 2015, 4:32 Last updated: 28 MAR 2022



Following the jamboree discussions, additional signaling that 

described cytoskeletal and adhesion mechanisms necessary for 

neutrophil chemotaxis, and additional neutrophil activation mecha-

nisms, were incorporated in the new Neutrophil Signaling network 

(Figure 7B). The role of the CDC42-WASp complex in regulating 

neutrophil chemotaxis at the cytoskeletal level was incorporated51, 

as well as other mechanisms of neutrophil chemotaxis includ-

ing the role of the complement component 5 (C5) in regulating 

integrin, alpha M (ITGAM)52, and the role of CCL3/CCR5 in  

stimulating neutrophil migration53. In all, 69 nodes and 129 edges 

were added. The new mechanisms that were incorporated into the 

Neutrophil Signaling network added significant granularity to the 

neutrophil chemotaxis process, which is a key driver of the inflam-

matory cascade that promotes the development of COPD.

Discussion
Here we report the construction of a COPD-enhanced network 

model set using a novel methodology that combined traditional 

manual literature curation and data-driven approaches with a global 

crowdsourcing endeavor to generate the most comprehensive repre-

sentation of biological phenomenon proximal to the onset of COPD 

that is available to date. The three phases of network construction 

each contributed in different ways to building a more compre-

hensive network. The Phase 1 literature and data-driven enhance-

ment of the already existing non-diseased networks resulted in the 

addition of COPD biomarkers and disease drivers known to be 

associated with COPD, while the Phase 2 crowdsourcing largely 

focused on contributions to cell-specific networks, and the Phase 3 

jamboree discussions uncovered missing signaling processes rel-

evant to COPD.

COPD biomarkers and processes added to non-diseased 
networks
During Phase 1, the non-diseased networks were expanded within 

the COPD context by the addition of biomarkers, disease drivers, 

and processes that were reported to increase in COPD, as well as 

mechanisms predicted in COPD data sets. Most of the edges added 

to the networks were lung relevant but not specifically investigated 

in a COPD background. Because of the limited number of mecha-

nistic studies in COPD models that have been published, network 

construction was focused on adding COPD-known processes and 

biomarkers in tissue and experimental contexts relevant for COPD 

(lung, smoking) to the existing non-disease networks.

Modeling the process of efferocytosis is an example of the addition 

of COPD processes to the non-disease networks. The efferocytosis 

process of phagocytic uptake of apoptotic cells by macrophages is 

frequently disrupted in COPD tissue, and this disruption is thought to 

potentiate the chronic state of inflammation in the diseased lung40–42. 

A new network model detailing components related to efferocy-

tosis was constructed from information available in the published 

literature with the majority of edges coming from general macro-

phage experiments. Th2 activation cascades and macrophage sign-

aling events were also implicated generally in the context of COPD, 

and therefore the non-diseased network models were enhanced by 

the addition of these pathways from lung-relevant studies. Net-

work models detailing other processes not widely implicated in 

COPD, such as DNA damage and Notch signaling, which are more 

generalized conserved biological phenomenon, received very few, 

if any, enhancements during the COPD literature curation phase.

In addition to adding COPD processes during Phase 1, we also added 

COPD biomarkers and mechanisms predicted by RCR to be active in 

COPD data sets. Biomarkers associated with COPD included chem-

okines, cytokines, matrix metalloproteinases (MMPs), and other 

matrix degradation products. Examples of cellular mechanisms 

uncovered by the data-driven approach included the cytokines IL19 

and IL3, as well as the serine protease inhibitor SERPINA1. IL3 is a 

growth-stimulating cytokine for many inflammatory cells, including 

macrophages, and IL19 is produced by monocytes and activates the 

inflammatory STAT3 pathway in several cell types. SERPINA1 is a 

potent elastase inhibitor, the presence of which plays a critical role 

in controlling the protease cascade leading to tissue destruction and 

emphysema. Overall, the RCR approach yielded a diverse range of 

biological features that were incorporated among a large percentage 

of the network models, thereby broadening the scope of many net-

works to include components with potential connections to disease 

that have not been investigated previously in the COPD context.

Crowdsourcing efforts focused on cell-specific networks
During the NVC, scientists from around the world browsed the 

publically available networks on a website, voted on and submitted 

new evidence, and created new nodes and edges. As may have been 

expected, several of the more well-studied processes in the literature 

(e.g. NF-kB pathways leading to inflammatory signaling) attracted 

a great deal of voting activity within the networks and primarily 

corroborated known biology. However, participants were incentiv-

ized to create new evidence to support existing edges based on the 

large number of points received by them for this activity. It was this 

aspect of the challenge that truly demonstrated the power of crowd-

sourcing because, in many instances, the community of users located 

lung-relevant and/or more recent publications to better support the 

existing network architecture and improve the overall relevance of 

the network models to COPD. With nearly 900 new pieces of evi-

dence (from 479 unique PMIDs) added by the challenge crowd, a 

significant overall enhancement of the networks was achieved in a 

relatively short time (5 months), which demonstrated the remark-

able utility of harnessing knowledge from the global scientific com-

munity for a specific application. Specifically, 30% (266/885) of all 

the new pieces of evidence and 46% (208/451) of all the new edges 

that were contributed fell within three network models, namely the  

Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signal-

ing networks. These networks were edited more than other networks 

because of their clear boundaries, which allowed scientists to narrow 

their search to a particular cell type. Networks such as Clock, Wnt, 

mTor, and Regulation of CDKN2A expression were edited minimally 

and received more ‘Down’ votes than the cell-specific networks, 

possibly because of the more ambiguous boundaries of which cell 

types could be included. This observation emphasizes the need 

for clear boundaries in a crowdsourcing effort. In the case of gen-

eral networks such as Cell Cycle, Response to DNA Damage, and 

Oxidative Stress, many experiments concerning these processes 

have been performed in cell types that were excluded in our bound-

aries (i.e. tumorigenic cell lines). Perhaps boundary conditions 

could be loosened for networks such as these if it is assumed that 

signaling is conserved across different cell types.
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Jamboree discussions identified missing processes 
relevant to COPD
The final phase of network improvements emphasized the discussion 

and consolidation of all submissions from the challenge crowd to 

synthesize more holistic changes within the set of network models. 

During the challenge, participants worked individually on the web-

site adding individual edges, but did not have the ability to make 

major changes to the structure of the network models. The in-person 

jamboree discussions were therefore an opportunity to implement 

broader changes to better represent the biological processes as they 

related to COPD. These discussions were led by experts in the sub-

ject matter of the processes that the networks represented. During 

these sessions, missing pieces of biology and the interactions of 

different cell types in COPD were identified. In this manner, the 

jamboree was very conducive to broader network structural changes 

that made the set of network models more informative and repre-

sentative of processes implicated in COPD and, therefore, more 

useful to a broader group of scientists.

Unique features of the collaborative networks
In recent years, crowdsourcing has emerged as a powerful tool to 

address topics related to “big data” in the domain of the life sci-

ences, particularly in topics related to systems biology. For example, 

the series of DREAM challenges empowered the global scientific 

community to build application-specific, clinically relevant predic-

tive biological networks using vast quantities of genomic data54. 

Similarly, the recent sbv IMPROVER challenges allowed research-

ers to participate in collaborative competitions to validate systems 

biology research, for example, by testing and validating computa-

tional approaches that are used to classify clinical samples based 

on transcriptional data55–57. In the current approach, we describe a 

unique paradigm for biological network construction that combines 

a predictive computational methodology with a large-scale crowd 

sourcing approach to generate very comprehensive network models 

describing COPD pathogenesis.

Compared with other published COPD networks, the networks 

described here are more comprehensive in scope, are focused on 

molecular pathways that can drive disease rather than on descrip-

tions of more general clinical or physiological measures, and have 

been improved using crowdsourcing21–23. The Synergy-COPD 

European project is similar in its goal of creating a model of COPD 

for better understanding of the disease by combining information 

from many different sources. However, Synergy-COPD comprises 

seven physiological-focused mathematical networks rather than the 

50 molecular networks described here, and does not currently have 

an intuitive web interface that allows users to freely navigate the 

resulting networks23.

Compared with other more general pathway approaches such as 

KEGG1, the networks we describe contain edges that have one or 

more detailed evidences supported by a specific literature reference 

and contain tissue and species-level metadata. In our approach each 

of these pieces of evidence under an edge can be validated with 

the potential for a larger crowd with wide expertise, compared to 

a non-crowdsourced approach where the small group constructing 

the networks may not be able to sufficiently cover all the expertise 

necessary to verify every pathway within these networks. The BEL 

language syntax allows many participants to contribute by stand-

ardizing the biological representation and requiring that each node 

be associated with a namespace, which standardizes the representa-

tion of gene names and biological processes. The comparison of our 

network models with other resources has been described in other 

articles58,59 and in a book chapter60.

The web-based platform captures network provenance, allow-

ing for a transparent record of what has been validated with a full 

revision history58. The uncertainty for specific edges based on 

voting patterns can be demonstrated with the full voting history 

being captured in the network versions. By incorporating a con-

tinuous “feed” of real time enhancements submitted on the web-

site, users are able to view the most up-to-date networks at any 

time; network models created using other platforms not available 

for crowdsourced editing remain static representations of biology 

and frequently do not include the most recent findings from the 

scientific literature. Currently networks with the most recent crowd 

edits can be viewed, but not downloaded. Networks with changes 

from the most recent Jamboree meeting are made available for 

download.

Another novel component of these networks is the incorporation of 

RCR predictions to enhance the overall biological representation 

within the network models. RCR analysis was performed on human 

COPD gene expression data sets in the public domain in order 

to predict potential mechanisms implicated in COPD onset and 

include as nodes in the networks. This unbiased approach resulted 

in the addition of many new nodes among the networks predicted to 

be active based on COPD gene expression footprints that may have 

less well-established or direct connections to disease etiology. As 

such, this important aspect of network construction potentially cap-

tures those biological components that may have “emerging” roles 

in disease progression. The iterative nature of the network enhance-

ment process facilitated by the Bionet platform allows for new biol-

ogy and supporting evidence to be incorporated into the networks 

as new findings emerge in the literature and therefore generate the 

most comprehensive, up-to-date COPD model sets available to the 

scientific community.

The utility of the resulting networks and to further analyze the 

crowdsourcing process itself can be assessed by evaluating the 

impact of the changes on the analyses we have published previ-

ously60–67. Moreover, an extensive analysis leveraging multiple rel-

evant datasets will be conducted and the results will be published.

The enhanced crowd-verified models are publicly available on the 

sbv IMPROVER website (https://bionet.sbvimprover.com/) and 

remain open to receive further enhancements from the online com-

munity. Because the first iteration of the NVC proved the effective-

ness of this approach and because the networks can continue to be 

reviewed by the crowd, a second iteration of the NVC (NVC2) has 

been started so that additional modifications and recently published 

literature can be incorporated. This will help to continually refine 

the network models and strengthen the relevance to the processes 

that underlie the development of COPD. The crowd verification 

approach continues to be refined, so, in addition to disease process- 

centered networks, other networks including chemical-centered 
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networks can be built using a similar approach. These networks can 

aid in the development of more efficient interventions and enhance 

toxicological assessment of environmental exposures that may also 

contribute to the development of COPD.

Conclusion
Here we describe a novel approach to biological network construc-

tion and have generated a suite of COPD-relevant network models 

that the larger scientific community is free to edit and explore. Net-

works are available for download from the sbv IMPROVER web-

site (https://bionet.sbvimprover.com/) upon registration and taking 

a certain number of actions as a participant (e.g., voting on an evi-

dence). Scientists from all backgrounds are encouraged to submit 

additional network enhancements as participants in the NVC268. By 

building the network model set in the BEL language format, we 

have generated a model framework suitable for biomarker discov-

ery and for the interpretation of transcriptomic signatures59–66. More 

generally, this large assembly of biological knowledge relevant 

to human lung will be of great use to both academic and industry 

users in promoting future research in this area of great therapeutic 

importance.

Methods
Phase 1: COPD enhancement using data sets and literature
Networks that described molecular mechanisms of five broad bio-

logical processes were constructed previously using a literature 

and data mining approach. These networks cover mechanisms 

of cell proliferation5, cell stress4, DNA damage, autophagy, cell 

death and senescence3, pulmonary inflammation6, and tissue repair 

and angiogenesis7 in the non-diseased pulmonary context. To cre-

ate COPD-relevant networks, these non-diseased networks were 

enhanced by incorporating COPD mechanisms sourced using a lit-

erature and data set approach (Figure 1) in an iterative approach, as 

described in detail for the non-diseased network model construc-

tion, by a team of subject matter experts in computational biology, 

molecular biology, inhalation toxicology, and COPD.

Boundary conditions
Because the goal of the research was to understand COPD onset, 

the focus of these networks was on early stage COPD mechanisms 

(Global Initiative for Chronic Obstructive Lung Disease (GOLD) 

stages I and II). When supporting literature from early COPD stud-

ies was not available, stage-independent COPD studies were used. 

When COPD studies were not found, the inclusion criteria were 

expanded to studies from non-diseased context, and mechanisms 

active in processes implicated in COPD were incorporated into the 

disease models. Literature describing the processes active in acute 

exacerbation in COPD patients was excluded from the supporting 

edges of the network models. In order to focus on the molecular 

mechanisms most specific to early stage COPD, we also excluded 

context from diseases with different pathogenesis and differential 

diagnosis: lung cancer and non-cancerous lung diseases, such as 

cystic fibrosis, acute respiratory distress syndrome, idiopathic 

pulmonary fibrosis, septic pneumonitis, obliterative bronchiolitis, 

pneumoconiosis, bronchiectasis, viral and bacterial infections, and, 

allergic responses/asthma, bronchitis. Animal inhalation studies 

with solid particles (e.g. titanium dioxide, quartz, asbestos, carbon 

black, and diesel exhaust) were also excluded due to their specific 

mode of action. Ideally, all nodes and edges of the network model 

would be supported by published data from experiments conducted 

in the tissues and cell types found in the lung under the conditions 

of early COPD, e.g., airway and alveolar epithelial cells, lung 

fibroblasts, resident and recruited immune cells, and microvascular 

cells. These were prioritized but the respective cell types were also 

considered from other tissue origin if such lung specific context 

was not reported in the literature. For in vitro-specific exclusion 

criteria, tumor-derived cell lines, immortalized cell lines, neuronal 

cells, and cell types that are not found in the respiratory/vascular 

system were excluded. In some cases, we made exceptions and 

included non-lung cell types for canonical mechanisms for which 

there was additional evidence from the literature that the relation-

ship was not tissue-specific but could also take place in the lung. 

Human-specific connections were prioritized, but where human data 

were not available, knowledge has been augmented with ortholo-

gous causal assertions derived from rat and mouse sources included 

after homologization in the Selventa knowledgebase where human 

data were not available5.

The 90 previously published non-diseased network models used for 

the initial substrate included networks involved in cell prolifera-

tion5, cell stress4, DNA damage, apoptosis, senescence, autophagy, 

necroptosis (DACS)3, pulmonary inflammation (IPN)6, and tissue 

repair and angiogenesis (TRAG)7. The Endothelial Shear Stress 

network from the cell stress model was excluded because the focus 

of the COPD Network was to describe lung biology.

Literature enhancement
We conducted a broad survey of the literature to locate studies that 

had investigated the mechanistic biology of COPD pathogenesis 

and processes involved in COPD. Potential COPD biomarkers from 

sputum, bronchoalveolar lavage, and mouse and human blood sam-

ples, and mechanisms that regulate COPD processes were gathered 

from the literature and curated. Because only a small number of the 

studies had focused on early COPD, we expanded our searches to 

include stage-independent COPD studies, but excluded late-stage 

processes. Some processes known to be closely linked to COPD 

pathogenesis (e.g. B-cell activation and T-cell recruitment to lung 

tissue) have not been studied directly in the disease context; how-

ever, literature that detailed cell-type-specific canonical biology 

was sourced irrespective of the disease context.

Data enhancement
RCR was performed using Gene Expression Omnibus (GEO) 

COPD and emphysema data sets from lung, small airway, and alve-

olar macrophages of early COPD patients and healthy smokers (see 

Dataset)69–73. RCR has been used previously to predict upstream 

regulators from transcriptomic data8. Mechanisms that were pre-

dicted by RCR to be active and that were not already incorporated 

in the non-diseased networks were vetted on an individual basis to 

locate supporting literature for their potential involvement in COPD 

pathogenesis. Mechanisms that had not been studied directly in a 

COPD context were evaluated in an expanded tissue context to con-

sider tissue deemed disease-relevant (e.g. alveolar macrophages). 

Mechanisms that were deemed relevant were connected in the most 

appropriate network based on their probable roles in COPD or lung 

biology.
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Network agglomeration
To generate a more concise model set for presentation to the crowd 

during the NVC, we consolidated networks associated with related 

biological processes among the 90 COPD-enhanced networks. An 

example of this consolidation is the merging of three non-disease net-

works related to T-helper 1 cells (Th1 Differentiation, Th1 Response, 

and T-cell Recruitment/Activation) into a single new Th1 Signal-

ing network. Fifty-six of the original 90 networks were combined 

into a concise set of 16 network models; the remaining 34 networks 

remained as standalone network models (see Dataset), yielding 

a final set of 50 models that were posted on the NVC website for 

review by the scientific crowd. In addition to the network agglom-

eration, protein, gene expression, and secretion edges were agglom-

erated to reduce the number of edges required for verification.

Phase 2: NVC Open Phase
The crowd verification process of improving biological networks 

has been published previously20. Briefly, the full set of 50 COPD-

relevant network models was posted on the BioNet web portal68 

for a period of 20 weeks (the “Open Phase”), during which time a 

global community of participants were invited to submit biological 

improvements to the models. The improvements included submis-

sion of new evidence, additional literature publications to support 

existing network edges, and submission of new biological edges 

with supporting evidence for relationships that were not repre-

sented in a network. Users could also vote on evidence to indicate 

agreement or disagreement with its appropriateness within the net-

work structure; disagreements often indicated improper tissue or 

experimental context for the given network. Evidence that received 

at least four ‘Up’ votes was “locked” to indicate crowd approval 

and evidence that received at least four ‘Down’ votes was “locked” 

to indicate rejection by the crowd. Depending on the frequency and 

type of submitted improvements, participants received credit points 

and were assigned a dynamic ranking on the community Leader-

board. For more information about the NVC challenge, see the 

5-minute overview videos at https://sbvimprover.com/challenge-

3/videos or the 1-hour webinars at https://sbvimprover.com/chal-

lenge-3/tutorials.

Phase 3: Jamboree meeting
When the open phase was closed, the top-ranked participants were 

invited to a 3-day-long in-person jamboree to discuss improvements 

submitted by the community and to further refine the network mod-

els. Subject matter experts in lung, COPD, and network biology, 

as well as experts in other related biological processes, were also 

invited to guide the discussions and to provide expert feedback of 

missing or misrepresented signaling. Scientists involved in the con-

struction of the original non-disease networks and Phase 1-enhanced 

networks were present to provide feedback for the rationale behind 

the boundary conditions and the mechanics of network construc-

tion and BEL. During the jamboree, 15 networks were prioritized to 

discuss in small groups of 6–10 people focusing on one network at 

a time. At the end of each session, final decisions were made about 

follow-up actions for each network and these actions were carried 

out subsequently by the scientists who constructed the original net-

works because of their familiarity with the mechanics of network 

construction and BEL.

The changes to the 15 networks that were discussed during the 

jamboree are posted online68 in open-source XGMML (eXtensible 

Graph Markup and Modeling Language) format.

BEL: the language of the networks
The networks were built using the Biological Expression Lan-

guage (BEL), which is an open source language that can represent 

scientific findings in the life sciences in a computable form74. 

BEL was designed to represent scientific findings by capturing 

causal and correlative relationships in context, where context can 

include information about the biological and experimental system 

in which the relationships were observed and the supporting pub-

lication citations. The structure of a BEL node, which includes 

the biological entity, the namespace or database to standardize the 

nomenclature of the entity, and the function that describes the type 

of entity (protein, chemical, biological process, family, complex, 

etc), is shown in Figure 8. Table 1 and Table 2 show the definition 

of the prefixes for BEL namespaces and functions that appear in 

the networks.

Figure 8. Structure of a BEL node. A BEL term is the standard way a node is described. It includes an entity that is described using standard 
nomenclature in the Namespace and the Function fields of the entity.

BEL Func�on

p(HGNC:AKT1)

Namespace

En�ty 
Biological entity of interest, 

e.g. gene, protein, chemical, 

biological process

Describes the specific form of 

the entity, e.g.:

a: abundance

bp: biological process

kin: kinase activity

Represents a public database containing the 

Entity to enable a standard nomenclature, 

e.g.:

HGNC, MGI, EGID, CHEBI, GO

p: protein abundance
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Table 2. BEL namespaces.

Prefix Namespace

EGID Entrez Gene Identifiers

HGNC HGNC Approved Gene Symbols

MGI MGI Approved Gene Symbols

RGD RGD Approved Gene Symbols

SPAC Swiss-Prot Proteins (Accession Numbers)

SP Swiss-Prot (Entry Names)

HGU95AV2 Affymetrix GeneChip Human Genome U95Av2

HGU133AB Affymetrix GeneChip Human Genome U133AB

HGU133P2 Affymetrix GeneChip Human Genome U133Plus2

MGU74ABC Affymetrix GeneChip Mouse Genome U74ABC

MG430AB Affymetrix GeneChip Mouse Expression Set 430

MG4302 Affymetrix GeneChip Mouse Genome 430 2.0

MG430A2 Affymetrix GeneChip Mouse Genome 430A 2.0

RG230AB Affymetrix GeneChip Rat Expression Set 230AB

RG2302 Affymetrix GeneChip Rat Genome 230 2.0

CHEBIID Chemicals of Biological Interest (Identifiers)

CHEBI Chemicals of Biological Interest (Names)

LMSD* LIPID MAPS Structure Database (Names)

GOAC GO Biological Processes (Accession Numbers)

GO GO Biological Processes (Names)

MESHPP MeSH Phenomena and Processes (Names)

MESHD MeSH Diseases (Names)

MESHCL MeSH Cell Locations (Names)

GOCCACC GO Cellular Component (Accession Numbers)

GOCCTERM GO Cellular Component (Terms)

PFH Named Human Protein Families

NCH Named Human Complexes

PFM Named Mouse Protein Families

NCM Named Mouse Complexes

PFR Named Rat Protein Families

NCR Named Rat Complexes

SCHEM Selventa Legacy Chemical Names

SDIS Selventa Legacy Disease Names

*Unofficial BEL namespace to be formalized in BEL 2.0

Table 1. BEL functions.

Prefix Function

a abundance

bp biological process

cat catalytic activity

sec cell secretion

surf cell surface expression

chap chaperone activity

complex complex abundance

composite composite abundance

deg degradation

fus fusion

g gene abundance

gtp GTP bound activity

kin kinase activity

m microRNA abundance

act molecular activity

path pathology

pep peptidase activity

phos phosphatase activity

p protein abundance

pmod protein modification

rxn reaction

ribo ribosylation activity

r RNA abundance

sub substitution

tscript transcriptional activity

tloc translocation

tport transport activity

trunc truncation

Data availability
Up-to-date networks including all users’ activity can be browsed 

freely on the Bionet website (https://bionet.sbvimprover.com/). 

Permanent URLs to each network are listed in the associated Data 

Set (Original networks, NVC networks and their descriptions). Net-

works can be downloaded by logged in users who had a few actions 

on the site as XGMML file for offline use in the version that started 

a verification phase, i.e. after review and QC by experts. The 15 

networks discussed in the jamboree are available in a post-jamboree 

version. Moreover, different versions of the networks are available 

to browse and download in diverse formats from the CBN database 

available at causalbionet.com.

Data availability
Figshare: Original networks, NVC networks and COPD data 

sets used in: Enhancement of COPD biological networks using a 

web-based collaboration interface http://dx.doi.org/10.6084/m9. 

figshare.128458375 

Page 17 of 31

F1000Research 2015, 4:32 Last updated: 28 MAR 2022



Author contributions
WKS, MT, SB, JP, and BF constructed and reviewed the networks. 

JH and MCP conceived the idea and managed the project. JP and 

BF wrote the manuscript text. JP, BF, and SB developed the figures. 

The Challenge Best Performers: IB, VB, OVB, VC, NDD, LF, SG, 

JG, GIK, EK, RK, NL, QL, SM, YO, SCP, APM ES, SS, GSN, IS, 

AT, GVF, JW, IY, and MZ participated in the network verification 

process and in the review of the manuscript. All authors read and 

approved the final manuscript.

Competing interests
Selventa and PMI authors performed this work under a joint 

research collaboration funded by PMI. The Network Verification 

Challenge was funded by PMI.

Grant information
The research described in this article was funded by Philip Morris 

International in a collaborative project with Selventa.

Acknowledgements
The authors thank IBM for their help in organizing the Network 

Verification Challenge and jamboree, and Michael Maria and Jean 

Binder for their help in project management and preparation of 

this manuscript. The project team expresses their gratitude to the 

subject matter experts and moderators who actively participated in 

the jamboree: Maria Laura Belladonna, Michael Borchers, Maciej 

Cabanski, Natalia Boukharov, Stephan Gebel, Ignacio Gonzalez 

Suarez, Daniele Guardavaccaro, Anita Iskandar, Ulrike Kogel, 

Katica Jankovic, David Kling, Sophia Kossida, Hector de Leon, 

Karsta Luettich, Yukiko Matsuoka, Dragana Mitic Potkrajac, 

Michael Peck and Carine Poussin.

References

1. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic 

Acids Res. 2000; 28(1): 27–30. 

PubMed Abstract | Publisher Full Text | Free Full Text 

2. Kanehisa M, Goto S, Sato Y, et al.: Data, information, knowledge and principle: 

back to metabolism in KEGG. Nucleic Acids Res. 2014; 42(Database issue): 

D199–205. 

PubMed Abstract | Publisher Full Text | Free Full Text 

3. Gebel S, Lichtner RB, Frushour B, et al.: Construction of a computable network 

model for DNA damage, autophagy, cell death, and senescence. Bioinform Biol 

Insights. 2013; 7: 97–117. 

PubMed Abstract | Publisher Full Text | Free Full Text 

4. Schlage WK, Westra JW, Gebel S, et al.: A computable cellular stress network 

model for non-diseased pulmonary and cardiovascular tissue. BMC Syst Biol. 

2011; 5: 168. 

PubMed Abstract | Publisher Full Text | Free Full Text 

5. Westra JW, Schlage WK, Frushour BP, et al.: Construction of a computable cell 

proliferation network focused on non-diseased lung cells. BMC Syst Biol. 2011; 

5: 105. 

PubMed Abstract | Publisher Full Text | Free Full Text 

6. Westra JW, Schlage WK, Hengstermann A, et al.: A modular cell-type focused 

inflammatory process network model for non-diseased pulmonary tissue. 

Bioinform Biol Insights. 2013; 7: 167–192. 

PubMed Abstract | Publisher Full Text | Free Full Text 

7. Park JS, Schlage WK, Frushour BP, et al.: Construction of a Computable 

Network Model of Tissue Repair and Angiogenesis in the Lung. J Clinic Toxicol. 

2013; S12: 002. 

Publisher Full Text 

8. Catlett NL, Bargnesi AJ, Ungerer S, et al.: Reverse causal reasoning: applying 

qualitative causal knowledge to the interpretation of high-throughput data. 

BMC Bioinformatics. 2013; 14: 340. 

PubMed Abstract | Publisher Full Text | Free Full Text 

9. Lopez AD, Murray CC: The global burden of disease, 1990–2020. Nat Med. 1998; 

4(11): 1241–1243. 

PubMed Abstract | Publisher Full Text 

10. Ojo O, Lagan AL, Rajendran V, et al.: Pathological changes in the COPD lung 

mesenchyme--novel lessons learned from in vitro and in vivo studies. Pulm 

Pharmacol Ther. 2014; 29(2): 121–8. 

PubMed Abstract | Publisher Full Text 

11.  From the Global Strategy for the Diagnosis, Management and Prevention of 

COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD). 2014. 

Reference Source

12. Chapman RS, He X, Blair AE, et al.: Improvement in household stoves and risk 

of chronic obstructive pulmonary disease in Xuanwei, China: retrospective 

cohort study. BMJ. 2005; 331(7524): 1050. 

PubMed Abstract | Publisher Full Text | Free Full Text 

13. Ekici A, Ekici M, Kurtipek E, et al.: Obstructive airway diseases in women 

exposed to biomass smoke. Environ Res. 2005; 99(1): 93–98. 

PubMed Abstract | Publisher Full Text 

14. Hnizdo E, Sullivan PA, Bang KM, et al.: Airflow obstruction attributable to 

work in industry and occupation among U.S. race/ethnic groups: a study of 

NHANES III data. Am J Ind Med. 2004; 46(2): 126–135. 

PubMed Abstract | Publisher Full Text 

15. Winchester JW: Regional anomalies in chronic obstructive pulmonary disease; 

comparison with acid air pollution particulate characteristics. Arch Environ 

Contam Toxicol. 1989; 18(1–2): 291–306. 

PubMed Abstract | Publisher Full Text 

16. Fischer BM, Pavlisko E, Voynow JA: Pathogenic triad in COPD: oxidative stress, 

protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct 

Pulmon Dis. 2011; 6: 413–421. 

PubMed Abstract | Publisher Full Text | Free Full Text 

17. Calverley PM, Walker P: Chronic obstructive pulmonary disease. Lancet. 2003; 

362(9389): 1053–1061. 

PubMed Abstract | Publisher Full Text 

18. Adcock IM, Caramori G, Barnes PJ: Chronic obstructive pulmonary disease and 

lung cancer: new molecular insights. Respiration. 2011; 81(4): 265–284. 

PubMed Abstract | Publisher Full Text 

19. Barnes PJ: Chronic obstructive pulmonary disease * 12: New treatments for 

COPD. Thorax. 2003; 58(9): 803–808. 

PubMed Abstract | Publisher Full Text | Free Full Text 

20. Ansari S, Binder J, Boué S, et al.: On Crowd-verification of Biological Networks. 

Bioinform Biol Insights. 2013; 7: 307–325. 

PubMed Abstract | Publisher Full Text | Free Full Text 

21. Turan N, Kalko S, Stincone A, et al.: A systems biology approach identifies 

molecular networks defining skeletal muscle abnormalities in chronic 

obstructive pulmonary disease. PLoS Comput Biol. 2011; 7(9): e1002129. 

PubMed Abstract | Publisher Full Text | Free Full Text 

22. Kaneko Y, Yatagai Y, Yamada H, et al.: The search for common pathways 

underlying asthma and COPD. Int J Chron Obstruct Pulmon Dis. 2013; 8: 65–78. 

PubMed Abstract | Publisher Full Text | Free Full Text 

23. Maier D, Kalus W, Wolff M, et al.: Knowledge management for systems biology a 

general and visually driven framework applied to translational medicine. BMC 

Syst Biol. 2011; 5: 38. 

PubMed Abstract | Publisher Full Text | Free Full Text 

24. Cohen HY, Lavu S, Bitterman KJ, et al.: Acetylation of the C terminus of Ku70 

by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell. 2004; 13(5): 

627–638. 

PubMed Abstract | Publisher Full Text 

25. Cohen HY, Miller C, Bitterman KJ, et al.: Calorie restriction promotes mammalian 

cell survival by inducing the SIRT1 deacetylase. Science. 2004; 305(5682): 

390–392. 

PubMed Abstract | Publisher Full Text 

26. Luo C, Li Y, Yang L, et al.: A cigarette component acrolein induces accelerated 

Page 18 of 31

F1000Research 2015, 4:32 Last updated: 28 MAR 2022



senescence in human diploid fibroblast IMR-90 cells. Biogerontology. 2013; 

14(5): 503–511. 

PubMed Abstract | Publisher Full Text 

27. Motta MC, Divecha N, Lemieux M, et al.: Mammalian SIRT1 represses forkhead 

transcription factors. Cell. 2004; 116(4): 551–563. 

PubMed Abstract | Publisher Full Text 

28. Yao H, Chung S, Hwang JW, et al.: SIRT1 protects against emphysema via 

FOXO3-mediated reduction of premature senescence in mice. J Clin Invest. 

2012; 122(6): 2032–2045. 

PubMed Abstract | Publisher Full Text | Free Full Text 

29. Mortaz E, Kraneveld AD, Smit JJ, et al.: Effect of cigarette smoke extract on 

dendritic cells and their impact on T-cell proliferation. PLoS One. 2009; 4(3): 

e4946. 

PubMed Abstract | Publisher Full Text | Free Full Text 

30. Freeman CM, Curtis JL, Chensue SW: CC chemokine receptor 5 and CXC 

chemokine receptor 6 expression by lung CD8+ cells correlates with chronic 

obstructive pulmonary disease severity. Am J Pathol. 2007; 171(3): 767–776. 

PubMed Abstract | Publisher Full Text | Free Full Text 

31. Safford M, Collins S, Lutz MA, et al.: Egr-2 and Egr-3 are negative regulators of T 

cell activation. Nat Immunol. 2005; 6(5): 472–480. 

PubMed Abstract | Publisher Full Text 

32. Elser B, Lohoff M, Kock S, et al.: IFN-gamma represses IL-4 expression via IRF-1 

and IRF-2. Immunity. 2002; 17(6): 703–712. 

PubMed Abstract | Publisher Full Text 

33. Han ST, Mosher DF: IL-5 induces suspended eosinophils to undergo unique 

global reorganization associated with priming. Am J Respir Cell Mol Biol. 2014; 

50(3): 654–664. 

PubMed Abstract | Publisher Full Text | Free Full Text 

34. Gemelli C, Zanocco Marani T, Bicciato S, et al.: MafB is a downstream target of 

the IL-10/STAT3 signaling pathway, involved in the regulation of macrophage 

de-activation. Biochim Biophys Acta. 2014; 1843(5): 955–964. 

PubMed Abstract | Publisher Full Text 

35. Ma B, Kang MJ, Lee CG, et al.: Role of CCR5 in IFN-gamma-induced and 

cigarette smoke-induced emphysema. J Clin Invest. 2005; 115(12): 3460–3472. 

PubMed Abstract | Publisher Full Text | Free Full Text 

36. Shapiro SD: The macrophage in chronic obstructive pulmonary disease. Am J 

Respir Crit Care Med. 1999; 160(5 Pt 2): S29–32. 

PubMed Abstract | Publisher Full Text 

37. Wang X, Bu HF, Zhong W, et al.: MFG-E8 and HMGB1 are involved in the 

mechanism underlying alcohol-induced impairment of macrophage 

efferocytosis. Mol Med. 2013; 19: 170–182. 

PubMed Abstract | Publisher Full Text | Free Full Text 

38. Brusselle GG, Joos GF, Bracke KR: New insights into the immunology of 

chronic obstructive pulmonary disease. Lancet. 2011; 378(9795): 1015–1026. 

PubMed Abstract | Publisher Full Text 

39. Korns D, Frasch SC, Fernandez-Boyanapalli R, et al.: Modulation of macrophage 

efferocytosis in inflammation. Front Immunol. 2011; 2: 57. 

PubMed Abstract | Publisher Full Text | Free Full Text 

40. Cosio MG, Saetta M, Agusti A: Immunologic aspects of chronic obstructive 

pulmonary disease. N Engl J Med. 2009; 360(23): 2445–2454. 

PubMed Abstract | Publisher Full Text 

41. Hodge S, Hodge G, Ahern J, et al.: Smoking alters alveolar macrophage 

recognition and phagocytic ability: implications in chronic obstructive 

pulmonary disease. Am J Respir Cell Mol Biol. 2007; 37(6): 748–755. 

PubMed Abstract | Publisher Full Text 

42. Richens TR, Linderman DJ, Horstmann SA, et al.: Cigarette smoke impairs 

clearance of apoptotic cells through oxidant-dependent activation of RhoA. 

Am J Respir Crit Care Med. 2009; 179(11): 1011–1021. 

PubMed Abstract | Publisher Full Text | Free Full Text 

43. Ishikawa N, Hattori N, Tanaka S, et al.: Levels of surfactant proteins A and D and 

KL-6 are elevated in the induced sputum of chronic obstructive pulmonary 

disease patients: a sequential sputum analysis. Respiration. 2011; 82(1): 10–18. 

PubMed Abstract | Publisher Full Text 

44. Herold S, Mayer K, Lohmeyer J: Acute lung injury: how macrophages 

orchestrate resolution of inflammation and tissue repair. Front Immunol. 2011; 

2: 65. 

PubMed Abstract | Publisher Full Text | Free Full Text 

45. Funk CD: Prostaglandins and leukotrienes: advances in eicosanoid biology. 

Science. 2001; 294(5548): 1871–1875. 

PubMed Abstract | Publisher Full Text 

46. Chiang N, Serhan CN, Dahlen SE, et al.: The lipoxin receptor ALX: potent 

ligand-specific and stereoselective actions in vivo. Pharmacol Rev. 2006; 58(3): 

463–487. 

PubMed Abstract | Publisher Full Text 

47. Godson C, Mitchell S, Harvey K, et al.: Cutting edge: lipoxins rapidly stimulate 

nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived 

macrophages. J Immunol. 2000; 164(4): 1663–1667. 

PubMed Abstract | Publisher Full Text 

48. Arita M, Ohira T, Sun YP, et al.: Resolvin E1 selectively interacts with 

leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. 

J Immunol. 2007; 178(6): 3912–3917. 

PubMed Abstract | Publisher Full Text 

49. Schwab JM, Chiang N, Arita M, et al.: Resolvin E1 and protectin D1 activate 

inflammation-resolution programmes. Nature. 2007; 447(7146): 869–874. 

PubMed Abstract | Publisher Full Text | Free Full Text 

50. Rose JJ, Foley JF, Yi L, et al.: Cholesterol is obligatory for polarization 

and chemotaxis but not for endocytosis and associated signaling from 

chemoattractant receptors in human neutrophils. J Biomed Sci. 2008; 15(4): 

441–461. 

PubMed Abstract | Publisher Full Text 

51. Kumar S, Xu J, Perkins C, et al.: Cdc42 regulates neutrophil migration via 

crosstalk between WASp, CD11b, and microtubules. Blood. 2012; 120(17): 

3563–3574. 

PubMed Abstract | Publisher Full Text | Free Full Text 

52. Schmid E, Warner RL, Crouch LD, et al.: Neutrophil chemotactic activity and C5a 

following systemic activation of complement in rats. Inflammation. 1997; 21(3): 

325–333. 

PubMed Abstract | Publisher Full Text 

53. Ottonello L, Montecucco F, Bertolotto M, et al.: CCL3 (MIP-1alpha) induces in 

vitro migration of GM-CSF-primed human neutrophils via CCR5-dependent 

activation of ERK 1/2. Cell Signal. 2005; 17(3): 355–363. 

PubMed Abstract | Publisher Full Text 

54. Prill RJ, Saez-Rodriguez J, Alexopoulos LG, et al.: Crowdsourcing network 

inference: the DREAM predictive signaling network challenge. Sci Signal. 2011; 

4(189): mr7. 

PubMed Abstract | Publisher Full Text | Free Full Text 

55. Meyer P, Alexopoulos LG, Bonk T, et al.: Verification of systems biology 

research in the age of collaborative competition. Nat Biotechnol. 2011; 29(9): 

811–815. 

PubMed Abstract | Publisher Full Text 

56. Meyer P, Hoeng J, Rice JJ, et al.: Industrial methodology for process 

verification in research (IMPROVER): toward systems biology verification. 

Bioinformatics. 2012; 28(9): 1193–1201. 

PubMed Abstract | Publisher Full Text | Free Full Text 

57. Tarca AL, Lauria M, Unger M, et al.: Strengths and limitations of microarray-

based phenotype prediction: lessons learned from the IMPROVER Diagnostic 

Signature Challenge. Bioinformatics. 2013; 29(22): 2892–2899. 

PubMed Abstract | Publisher Full Text | Free Full Text 

58. Boué S, Talikka M, Westra JW, et al.: Causal biological network database: a 

comprehensive platform of causal biological network models focused on the 

pulmonary and vascular systems. Database (Oxford). 2015; pii: bav030. 

PubMed Abstract | Publisher Full Text 

59. sbv IMPROVER Project Team, Binder J, Boue S, Di Fabio A, et al.: Reputation-

based collaborative network biology. Pac Symp Biocomput. 2015; 270–281. 

PubMed Abstract | Publisher Full Text 

60. Hoeng J, Talikka M, Martin F, et al.: Toxicopanomics: Applications of Genomics, 

Transcriptomics, Proteomics, and Lipidomics in Predictive Mechanistic 

Toxicology. In Hayes’ Principles and Methods of Toxicology, Sixth Edition. Edited by 

Hayes AW, Kruger CL: CRC Press; 2014; 295–332. 

Publisher Full Text 

61. Hoeng J, Deehan R, Pratt D, et al.: A network-based approach to quantifying the 

impact of biologically active substances. Drug discovery today. 2012; 17(9–10): 

413–418. 

PubMed Abstract | Publisher Full Text 

62. Kogel U, Schlage WK, Martin F, et al.: A 28-day rat inhalation study with an 

integrated molecular toxicology endpoint demonstrates reduced exposure 

effects for a prototypic modified risk tobacco product compared with 

conventional cigarettes. Food and Chemical Toxicology. 2014; 68: 204–17. 

PubMed Abstract | Publisher Full Text 

63. Martin F, Sewer A, Talikka M, et al.: Quantification of biological network 

perturbations for mechanistic insight and diagnostics using two-layer causal 

models. BMC bioinformatics. 2014; 15: 238. 

PubMed Abstract | Publisher Full Text | Free Full Text 

64. Phillips B, Veljkovic E, Peck MJ, et al.: A 7-month cigarette smoke inhalation 

study in C57BL/6 mice demonstrates reduced lung inflammation and 

emphysema following smoking cessation or aerosol exposure from a 

prototypic modified risk tobacco product. Food Chem Toxicol. 2015; 80: 328–345. 

PubMed Abstract | Publisher Full Text 

65. Schlage WK, Iskandar AR, Kostadinova R, et al.: In vitro systems toxicology 

approach to investigate the effects of repeated cigarette smoke exposure on 

human buccal and gingival organotypic epithelial tissue cultures. Toxicol Mech 

Methods. 2014; 24: 470–487. 

PubMed Abstract | Publisher Full Text | Free Full Text 

66. Talikka M, Kostadinova R, Xiang Y, et al.: The response of human nasal and 

bronchial organotypic tissue cultures to repeated whole cigarette smoke 

exposure. Int J Toxicol. 2014; 33(6): 506–517. 

PubMed Abstract | Publisher Full Text 

67. Thomson TM, Sewer A, Martin F, et al.: Quantitative assessment of biological 

impact using transcriptomic data and mechanistic network models. Toxicol 

Appl Pharmacol. 2013; 272(3): 863–878. 

PubMed Abstract | Publisher Full Text 

68.  [https://bionet.sbvimprover.com/].

69. Ezzie ME, Crawford M, Cho JH, et al.: Gene expression networks in COPD: 

microRNA and mRNA regulation. Thorax. 2012; 67(2): 122–131. 

PubMed Abstract | Publisher Full Text 

Page 19 of 31

F1000Research 2015, 4:32 Last updated: 28 MAR 2022



70. Gemelli C, Orlandi C, Zanocco Marani T, et al.: The vitamin D
3
/Hox-A10 pathway 

supports MafB function during the monocyte differentiation of human CD34+ 

hemopoietic progenitors. J Immunol. 2008; 181(8): 5660–5672. 

PubMed Abstract | Publisher Full Text 

71. Ammous Z, Hackett NR, Butler MW, et al.: Variability in small airway epithelial 

gene expression among normal smokers. Chest. 2008; 133(6): 1344–1353. 

PubMed Abstract | Publisher Full Text | Free Full Text 

72. Shaykhiev R, Otaki F, Bonsu P, et al.: Cigarette smoking reprograms apical 

junctional complex molecular architecture in the human airway epithelium 

in vivo. Cell Mol Life Sci. 2011; 68(5): 877–892. 

PubMed Abstract | Publisher Full Text | Free Full Text 

73. Shaykhiev R, Krause A, Salit J, et al.: Smoking-dependent reprogramming of 

alveolar macrophage polarization: implication for pathogenesis of chronic 

obstructive pulmonary disease. J Immunol. 2009; 183(4): 2867–2883. 

PubMed Abstract | Publisher Full Text | Free Full Text 

74. [http://www.openbel.org/].

75. Boué S, Fields B, Hoeng J, et al.: Original networks, NVC networks and COPD 

data sets used in: Enhancement of COPD biological networks using a web-

based collaboration interface. Figshare. 2014. 

Data Source

Page 20 of 31

F1000Research 2015, 4:32 Last updated: 28 MAR 2022



Open Peer Review
Current Peer Review Status:    

Version 1

Reviewer Report 02 March 2015

https://doi.org/10.5256/f1000research.6402.r7527

© 2015 Ruch P. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Patrick Ruch  
BiTeM group, Library and Information Sciences, University of Applied Sciences—HEG, Geneva, 
Switzerland 

I would welcome more information about the original networks, which were generated out of 
text/data mining. In particular, I would like to know what keywords were used to fetch the source 
articles (a set of genes/gene products, e.g. AQP5, MUC5...; a list of pathologies and synonyms, e.g. 
COPD Chronic Obstructive Pulmonary Disorders, early-stage COPD; a list of chemical 
compounds...) , what search engines were used (e.g. PubMed), what collection (MEDLINE, PubMed 
Central full-texts). Additionally quantitative details would be welcome also: how many abstracts or 
full-text articles were collected first?
 
Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 12 May 2015
Stephanie Boue, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, 
Switzerland 

Networks were built in multiple phases, as briefly described in M&M and in figure 1. The 
“original” networks were built in a non-disease context as described in detail in the 
respective publications [1-5]. Based on relevant reviews in the area and context of interest, 
research papers that report the causal mechanistic relationships relevant for a specific 
biological process were identified and the causal relationships were extracted and added to 
the model. Mechanistic relationships were also added from an existing Knowledgebase, a 
collection of causal relationships curated over more than ten years from over 40,000 papers 
and over 500,000 statements.  
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High quality curation by trained database curators is needed in our community to convert the 
literature to computable models, but it is difficult to imagine how manual curation will scale to 
handle the ever-growing data generation rate in biology. Thus, the biological research community 
needs to figure out how to get crowdsourcing working for everyone as a tool to improve access to 
computable data. This paper does a very good job of describing how a set of COPD networks were 
constructed and enhanced (they grew in size and level of detail) through an interesting three-
phase process. However, it would be useful to better describe the utility of the resulting networks 
and to further analyze the crowdsourcing process itself. Addressing these points will give the work 
a broader impact. 
  
Utility of networks: 
 
It is not clear what advantages the use of causal networks brings compared to more established 
models in the community, such as molecular interaction networks used by many algorithms (e.g. 
gene function prediction, module detection, interpretation of molecular profile data, network 
biomarkers) or detailed biochemical pathway models (used by most textbooks and pathway 
databases). While many results are published in terms of causal networks (e.g. A activates B), one 
important issue with networks constructed by collecting these relationships is that they may be 
difficult to integrate across resources since they are context specific: A may activate B in the lung, 
but inhibit B in the heart and when these are integrated, a conflict arises. Many computational 
analysis methods require integration of networks from multiple sources to construct the largest 
available network and integrate this data with disease-specific molecular profile data (e.g. gene 
expression data) to gain context (as it seems is done in the RCR approach). It would be useful for 
the authors to further discuss the utility of context-specific causal networks for follow on 
discovery. 
  
I only noticed one sentence mentioning use: “By building the network model set in the BEL 
language format, we have generated a model framework suitable for biomarker discovery and for 
the interpretation of transcriptomic signatures found in human lung tissue.” However, this 
sentence is not clear and doesn’t cite any prior literature. How does using the BEL format create 
models suitable for biomarker discovery? Can’t molecular interaction or other types of networks 
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also be used for biomarker discovery? What type of biomarker discovery is referred to here? How 
are transcriptomic signatures interpreted and analyzed? 
  
Crowdsourcing comments: 
“Networks that were not enhanced with COPD-specific mechanisms from the literature or RCR 
included the DNA Damage and Notch Signaling networks. Although both these networks relevant 
to the development of COPD, they were not augmented beyond the original, non-diseased 
network scaffolds, because no studies on the differences in signaling between non-diseased and 
diseased states were available.” How do the authors know that no relevant studies were available? 
It seems that many papers at least have discussed links between COPD and DNA damage or Notch 
signaling (e.g. PMID: 19106307 published in 2009 “Down-regulation of the notch pathway in 
human airway epithelium in association with smoking and chronic obstructive pulmonary 
disease.”) 
  
“In total, 12 new nodes and 28 new edges were added to the Th1-Th2 Signaling network model 
during the jamboree discussions, thereby creating a comprehensive biological network of T-helper 
cell activity and their interactions with other immune cells in the context of COPD.”  How is 
‘comprehensive’ measured? How do we know how much of the available literature was covered by 
the crowdsource process? That is, what is the sensitivity of the crowdsourcing process? 
  
How many contributors were involved in enhancing each network in phase 2? Where were they 
from e.g. academia, industry? What incentivized them to contribute – for instance, were they 
COPD researchers? For the sake of research into crowdsourcing in biology, it would be very useful 
to provide additional analysis of the contributor community. We need to learn more about what 
works and what doesn’t in crowdsourcing initiatives so future generations of these approaches 
can be improved. 
  
The authors state “With nearly 900 new pieces of evidence added by the challenge crowd, a 
significant overall enhancement of the networks was achieved in a relatively short time (5 
months),” How many papers (PMIDs) supported the 900 pieces of evidence? 
  
Questions about use of BEL: 
Figure 4. The shorthand BEL notation is not widely recognized as a visual format and difficult to 
read in general. An easy to read visualization format would make the network figures much easier 
to understand. Also, what do the different edge end symbols (e.g. arrow, dot, diamond) mean? 
  
Part C of Figure 1 mentions “BEL to openBEL conversion”. What’s the difference between BEL and 
openBEL? 
  
Other comments: 
A broader review of the literature of pathway databases and crowdsourcing efforts should be 
included in the introduction.
 
Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.
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Author Response 12 May 2015
Stephanie Boue, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, 
Switzerland 

High quality curation by trained database curators is needed in our community to convert the 
literature to computable models, but it is difficult to imagine how manual curation will scale to 
handle the ever-growing data generation rate in biology. Thus, the biological research 
community needs to figure out how to get crowdsourcing working for everyone as a tool to 
improve access to computable data. This paper does a very good job of describing how a set of 
COPD networks were constructed and enhanced (they grew in size and level of detail) through an 
interesting three-phase process. However, it would be useful to better describe the utility of the 
resulting networks and to further analyze the crowdsourcing process itself. Addressing these 
points will give the work a broader impact. 
  
Authors’ response: We have previously published several papers introducing use cases 
where the biological signal is interpreted in a meaningful manner using the causal network 
models 1-7 and have added these references to support the statement in the text. The point 
of the reviewer is absolutely relevant and we acknowledge that it will be of utmost 
importance to critically assess how the usefulness of the networks changed through each 
phase of the network verification project. As a first step, the previously published analyses 
can be repeated with the crowd-verified networks to assess the impact of network 
verification on data interpretation. A thorough assessment of the impact of crowd 
verification, requires however an extensive analysis leveraging multiple relevant datasets 
and to be reported thoroughly would dissolve the intended content of this manuscript that 
concentrates on the way networks were built and later on verified and refined through a 
crowdsourcing approach. We will conduct such an analysis and include the reference as 
soon as it will become available. We have now addressed these points in the discussion. 
 
Utility of networks: 
 
It is not clear what advantages the use of causal networks brings compared to more established 
models in the community, such as molecular interaction networks used by many algorithms (e.g. 
gene function prediction, module detection, interpretation of molecular profile data, network 
biomarkers) or detailed biochemical pathway models (used by most textbooks and pathway 
databases). While many results are published in terms of causal networks (e.g. A activates B), one 
important issue with networks constructed by collecting these relationships is that they may be 
difficult to integrate across resources since they are context specific: A may activate B in the lung, 
but inhibit B in the heart and when these are integrated, a conflict arises. Many computational 
analysis methods require integration of networks from multiple sources to construct the largest 
available network and integrate this data with disease-specific molecular profile data (e.g. gene 
expression data) to gain context (as it seems is done in the RCR approach). It would be useful for 
the authors to further discuss the utility of context-specific causal networks for follow on 
discovery. 
  
Authors’ response: The usage of causal networks allows all applications that other network 
models would have, and in addition eases the biological interpretation of the results in a 
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mechanistic, cause and effect fashion. The new, sophisticated algorithms that have been 
developed to analyze molecular data using the causal network models fully exploit the 
specific structure of two-layer cause-and-effect network models, providing evidence that 
causality adds precision on top of interaction1,2,8. However, as the reviewer points out, 
causality may differ across conditions (space and time), and the usage of BEL is therefore 
particularly relevant, as it allows for detailed context annotation of each piece of evidence 
linked to a causal edge. To fully make use of this property, it is important that as much of 
the literature evidence are collected in a knowledgebase, which will only really be doable 
thanks to new text mining methods assisting the biologists with the creation of BEL 
evidences or via crowdsourcing efforts such as the one described here. Because it is a very 
large undertaking, we have so far tried to restrict the evidences to respiratory and 
cardiovascular context. It is not excluded, however, that as the crowd and interest for the 
network grows, a more comprehensive annotation of the networks are achieved, making 
them usable in a specific context. Furthermore, BEL is being used in both academic and 
industry settings and BEL converters are being developed that can translate information 
from other sources such as BioPAX and SBML to facilitate comprehensive aggregation of 
networks. 
 
I only noticed one sentence mentioning use: “By building the network model set in the BEL 
language format, we have generated a model framework suitable for biomarker discovery and 
for the interpretation of transcriptomic signatures found in human lung tissue.” However, this 
sentence is not clear and doesn’t cite any prior literature. How does using the BEL format create 
models suitable for biomarker discovery? Can’t molecular interaction or other types of networks 
also be used for biomarker discovery? What type of biomarker discovery is referred to here? How 
are transcriptomic signatures interpreted and analyzed? 
  
Authors’ response: We have previously published several papers introducing use cases 
where the biological signal is interpreted in a meaningful manner using the causal network 
models1-7 and have added these references to support the statement in the text. Martin et 
al. describes the development of network signatures that identify mechanisms that may 
explain differential drug treatment response between individuals, demonstrating that the 
causal two layered networks allow analyses which go beyond what normal networks can 
provide, i.e. provide classification power coupled with mechanistic detail8. 
 
Crowdsourcing comments: 
“Networks that were not enhanced with COPD-specific mechanisms from the literature or RCR 
included the DNA Damage and Notch Signaling networks. Although both these networks relevant 
to the development of COPD, they were not augmented beyond the original, non-diseased 
network scaffolds, because no studies on the differences in signaling between non-diseased and 
diseased states were available.” How do the authors know that no relevant studies were 
available? It seems that many papers at least have discussed links between COPD and DNA 
damage or Notch signaling (e.g. PMID: 19106307 published in 2009 “Down-regulation of the 
notch pathway in human airway epithelium in association with smoking and chronic obstructive 
pulmonary disease.”) 
  
Authors’ response: We reformulated the sentence. Although there may be papers that 
report on the correlation between COPD and these processes like the Notch paper you 
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mention, we are referring to mechanistic papers that will provide causal links within the 
model. For example, a paper from a NOTCH1 knockout experiment in a COPD animal model 
that shows a particular protein being decreased will allow us to add the causal link of 
NOTCH1 activity increasing that protein in the Notch signaling COPD model. These are the 
types of causal mechanistic papers we have searched for and have not found in the context 
of COPD. 
 
“In total, 12 new nodes and 28 new edges were added to the Th1-Th2 Signaling network model 
during the jamboree discussions, thereby creating a comprehensive biological network of T-
helper cell activity and their interactions with other immune cells in the context of COPD.”  How is 
‘comprehensive’ measured? How do we know how much of the available literature was covered by 
the crowdsource process? That is, what is the sensitivity of the crowdsourcing process? 
  
Authors’ response: As to avoid any confusion, and because the sensitivity of crowdsourcing 
is not easily measurable (as it would require to assess all possible literature), we 
reformulated to “more comprehensive”. 
 
How many contributors were involved in enhancing each network in phase 2? Where were they 
from e.g. academia, industry? What incentivized them to contribute – for instance, were they 
COPD researchers? For the sake of research into crowdsourcing in biology, it would be very useful 
to provide additional analysis of the contributor community. We need to learn more about what 
works and what doesn’t in crowdsourcing initiatives so future generations of these approaches 
can be improved. 
  
Authors’ response: A specific publication addresses the statistics related to participation9. 
Clearly, the most difficult part of such a crowdsourcing project is to get the right incentives 
for people to participate. We acknowledge that showing the usefulness of the networks and 
their refinements should allow for a bigger buy-in from the scientific community, and likely 
more participation. 
  
The authors state “With nearly 900 new pieces of evidence added by the challenge crowd, a 
significant overall enhancement of the networks was achieved in a relatively short time (5 
months),” How many papers (PMIDs) supported the 900 pieces of evidence? 
  
Authors’ response: 479 unique PMIDs supported the 886 new pieces of evidence. We have 
included this detail in the text. 
  
Questions about use of BEL: 
Figure 4. The shorthand BEL notation is not widely recognized as a visual format and difficult to 
read in general. An easy to read visualization format would make the network figures much 
easier to understand. Also, what do the different edge end symbols (e.g. arrow, dot, diamond) 
mean? 
 
Authors’ response: We have added a legend to the figure. Please note that the bionet 
website also has a legend for the network visualization part. 
  
Part C of Figure 1 mentions “BEL to openBEL conversion”. What’s the difference between BEL and 
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openBEL? 
  
Authors’ response: BEL was a proprietary language developed by Selventa. In the interest 
of the growing community of researchers using BEL, an openBEL language derived from 
BEL has been developed and released as open source http://www.openbel.org/. One of the 
main differences between the two is that in the openBEL, the namespace (i.e. databases in 
which the biological entity is defined) is clearly stated, allowing for a better standardization 
of used ontologies and databases. We have added this specification in the figure legend. 
  
Other comments: 
A broader review of the literature of pathway databases and crowdsourcing efforts should be 
included in the introduction. 
  
Authors’ response: We have discussed the comparison of our network models with other 
resources in other publications2,9,10. We have added this statement with appropriate 
references in the discussion for readers, who wish to find more background information 
about the network models and see how they compared with other approaches to interpret 
data. 
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This work uses a hybrid approach network modelling approach to incorporate predictive 
methodology with empirical knowledge and crowd sourcing for models of COPD pathogenesis. It 
is a good idea, thoroughly implemented and has produced a potentially useful set of pathways. 
The value of the resulting pathways is not clear as they do not have community validation, only 
community design. The manuscript is exhaustive in its descriptions and the process of developing 
the models is clear. 
 
The work represents the first phase of understanding for knowledge driven development of 
network models of COPD - the process of building the models is well described and the actual 
outcomes of the interactions with community are informative. The question of the actual true 
value of the models in terms of their accuracy, adoption and  accessibility is not yet 
convincingly addressed. That may be expected as the purpose of this work appears to be 
a description of the first part of the process of developing knowledge based models for a disease. 
The models as presented appear unvalidated and without a description of the framework for 
assessing the value and actioning of the networks, it is not clear how their uptake by the 
community will be assured. 
 
This is a unique effort but the manuscript should make more reference to 
existing pathway based community annotation efforts e.g.: wikipathways and/or open science 
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initiatives such as those promoted by community interaction leaders such as Andrew Su. It should 
show how the value of this approach differs to existing efforts. 
 
In terms of access to expertise, it is not clear how an uninvited scientist would contribute to an 
existing pathway model - except through the open but time-limited crowdsourcing venue. 
Straightforward validation of the models network is not tested in terms of their consistency or 
cross-valdiation within COPD high dimensional assays - where it should be possible to see 
evidence of enrichment for co-expression etc. 
 
Contextual nature of networks is mentioned and attempts are made to address contextual 
pathway structures, but the context is not tested. 
 
As a suggestion the authors should consider community validation 
 
Pathway accessibility and distribution is described but it is not clear as to how these models are 
available in any format except web browsing. For the models to be tested by the community, value 
would come from making them openly available as downloadable instances in several of the most 
popular formats. Feedback on their accuracy could then be encouraged.
 
Competing Interests: I was an invitee to one of the Improver conferences to present a talk but did 
not contribute to the manuscript or models. I know S. Boue as a previous collaborator and 
colleague on a publication "ASTD: The Alternative Splicing and Transcript Diversity database.,” vol. 
93, no. 3, pp. 213–220, Mar. 2009."

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 12 May 2015
Stephanie Boue, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, 
Switzerland 

This work uses a hybrid approach network modelling approach to incorporate predictive 
methodology with empirical knowledge and crowd sourcing for models of COPD pathogenesis. It 
is a good idea, thoroughly implemented and has produced a potentially useful set of pathways. 
The value of the resulting pathways is not clear as they do not have community validation, only 
community design. The manuscript is exhaustive in its descriptions and the process of developing 
the models is clear. 
 
The work represents the first phase of understanding for knowledge driven development of 
network models of COPD - the process of building the models is well described and the actual 
outcomes of the interactions with community are informative. The question of the actual true 
value of the models in terms of their accuracy, adoption and  accessibility is not yet 
convincingly addressed. That may be expected as the purpose of this work appears to be 
a description of the first part of the process of developing knowledge based models for a disease. 
The models as presented appear unvalidated and without a description of the framework for 
assessing the value and actioning of the networks, it is not clear how their uptake by the 
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community will be assured. 
 
Authors’ response: The point of the reviewer is absolutely relevant and we acknowledge 
that it will be of utmost importance to critically assess how the usefulness of the networks 
changed through each phase of the project. Whenever possible, orthogonal data sets were 
used to validate the network model during the building process. In the paper Systematic 
verification of upstream regulators of a computable cellular proliferation network model on non-
diseased lung cells using a dedicated dataset, we have done just that by using a specifically 
designed, independent lung cell proliferation dataset to verify the correctness of the cell 
cycle network model 1. The validation of all available networks requires an extensive 
analysis leveraging multiple relevant datasets and to be reported thoroughly would dissolve 
the intended content of this manuscript that concentrates on the way networks were built 
and later on verified and refined through a crowdsourcing approach. We will conduct such 
an analysis and make sure to reference it here as soon as it will be available. 
 
This is a unique effort but the manuscript should make more reference to 
existing pathway based community annotation efforts e.g.: wikipathways and/or open science 
initiatives such as those promoted by community interaction leaders such as Andrew Su. It should 
show how the value of this approach differs to existing efforts. 
 
Authors’ response: We have discussed the comparison of our network models with other 
resources in other articles2,3  and in a book chapter4. We have added this statement in the 
discussion for readers who wish to find more background information about the network 
models and see how they compared with other approaches to interpret data. 
 
In terms of access to expertise, it is not clear how an uninvited scientist would contribute to an 
existing pathway model - except through the open but time-limited crowdsourcing venue. 
 
Straightforward validation of the models network is not tested in terms of 
their consistency or cross-valdiation within COPD high dimensional assays - where it should 
be possible to see evidence of enrichment for co-expression etc. 
 
Contextual nature of networks is mentioned and attempts are made to address contextual 
pathway structures, but the context is not tested. 
 
As a suggestion the authors should consider community validation 
 
Pathway accessibility and distribution is described but it is not clear as to how these models are 
available in any format except web browsing. For the models to be tested by the community, 
value would come from making them openly available as downloadable instances in several of 
the most popular formats. Feedback on their accuracy could then be encouraged. 
  
Authors’ response: The networks can be browsed on the bionet.sbvimprover.com website, 
including latest votes and modification. More stable versions are stored in the 
causalbionet.com database2. 
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