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We report significant enhancement in superconducting properties of yttrium substituted
Ce1−xYxOFFeAs superconductors. The polycrystalline samples were prepared by two step solid state
reaction technique. X-ray diffraction confirmed tetragonal ZrCuSiAs structure with decrease in both
a and c lattice parameters on increasing yttrium substitution �with fixed F content�. With smaller ion
Y in place of Ce, the transition temperature increased by 6 K. Yttrium doping also lead to higher
critical fields as well as broader magnetization loops, particularly at elevated temperature. © 2009

American Institute of Physics. �doi:10.1063/1.3280046�

Shortly after the discovery of superconductivity in
oxypnictides,1 it was discerned that due to low transition
temperature �Tc� and the deleterious influence of the grain
boundaries, the possibility of technological application of
these novel materials would be rather limited. The maximum
Tc�55 K thus far is reported in a samarium-based
compound2 but this is far below the liquid nitrogen bench-
mark. Moreover the pnictides seem to have all the negatives
of high Tc cuprates particularly with respect to suppressed
in-field intragranular pinning and weak link behavior across
the grain boundaries.3,4 One favorable aspect of oxypnictides
is the high upper critical field �Hc2� as a consequence of
multiband effects.5 The important question of current rel-
evance is the route to increase the transition temperature and
critical current density in these materials without compro-
mising on high upper critical field parameters. In this letter
we report the successful synthesis of Ce1−xYxO0.8F0.2FeAs by
simultaneous substitution of yttrium for cerium and fluorine
for oxygen and study the superconducting properties in de-
tail. We show that optimal Y addition can lead to significant
increase in the transition temperature �Tc� and upper critical
field �Hc2� as well as some signatures of improvement of the
critical current density �Jc�.

Polycrystalline samples with nominal compositions of
Ce1−xYxO0.8F0.2FeAs and CeO0.8F0.2FeAs were synthesized
by a two step solid state method6 using high purity Ce, CeO2,
Y2O3, CeF3, and FeAs as starting materials. FeAs was ob-
tained by reacting Fe chips and As powder at 800 °C for 24
h. The raw materials were taken according to stoichiometric
ratio and then sealed in evacuated silica ampoules
�10−4 torr� and heated at 900 °C for 30 h. The powder was
then compacted �5 tons� and the disks were wrapped in Ta
foil, sealed in evacuated silica ampoules and heated at
1100 °C for 30 h. All chemical manipulations were per-
formed in a nitrogen-filled glove box. The samples were
characterized by powder x-ray diffraction with Cu-K� radia-
tion. Resistivity measurements were carried out using a
Cryogenic 8 T Cryogen-free magnet in conjunction with a
variable temperature insert. The inductive part of the mag-

netic susceptibility was measured using a tunnel diode based
rf �2.3 MHz� penetration depth technique.7 Magnetization
hysteresis loops and remanent magnetization of the samples
were measured by a superconducting quantum interface de-
vice magnetometer.

Figure 1 shows the powder x-ray diffraction patterns
for Ce0.6Y0.4O0.8F0.2FeAs and CeO0.8F0.2FeAs. Majority of
the observed reflections could be satisfactorily indexed
on the basis of the tetragonal ZrCuSiAs type structure.
Minor amount ��10%� of Y2O3 was observed as a second-
ary phase for Y-doped sample. The refined lattice parameters
were found to be a=3.9654�1� Å and c=8.5803�3� Å for
Y-doped sample and a=3.988�3� Å and c=8.607�8� Å for
without Y-doped phase. The lattice parameters are smaller
than the parent compound CeOFeAs �a=3.996 Å and
c=8.648 Å �Ref. 8�� and the reduction in the lattice volume
upon F and Y-doping indicates a successful chemical substi-
tution. Both the lattice parameters for Ce1−xYxOFFeAs
�x=0.1, 0.2, 0.3, and 0.4� decrease with the increase in
yttrium content but in this work we focus only on x=0 and
0.4 compositions. As shown in the inset of Fig. 1, the zero
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FIG. 1. �Color online� Powder x-ray diffraction patterns of �a�

Ce0.6Y0.4O0.8F0.2FeAs and �b� CeO0.8F0.2FeAs. The impurity phases are
Fe2As �+� and CeAs �&� for samples without Y and Y2O3 �*� for Y-doped
sample. Inset of figure shows resistivity plot for CeO0.8F0.2FeAs ��� and
Ce0.6Y0.4O0.8F0.2FeAs ���.
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field onset transition temperature for x=0.4 is estimated to be
48.6 K as compared to x=0 case where it is 42.7 K.9 Sur-
prisingly for the Ce�O/F�FeAs, the Tc is suppressed on in-
creasing external pressure and is lowered to 1.1 K at 265
kbar.10 On the contrary we find that the Tc of Ce�O/F�FeAs
enhances on increasing the chemical pressure by substituting
smaller Y3+ ion in place of Ce3+. The onset of diamagnetic
behavior below Tc is confirmed from the inductive part of rf
susceptibility as shown in the upper inset of Fig. 2. The onset
transition temperature �Tc� determined is 47.5 and 40.5 K for
Ce0.6Y0.4O0.8F0.2FeAs and CeO0.8F0.2FeAs, respectively. This
bulk magnetization shows a slightly lower Tc as compared to
the resistivity data. The residual resistivity ratio �RRR
=�300 /�50� is estimated to be 6.6 and 3.5 for CeO0.8F0.2FeAs
and Ce0.6Y0.4O0.8F0.2FeAs, respectively. We emphasize that
the onset of superconductivity in Ce0.6Y0.4O0.8F0.2FeAs rep-
resents the highest transition temperature in Ce-based oxyp-
nictides synthesized at ambient pressure.

The temperature dependence of the resistivity under
varying magnetic fields is shown in Fig. 2 for sample
Ce0.6Y0.4O0.8F0.2FeAs. Using a criterion of 90% of normal
state resistivity, the estimated Hc2-T phase diagram
for both samples is shown in lower inset of Fig. 2. The
Werthamer Helfand Hohenberg formula,11 gives Hc2�0�=
−0.693 Tc�dHc2 /dT�T=Tc. The slope of dHc2 /dT estimated
from the Hc2-T plots is �2.67 and �1.45 T/K for Y-doped
and without Y-doped samples, respectively. Correspondingly,
we find Hc2�0��90 T and 43 T for Ce0.6Y0.4O0.8F0.2FeAs
and CeO0.8F0.2FeAs respectively. Evidently, we are able to
significantly increase upper critical field by simultaneous
doping of yttrium and fluorine.12

The inset in Fig. 3 shows a characteristic magnetization
loop for the sample Ce0.6Y0.4O0.8F0.2FeAs. Both samples
showed asymmetric M�H� loop similar to polycrystalline La
iron oxypnictides.3 The loop width ��m�H�� is small, which
is a general feature of oxypnictides and could be due to ei-
ther poor intergrain connectivity or weak intragranular
pinning.3 The magnetic field dependence of �m at 4.2, 15,
and 30 K for both samples are compared in Fig. 3. The
samples were of different shapes and we have normalized
�m by the weight of the specimen �14.8 mg for CeOFFeAs

specimen and 18 mg for CeYOFFeAs�. A clear improvement
in magnetization loop width is observed for CeYOFFeAs
particularly at elevated temperature.

To analyze relative contribution from inter and intra-
granular regions to �m�H� and consequently to the corre-
sponding critical state current density, in Fig. 4 we show the
remanent moment as a function of increasing applied field.
The samples were studied �at T=5 K� under cycles of in-
creasing magnetic field followed by removal of the field and
measurement of remanent moment.3,13 When external field is
applied, first the flux enters into the intergranular region fol-
lowed by grain penetration above lower critical field Hc1.
The remanent moment equals the product of local current
density multiplied by current loop size and therefore a single
step variation mR versus H curve indicates predominant role
of intragrain supercurrents. We also observe that the rema-
nent moment deviates from zero at �7 and 20 mT for
CeO0.8F0.2FeAs and Ce0.6Y0.4O0.8F0.2FeAs, respectively. This
implies some improvement in intergrain pinning as well in
the Y doped sample. In the inset of Fig. 4, we plot Hc1�T�

derived from the departure from linearity in low field M-H
loop �elucidated in the inset of Fig. 3�. The technique is
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FIG. 2. �Color online� Temperature dependence of the electrical resistivity
of Ce0.6Y0.4O0.8F0.2FeAs under varying magnetic fields �0–4 T�. Upper inset
shows the inductive part of susceptibility as a function of temperature and
the lower inset depicts the temperature dependence of upper critical field
�Hc2� as a function of temperature for Ce0.6Y0.4O0.8F0.2FeAs ��� and
CeO0.8F0.2FeAs ���.
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FIG. 3. �Color online� Magnetic field dependence of magnetization hyster-
esis loop width ��m� at 4.2, 15, and 30 K for Ce0.6Y0.4O0.8F0.2FeAs �closed
symbols� in comparison with CeO0.8F0.2FeAs �open symbols�. Inset shows
the magnetization hysteresis loop at 4.2 K for polycrystalline
Ce0.6Y0.4O0.8F0.2FeAs and defines procedure for determination of Hc1.
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FIG. 4. �Color online� The field-dependent remanent magnetization at 5 K
for both samples. The inset shows the temperature dependence of lower
critical field �Hc1�.
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strictly applicable in slab geometry14 and typically overesti-
mates Hc1, but there is definite relative increase in the lower
critical field for the Y doped sample.

In summary, we have demonstrated substantial enhance-
ment in transition temperature, critical fields, and magnetiza-
tion loop widths by simultaneous doping of Y in place of Ce
and F in place of O in semimetal CeOFeAs. This multitudi-
nous beneficial effect is caused by three independent param-
eters; higher chemical pressure, selective tuning of interband
scattering, and superior pinning properties of Y2O3.
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