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ABSTRACT

Drops bouncing on an ultra-smooth solid surface can either make contact with the surface or be supported on a thin cushion of gas. If
the surface is superhydrophobic, either complete or partial rebound usually occurs. Recent experiments have shed light on the lubrication
effect of the underlying gas layer at the onset of impact. Using axisymmetric direct numerical simulations, we shed light on the energetics
of a drop bouncing from a solid surface. A complete energy budget of the drop and the surrounding gas during one complete bouncing
cycle reveals a complex interplay between various energies that occur during impact. Using a parametric study, we calculate the coefficient
of restitution as a function of Reynolds and Weber numbers, and the results are in good agreement with the reported experiments. Our
simulations reveal that the Weber number, not the Reynolds number, has a stronger effect on energy losses as the former affects the shape
of the drop during impact. At higher Weber and Reynolds numbers, a tiny gas bubble gets trapped inside the drop during impact. We
show that a large amount of dissipation occurs during the bubble entrapment and escape process. Finally, analysis of the flow field in the
underlying gas layer reveals that maximum dissipation occurs in this layer, and a simple scaling law is derived for dissipation that occurs
during impact.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0029484., s

I. INTRODUCTION

Understanding the dynamics of drop impact near a solid sur-
face offers insights into a diverse range of applications ranging from
ink-jet printing1,2 to heat transfer through spray cooling.3 Excel-
lent reviews by Yarin4 and Josserand and Thoroddsen5 cover many
aspects of drop impact dynamics. In the last two decades, a num-
ber of new and surprising discoveries have been made starting with
the seminal work of Xu et al.6 who showed that the pressure of the
surrounding gas plays a crucial role during the splashing process.
This discovery prompted Mandre et al.7 and Mani et al.8 to develop
a theory to examine the role of gas and lubrication effects near the
solid surface at the onset of impact. Experiments by Kolinski et al.,9

indeed, showed that a drop tends to skate on a thin layer of gas before
touchdown. Another important discovery made in recent years is
that drops can bounce on a smooth surface without ever making
contact with it.10,11 A thin layer of gas cushions the impact, and
lubrication pressure provides the necessary repulsion force for the
drop to bounce back. Using interferometric techniques, de Ruiter

et al.11,12 characterized the gas film beneath the drop in great detail
and showed that gas films of thickness in the micrometer and
nanometer ranges are trapped beneath the drop.

In a companion paper, we recently conducted an exhaustive
numerical study of a drop impacting a solid surface assuming the gas
to be incompressible,13 and the key results of this work are briefly
summarized below. Through a parametric study, the simulations
revealed that wettability-independent (WI) or non-contact bounc-
ing and wettability-dependent (WD) or bouncing with contact are
separated by a transition boundary in the We–Re plane. The sim-
ulations also revealed that WI bouncing is favored at low Re for a
wide range of Weber numbers. In such cases, the drop spreads on a
thin layer of gas beneath it. Kolinski et al.10 noted that large shear
rates generated in this gas layer can lead to excessive dissipation,
reducing the coefficient of restitution, always below 0.65 in their
experiments, despite the low viscosity of air. In contrast, Richard
and Quéré14 reported a coefficient of restitution close to 0.9 for a
drop bouncing on a superhydrophobic surface. Such a large value in
their experiments was attributed to very short contact times during
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which dissipation is negligible. The results of Kolinski et al. are also
in contrast to similar experiments by de Ruiter et al.11 who reported
a very high coefficient of restitution of 0.96± 0.04. Using careful esti-
mation of the energy budget for a wide range ofWe and Re, we show
later that the apparent discrepancy in the coefficient of restitution
between the works of Kolinski et al.10 and de Ruiter et al.15 can be
resolved by examining the role of Weber and Reynolds numbers. To
determine the coefficient of restitution (rc) accurately, it is necessary
to precisely compute the energy budget of a drop during a bouncing
event. Closely connected to rc is the contact time, τ, which is defined
as the duration for which the drop stays in contact with the solid
surface.

For water drops of about 1 mm at moderate impact velocities,
typically in the range of 0.2 m/s–2 m/s, Richard et al.16 showed that
contact time scales with the radius of the drop as τ ∼ R3/2, obtained
by balancing inertia of the drop with surface tension, and is indepen-
dent of velocity. Okumura et al.17 showed that drop deformation and
contact time depend on a delicate balance of inertia, gravity, and sur-
face tension. At lower impact velocities, they showed that the contact
time increases with a decrease in the velocity and drop deforma-
tion scales asWe1/2. A more sophisticated quasi-static model of drop
impact was developed by Moláček and Bush18 who showed that the
contact time and coefficient of restitution depend on both theWeber
and Ohnesorge numbers.

Understanding the energetics of drop impact also helps in
determining the radial extent of drop spreading upon impact. Kim
and Chun19 performed experiments using a variety of drop and solid
combinations to study spreading and recoiling dynamics. They used
an empirically determined dissipation factor to account for viscous
dissipation during drop spreading and found that an increase in
the Weber number promotes faster recoil. Not surprisingly, drops
with a large equilibrium contact angle were found to have very
short contact times, a result consistent with the finding of Richard
and Quéré.14 For drops bouncing on superhydrophobic surfaces at
higher Weber numbers, contact dissipation may be small, but such
drops undergo pronounced oscillations after lift-off, which gener-
ates vigorous motion inside the drop leading to additional viscous
dissipation. Richard et al.16 argued that in their experiments, bulk of
the dissipation is due to the internal motion inside the drop caused
by damped surface oscillations after lift-off. We later quantify such
internal dissipation in relation to surface oscillations as a function
of Weber and Reynolds numbers. Pasandideh-Fard et al.20 devel-
oped a simple model for the maximum extension diameter of the
drop, Dmax, assuming that all the initial kinetic and surface ener-
gies are converted to surface energy and viscous dissipation when
the drop spreads to its maximum extent. Their model improves
upon an earlier model of Chandra and Avedisian,21 which overes-
timated the value of Dmax. Clanet et al.

22 performed experiments
with a low-viscosity drop impacting a superhydrophobic surface
for moderate values of the Weber number (2 < We < 900), where
We ≙ ρlV

2
0R0/σ is the Weber number associated with the impact

velocity V0(≙ √2gH0) for a drop of radius R0 with density and
surface tension denoted by ρl and σ, respectively, and showed that
Dmax ∼We1/4. This differs from the lowWeber number experiments
for drops on superhydrophobic surfaces where a different scaling is
observed, Dmax ∼We1/2.

In this study, we use direct numerical simulations to calcu-
late the energy budget of an impacting drop with emphasis on how

various exchanges of energies differ as a function of Weber and
Reynolds numbers. We further show how the coefficient of resti-
tution varies with We and Re, which will help resolve the dis-
crepancy between the values reported by de Ruiter et al.11 and
Kolinski et al.10

II. NUMERICAL SETUP AND ENERGETICS

We numerically simulate a falling drop using the open source
code Gerris in an axisymmetric configuration. The code, developed
by Popinet,23 uses an advanced quadtree adaptive mesh refinement
and is well known for its accurate interface capture algorithm and
surface tension implementation.24 The geometry used in the current
study is identical to a recently completed study for drop impact on
a solid surface.13 For suitability of the solver to drop impact dynam-
ics and validation studies, the reader is referred to our companion
paper.13

A drop of radius R0 is released from an initial height H0, and
a schematic of the problem setup is shown in Fig. 1. The viscos-
ity ratio between the drop and the surrounding gas is fixed at μl/μg
= 55.5, mimicking a water drop falling in air. For numerical stabil-
ity, we keep the density ratio fixed at ρl/ρg = 100 although a value of
1000 showed no appreciable difference in the results. Furthermore,
since the focus will be on collision dynamics near the solid surface,
the viscosity ratio plays a more important role than the density ratio.
To facilitate complete rebound, the contact angle is kept fixed at
170○, inspired by the experiments of Richard and Quéré.14 For low
We and Re, a drop bounces without ever making contact with the
solid surface. In such cases, the impact is cushioned by a thin film
of gas beneath the drop and is referred to as wettability-independent
bouncing. In the work of Sharma and Dixit,13 we show that the drop

FIG. 1. (a) Schematic of the problem setup showing all the relevant parameters in
the problem. (b) Schematic view of the typical shapes assumed by the drop during
one complete bouncing cycle. The solid curves (i) and (ii) show the shape of the
drop at t = 0 and at the onset of impact. The other shapes shown with dashed lines
at (iii)–(v) correspond to the shape at the maximum deformation on the surface,
at the instant of lift-off from the surface, and at the maximum height after impact,
respectively.
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shapes and the drop–gas interface profiles during contact are in good
agreement with experiments for water in air scenario. Moreover, the
numerical results were found to be in excellent agreement with well-
established scaling laws for the height of the drop when it undergoes

its first deformation before impact, Hd ∼ Ca
1/2
g derived by Pack et

al.,25 and theminimum thickness of the gas film, hmin ∼ St−8/9We−2/3

derived by Mandre et al.,7 where St = ρlV0R0/μg is the Stokes
number. A phase diagram in the We–Re plane, shown in Fig. 2,
shows two distinct regimes of impact referred to as wettability-
independent (WI) contact and wettability-dependent (WD) con-
tact. In the WI regime, the drop is supported on a thin gas layer
whose thickness scales with We and St. In the WD regime, contact
occurs either at the outer periphery of the drop or near the axis
of symmetry. To enable complete rebound, all our simulations are
carried out at a fixed contact angle of 170○, representing bounc-
ing from superhydrophobic surfaces similar to the experiments of
Richard and Quéré.14

The primary goal of this study is to obtain a detailed energy
budget as the drop completes one bouncing cycle, i.e., a drop from
an initial release height H0 impacts the surface and reaches a new
height after lift-off, H1. During this motion, potential energy of the
drop, EP(t), converts to kinetic and surface energies, EK(t) and ES(t).
Drag due to the surrounding gas and internal motions within the
drop contributes to viscous dissipation. Let E0 be the initial energy

of the drop, given by E0 ≙ E
(0)
p + E

(0)
S . Applying the principle of

energy conservation, the drop has to obey the following relation:

EP(t) + EK(t) + ES(t) +D(t) ≙ E0, (1)

where D(t) represents viscous dissipation of energy. It is instructive
to combine energies associated only with the drop to highlight the
role played by the gas. We therefore define

E(t) ≙ EP(t) + EK,d(t) + ES(t), (2)

where the subscript d in the kinetic energy shows that this energy
is only associated with the drop motion. All the energies defined

FIG. 2. Phase diagram in the Re–We plane showing two distinct regimes,
the wettability-independent regime (WI) (shown with a shaded region) and the
wettability-dependent regime (WD). The symbols correspond to parameter values
where simulations are carried out for one complete bouncing cycle. The transition

between the two regimes is grid dependent (see the companion paper13 for more
details).

above can be calculated in terms of the flow fields and drop shape
numerically using the integrals

EP(t) ≙ ∫
Ω
ρl B g h dΩ, (3)

EK,d(t) ≙ 1

2 ∫Ωd

ρl (u2 + v
2)dΩ ≙ 1

2 ∫Ω ρl B (u2 + v
2)dΩ, (4)

EK,g(t) ≙ 1

2 ∫Ωg

ρg (u2+v2)dΩ ≙ 1

2 ∫Ω ρg (1−B) (u2+v2)dΩ. (5)

In the above expressions, u and v are radial and axial velocities, and
B is the volume fraction of liquid with B = 1 representing the liquid
phase and B = 0 representing the gas phase. In the volume-of-fluid
method adopted in the current study, the interface cells have a value
of B between 0 and 1 such that the density of any cell is given by ρ =
Bρl + (1 − B)ρg . When the drop is not in contact with the solid sur-
face, surface energy is simply the product of surface tension (liquid–
gas free energy, σ) and surface area of the drop. However, when
the drop is in contact with the solid, additional interfacial energy
between the drop and the solid, σsl, needs to be taken into account.
For a contact angle, θ = θe, and using Young’s law, the surface energy
can be defined as

ES(t) ≙ { σAs(t), during flight

σ(As(t) − as(t) cos(θe)), during contact,
(6)

where σ is the surface tension of the drop–gas interface, As(t) is the
surface area of the drop–gas interface, and as(t) is the surface area of
the drop–solid interface.

Energy lost through viscous dissipation in Eq. (1) is obtained
by integrating the rate of dissipation of mechanical energy, per unit
mass of the fluid, due to viscosity, Φ, as

D(t) ≙ ∫ t

0
Φ(s)ds, (7)

where Φ(t) can be written in terms of the stress tensor T and rate-
of-strain tensor S as

Φ ≙ ∫
Ωd ∪Ωg

T : SdΩ

≙ ∫
Ω

⎡⎢⎢⎢⎢⎣2μ
⎛⎝(∂u∂r )

2

+ (∂v
∂y
)2 + (u

r
)2⎞⎠ + μ(∂v

∂r
+
∂u

∂y
)2⎤⎥⎥⎥⎥⎦dΩ. (8)

Here, Ωd andΩg represent the drop and gas phases, respectively, and
μ = Bμl + (1 − B)μg is the average viscosity in a cell. Since some of the
drop’s energy is lost to the kinetic energy of the gas, EK ,g , we define
two new energy terms,

ED(t) ≙ E(t) +D(t), (9)

ET(t) ≙ ED(t) + EK,g(t). (10)

The first expression, ED(t), represents the total energy of the drop
including viscous dissipation (in drop and gas), while the second
expression, ET(t), is the total energy of the system accounting for all
losses; thus, ET should be equal to E0 at all times. Apart from minor
numerical errors, ET is practically indistinguishable from E0 in our
simulations, guaranteeing the numerical accuracy of the solver.
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TABLE I. Glossary of important parameters used in the study.

Initial energy of the drop (t = 0) E0 = EP(t) + EK(t) + ES(t) + D(t) Equation (1)
Total energy of the drop E(t) = EP(t) + EK ,d(t) + ES(t) Equation (2)
Potential energy of the drop EP(t) Equation (3)
Kinetic energy of the drop EK ,d(t) Equation (4)
Kinetic energy of the gas EK ,g(t) Equation (5)
Surface energy of the drop–gas interface ES(t) Equation (6)
Viscous dissipation D(t) Equation (7)
Total energy loss LT(t) Equation (11)
Energy loss in contact Lc(t) Equation (12)

Coefficient of restitution rc ≙ √∣V1∣/∣V0∣ Equation (14)

Reynolds number Re
ρlV0R0

μl

Stokes number St
ρlV0R0

μg

Weber number We
ρlV

2
0R0

σ

Having defined all the relevant energy quantities, we define two
new quantities to quantify energy loss during drop impact. The total
energy loss during one complete bouncing cycle for a drop starting
at heightH0 until it again attains a newmaximum heightH1 after its
first impact can be calculated in terms of the total loss, LT , defined
by

LT ≙ E0 − E1. (11)

Similarly, loss of energy during impact can be calculated as

Lc ≙ Eb − Ea, (12)

where Eb and Ea are the total energies of the drop before (taken to be
the instant of time at when the drop undergoes its first deformation)
and after impact, respectively. Table I summarizes all the energies
and parameters used in this work.

III. RESULTS AND DISCUSSION

A. Energy budget

All energies are non-dimensionalized by the initial total energy,
E0, and their variation with time is shown in Fig. 3 as the drop

FIG. 3. Energy budget for one complete bouncing cycle for We = 3.21 and Re = 207 showing various energies associated with the drop and the gas non-dimensionalized with
the initial energy E0. The kinetic, ĒK,d , and potential energies, ĒP , are shown on the left y axis, while surface energy, ĒS, energy of the drop without viscous dissipation, Ē,
energy of the drop with viscous dissipation, ĒD, and total energy of the drop and gas, ĒT , are shown on the right y axis. See text for more details. Note the difference in the
scale on both the left and right y axes. The vertical dashed-dotted lines marked (a)–(d) represent the time at the onset of impact, at the maximum deformation of the drop, at
the onset of lift-off, and at the maximum height, respectively.
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completes one complete rebound cycle for We = 3.21 and Re = 207,
a case in the wettability-independent regime of Fig. 2. Variations in
energy budget are punctuated by distinct phases in drop’s evolution
during the impact process, which are shown by vertical lines marked
(a)–(d). The corresponding drop shapes at each of these times are
shown in Fig. 4. At t = 0, the drop descends from rest possessing
only potential and surface energies. The ratio of these two energies
is given by

E
(0)
P

E
(0)
S

≙ We

6
. (13)

In this particular case, E
(0)
S > E

(0)
P due to the small Weber num-

ber used. At the instant shown by (a) in Fig. 3, the drop begins to
deform from its spherical shape indicated by a concomitant increase
in the surface energy. At this instant of time, the kinetic energy of the
drop is at its maximum, and the drop shape is shown in Fig. 4(a). A
region of high pressure is developed beneath the drop, which rapidly
decelerates the drop’s motion. The drop soon makes “touchdown”
but, in this case, is supported on a thin cushion of gas below it. The
kinetic energy of the drop then rapidly reduces at the expense of its
surface energy, and the drop deforms to its maximum radial extent
at the time shown by (b). The drop shape along with the pressure
field inside it at this time is shown in Fig. 4(b). Even at the drop’s
maximum extent, internal circulation does not completely cease,
giving rise to a non-zero kinetic energy. In the work of Sharma and
Dixit,13 we show that the maximum spreading diameter obeys the
scaling, Dmax ∼We1/2. This scaling was first derived by Richard and
Quéré14 using the argument of exchange of kinetic and surface ener-
gies during impact, and the results in Fig. 3 are consistent with their
findings. Surface tension then causes the drop to retract, and it even-
tually achieves lift-off from the solid surface at time (c). The drop
takes the shape of a distorted prolate spheroid, as shown in Fig. 4(c).
Most of the viscous dissipation occurs during impact as evident from
a large decrease in drop’s energy, E(t), given in Eq. (2), between
times (a) and (c). The drop continues to oscillate during its ballistic
motion, causing additional viscous dissipation due to internal cir-
culation inside the drop. As a result, both the kinetic and surface

energies exhibit damped oscillations, providing a route for contin-
uous loss of drop’s energy during its flight. In Sec. IV, we return
to the issue of energy loss and compare loss during contact and
during flight in greater detail. It has to be noted that only a small
fraction of the drop’s energy is exchanged with the gas, shown as
EK ,g , in this case, less than 2.5%. During drop’s upward motion, we
observe a nearly perfect exchange of kinetic and surface energies, as
shown in Fig. 5. To compare these energies, we plot only the fluc-
tuating part of the energies obtained by subtracting out the moving-
average value. The drop eventually reaches a newmaxima,H1, losing∼20% of its total energy E0, and the drop shape at the new height
is shown in Fig. 4(d).

We now examine how the energy budget for a falling drop
changes with time for a sample case in the wettability-dependent
regime of the phase diagram of Fig. 2. The energy budget with
We = 3.21 and Re = 1035 is shown in Fig. 6 and has to be viewed
in conjunction with the evolution of drop shapes shown in Fig. 7
and three-dimensional and streamline plots showing the bubble cap-
ture and escape process in Figs. 8–10, respectively. The evolution of
all energies until the first deformation of the drop, shown with the
vertical dashed-dotted line at (a), is identical to the previous case at
Re = 207. Inertia causes the drop to rapidly spread on the surface
until time (b) when the surface energy reaches a maximum at the
expense of kinetic energy. The interface at the axis of symmetry con-
tinues to move downward, while the drop retreats inward radially.
Capillary waves generated near the surface travel azimuthally along
the drop’s surface amplifying in the process. These waves focus at
the axis of symmetry, resulting in vigorous vertical oscillations of the
upper interface of the drop, as shown in Fig. 8(a). The interface then
descends downward and undergoes necking. This process traps a gas
bubble inside it, as shown in Fig. 8(d). Cusp-like regions are formed
at the axis of symmetry that results in localized regions of high pres-
sure, Fig. 7(c). Fluid rapidly moves away from this high pressure
zones, resulting in the formation of a high speed jet. On the upper
side, the high speed jet breaks down into tiny drops due to rapid
acceleration, whereas on the lower side, this jet can collide with the
trapped bubble, generating tiny secondary bubbles inside the bub-
ble (see movie-1 of the supplementary material). The intense motion
results in some of the drop’s energy to be lost to accelerate the gas,

FIG. 4. Drop shapes for We = 3.21 and
Re = 207 at four different times: (a)
t̄ ≙ 1.9719, (b) t̄ ≙ 2.075, (c) t̄ ≙ 2.26,
and (d) t̄ ≙ 3.349. The color contours
show the variation of non-dimensional
pressure, P̄ ≙ P/(σ/R0). The four pan-
els correspond to time instants shown
with the vertical dashed-dotted lines in
the energy budget of Fig. 3. Note that
contour levels are different in the four
panels.
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FIG. 5. A close-up view of the fluctuat-
ing part of the kinetic and surface ener-
gies of the drop after rebound, from
Fig. 3, showing perfect exchange of
energies between the two. ÊK,d repre-
sents the moving-average value of the
kinetic energy, and ĒS,0 is the initial sur-
face energy of the drop.

some to viscous dissipation due to rapid and vigorousmotions inside
the drop, and a small portion to the mass lost from ejection of tiny
droplets. This process occurs over a very short timescale, shown at
time (c), and causes a sudden drop in the drop’s energy, shown as
ΔĒbub,F , which represents the energy lost during bubble entrapment.
We show later that bubble entrapment and escape result in a sud-
den increase in viscous dissipation. Figure 9 shows the sequence of
events leading to trapping of the bubble. Large scale inward motion
of the drop, as shown in Figs. 9(a)–9(c), shows trapping of a gas
bubble inside the drop. Strong vortical flow is generated inside the
bubble as revealed in close-up views shown in Figs. 9(e) and 9(f),
consistent with the findings of Tripathi et al.26 who noted that

vorticity tends to concentrate in the lighter fluid. At the end of the
bubble entrapment process, the upper interface of the drop tends to
violently recoil, releasing a high speed jet. Contours of velocity mag-
nitude in Fig. 9 reveal that significantly high velocities are generated
in the gas phase, particularly after the complete enclosure of the bub-
ble inside the drop. In physical terms, consider a 1 mm water drop
impacting a surface with the sameWe, as given in Fig. 9. This trans-
lates to impact speed, V0 ≈ 0.46 m/s, which leads to a gas velocity
of about 46 m/s.

The trapped bubble remains lodged inside the drop during lift-
off at time (d) in Fig. 6 and also shown in Fig. 7(d), and in some
cases, it even stays inside the drop until the drop undergoes its

FIG. 6. Energy budget for one com-
plete bouncing cycle for We = 3.21
and Re = 1035 showing various ener-
gies associated with the drop and the
gas non-dimensionalized with the initial
energy E0. All quantities are the same,
as defined in Fig. 3. The vertical dashed-
dotted lines marked (a)–(f) represent the
times at the onset of impact, at the
maximum deformation of the drop, at
the instant of bubble entrapment, at the
onset of lift-off, at the instant of bubble
escape, and at the maximum height after
impact, respectively.
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FIG. 7. Drop shapes for We = 3.21 and
Re = 1035 at six different times: (a)
t̄ ≙ 1.959, (b) t̄ ≙ 2.047, (c) t̄ ≙ 2.09,
(d) t̄ ≙ 2.241, (e) t̄ ≙ 3.071, and (f)
t̄ ≙ 3.374. The color contours show the
variation of non-dimensional pressure,
P̄ ≙ P/(σ/R0). The six panels corre-
spond to the time instants shown with
the vertical dashed-dotted lines in the
energy budget of Fig. 6. Note that con-
tour levels are different across the pan-
els. See the supplementary material for
a three-dimensional evolution of bubble
entrapment and escape.

second bounce. In this particular case, the trapped bubble slowly
drifts upward and eventually emerges out of the drop in a violent
escape at time (e). During its emergence, the bubble traps a thin
curved film of liquid between its upper surface and the drop’s sur-
face. This thin film ruptures at its periphery, as shown in Fig. 7(e),
similar to the process described by Manica et al.27 Very large pres-
sures are generated at the tip of the filament due to tiny curva-
tures there [see the inset of Fig. 7(e)]. This causes the tip to rapidly
retract allowing pressurized gas inside the bubble to rapidly escape,
imparting kinetic energy to the gas. Figure 10 shows the bubble

escape process in finer detail. A thin film of liquid is trapped between
the upper surface of the drop and the escaping bubble, as shown in
Fig. 10(a). As soon as the rupture is initiated, pressurized gas inside
the bubble rapidly escapes, as evident from the contours of veloc-
ity magnitude shown in Figs. 10(b) and 10(c). Simultaneously, the
thin liquid film shown in Fig. 10(d), now in the form of a filament,
rapidly retreats radially in a time of approximately Δt̄ ≈ 8 × 10−4.
In dimensional terms, this amounts to a time of about 30 μs. A
counter-rotating toroidal vortex pair, Fig. 10(e), is generated in the
gas generating a great deal of viscous dissipation. The retracting
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FIG. 8. Three-dimensional representation of drop shapes showing the process of
bubble entrapment during drop impact. The four panels are in sequence (from left
to right) at non-dimensional time t̂ ≙ (t − t0)/τ: (a) 0.82 at maximum spreading,
(b) 1.01 at the intermediate stage of downward motion of the upper interface, (c)
1.06 at the onset of necking of the cylindrical filament, and (d) 1.12, high speed jet
ejection at the axis of symmetry, where t0 is the time of first deformation. Param-
eters used are We = 3.21 and Re = 1035. See the supplementary material for a
three-dimensional evolution of bubble entrapment.

filament collapses upon itself, resulting in a vertically accelerating
jet [Fig. 10(f)], which can hit the drop during its rebound and entrap
tiny gas bubbles again. These tiny secondary bubbles, as shown in
Fig. 7(f), may again create tertiary bubbles, but our simulations do
not have sufficient resolution to track escape of these bubbles. See
movie-2 of the supplementary material for a 3D visualization of an
escaping bubble. The process of bubble escape causes a sudden drop
in the drop’s total energy, ΔEbub ,E, as shown at time (e) of Fig. 6,
where the subscript E denotes an escaping bubble.

B. Coefficient of restitution

In the above discussion, energy budgets were presented for two
specific parameter values, viz., Re = 207, We = 3.21 and Re = 1035,
We = 3.21. A number of interesting facts emerged from this analy-
sis, which are briefly listed as follows: (i) energy loss occurs when the
drop is in contact with the solid surface, and (ii) energy loss occurs
when the drop is in motion after bouncing from the surface. The for-
mer occurs primarily due to large shear stresses generated near the
solid surface, in both the gas and the drop, while the latter occurs
due to surface oscillation-induced internal motions inside the drop,
which generates additional viscous dissipation. We estimate both

these energy losses for the entire range of We and Re shown in the
phase diagram of Fig. 2. Conventionally, energy loss during impact
is represented through the coefficient of restitution, defined as

rc ≙ ∣V1∣∣V0∣ , (14)

where V1 is the velocity after impact and V0 is the velocity of the
drop before impact. In the case of a drop undergoing large shape
changes, determination of the velocity is often difficult in experi-
ments. In such cases, a height-based coefficient of restitution has
sometimes been used,

rh ≙
√

H1

H0
, (15)

where H1 is the maximum height attained by the drop after the
impact and H0 is the initial release height at t = 0.

The two definitions of the restitution coefficient will be the
same if viscous dissipation in the drop during its ballistic motion
before and after impact as well as drag from the surrounding gas are
negligible.

de Ruiter et al.15 reported a coefficient of restitution, rc ≥ 0.88,
and, in some cases, reported values as high as 0.96 ± 0.04. This
value is in contrast to the value reported by Kolinski et al.10 who
reported rh ≤ 0.65 based on a height-based measurement, and it was
suggested that such low values in rh are due to the formation of a
strong shear layer in the gas cushion beneath the drop. de Ruiter
et al.15 used water drops in their experiments, whereas Kolinski
et al.10 used water–glycerol mixtures, which increases the viscosity
of the drops. Furthermore, the impact velocities are lower in the lat-
ter case, which results in lower Re values. In both the studies, the
surfaces are hydrophilic, and the drops never make physical contact
with the solid surface for the entire range of Re and We considered
in the present study. The large variation in the value of the restitu-
tion coefficient in the two studies can be reconciled by examining
the role of Re and We in these experiments. High values of rc were
also reported in the works of Footte28 and Richard and Quéré,14 the

FIG. 9. Flow field during the bub-
ble entrapment process for We = 3.21
and Re = 1035 showing instantaneous
streamlines and contours of velocity
magnitude at (a) t̄ ≙ 2.0902, (b)
t̄ ≙ 2.0904, and (c) t̄ ≙ 2.0908. Close-
up views shown in panels (d)–(f) shows
the vortical motion inside the trapped
bubble. The high speed jet generates
intense velocities near the axis of sym-
metry imparting kinetic energy to the gas
and also causes viscous dissipation dur-
ing bubble entrapment. See the supple-
mentary material for a three-dimensional
evolution of bubble entrapment.
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FIG. 10. A close-up view of the fluid
motion generated during escape of the
entrapped bubble. A thin liquid film
trapped between the escaping bubble
and the upper surface of the drop rup-
tures [(a) and (b)] and rapidly retreats
[(c) and (d)]. This generates another high
speed jet at the axis of symmetry [(e) and
(f)]. The panels are shown in sequence
at non-dimensional times, t̄: (a) 3.0705,
(b) 3.071, (c) 3.0711, (d) 3.0718, (e)
3.0724, and (f) 3.0737. See the supple-
mentary material for a three-dimensional
evolution of bubble escape.

former being a numerical study for head-on collision of two drops,
while the latter being an experimental study of drops bouncing on
superhydrophobic surfaces. de Ruiter et al.15 attributed such high
values to the absence of the contact line and the strong repulsion
force provided by a lubricating gas layer, while Richard and Quéré14

attributed high values of rc to the low contact time in their experi-
ments. It is possible that contact-less bouncing also occurred in the
work of Richard and Quéré,14 but there is no evidence of this in their
paper. Richard and Quéré14 suggested that a great deal of energy
loss occurs when the drop is in flight. By calculating the kinetic
energy based on the center of mass of the drop and kinetic energy
due to internal motions inside the drop, de Ruiter et al.15 obtained a
detailed energy budget of the drop. Major losses during each bounce
were attributed to viscous losses in the thin lubricating gas layer.
This is consistent with the reason provided by Kolinski et al.10 who
attributed low rc in their experiments to large dissipation in the gas
layer.

The above survey suggests that viscous losses in the thin inter-
vening gas layer varies as a function of St and We, where St = Re/λ
is the Stokes number and λ = μg/μl is the viscosity ratio. To recon-
cile differences between the above studies, we extract the coefficient
of restitution rc from our simulation data and plot it in the We–Re
plane, as shown in Fig. 11. The experimental values of the restitution
coefficient in the work of de Ruiter et al.15 and Kolinski et al.10 are
shown with symbols, while the simulation values at the same Re and
We are shown alongside in brackets. It is clear that the agreement
with simulations and experiments is satisfactory. More importantly,
our simulations reveal that the restitution coefficient strongly varies
with both Re and We. The differences observed in the two sets of
experiments can thus be attributed to very different experimental
parameters used in the two studies. Figure 11 also reveals that for
We ⪆ 1, rc becomes less sensitive to the Reynolds number and rapidly
decreases with an increase inWe. At higherWe, the drop undergoes
large scale deformation, generating a great deal of vigorous motions

inside the drop. This motion coupled with lower values of surface
tension at higher We causes the drop to spread to greater extent
on the solid surface obeying the scaling law rk ∼ We1/4, where rk
is the radial extent of the gas layer (see the work of Sharma and
Dixit13). This generates a strong shear in the gas layer, generating
excess dissipation at the location of hmin, i.e., where the gas layer is
at its thinnest. This can be easily verified by determining the non-
dimensional rate of dissipation written asΦ/Φ∗, whereΦ is given by
Eq. (8) andΦ∗ is the characteristic value of dissipation. Using impact
velocity V0 and gas layer thickness when the drop undergoes its first

deformation, Hd ∼ R0Ca
1/2
g ,13 we have Φ∗ ≙ V0σ/λR2

0. Contours of
Φ/Φ∗ shown in Fig. 12 at two different times show that dissipation,
indeed, assumes large values in the thin gas film, both during the
spreading and receding stages. Low values of dissipation are found
inside the drop consistent with the observation by Gopinath and
Koch29 who noted that for Re ≫ We1/2, viscous dissipation inside
the drop can be neglected.

At lowerWe, Fig. 11 shows that rc strongly depends on the value
of Re at lower Reynolds numbers and weakly depends on the Weber
number. This is a direct consequence of increased viscosity at lower
Re, which causes large dissipation in the gas film. At low We, the
deformation of the drop is also reduced; thus, rc values remain rel-
atively high in this region for a wide range of Reynolds numbers, as
shown in Fig. 11. The role ofWe and Re becomes even more evident
in Fig. 13 where non-dimensional viscous dissipation, D̄ ≙ D/E0,
is plotted for four different parameter combinations. This can be
explained using the simple analogy of a mass-spring-damper system,
given by

mÿ + γ(We,Re)ẏ + k(We)y ≙ F(t), (16)

where damping coefficient γ is a function of both Re and We,
whereas stiffness k is a function of We alone. For very low We, sur-
face tension dominates over inertia, and the drop does not exhibit
large scale oscillations on its surface. In this limit, the drop largely
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FIG. 11. Variation of the coefficient of
restitution, rc , on the We–Re plane.
The experimental values obtained by

de Ruiter et al.15 (water droplet impact

on glass) and Kolinski et al.10 (water–
glycerol drop on mica) are shown along
with the simulation given in brackets.
Simulation values are within 10% of the
experimentally obtained values.

FIG. 12. Contours of the non-
dimensional rate of dissipation (Φ/Φ∗)
during spreading and receding stages of
the drop for We = 1.07 and Re = 207 at
(a) t̂ ≙ 0.19 and (b) t̂ ≙ 2.372. The inset
shows the drop–gas interface profile
near the solid surface where the rate of
dissipation is maximum.

FIG. 13. Variation of non-dimensional
viscous dissipation, D̄ ≙ D/E0, for four
combinations of Re and We. The vertical
dashed-dotted and dashed lines, com-
mon for the same value of We, show the
time instant when contact begins (shown
as A) and when the drop departs the
surface (shown as B).
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remains spherical, and dissipation/damping simplifies to γ ≈ γ(Re).
However, at higher We, large scale oscillations inside the drop
induce undulations in the underlying gas layer beneath the drop.13

The radial extent of the gas layer is large at high We, which gen-
erates strong shear stress in the gas layer, causing viscous dissipa-
tion. Furthermore, surface oscillation induced motions contribute
to additional viscous dissipation during drop motion in flight.

The effect of We and Re or St on viscous dissipation can be
understood through a simple scaling law derived below. Viscous
dissipation during contact given in Eq. (8) scales as

D ∼ μg (V
h
)2 Ω T, (17)

where V and h are characteristic velocity and length scales in the
gas film, Ω is the volume of the gas film beneath the drop, and T is
the characteristic time scale. Using impact velocity V0 for velocity,
gas thickness at the drop’s first deformation, Hd, for thickness, and

FIG. 14. Scaling for non-dimensional viscous dissipation as a function of (a) Stokes
and (b) Weber numbers. The symbols in each plot correspond to three different
values of Weber numbers (a) or Reynolds numbers (b). The dashed line shows
the scaling law given by Eq. (19).

inertia-capillary time scale τ ∼ (ρlR3
0/σ)1/2 for time, we have

D ∼ μg (V0

Hd

)2 π r
2
k Hd τ

∼ μg V2
0

Hd

r
2
kτ (18)

where Ω is taken to be the volume of a uniform gas film of thickness
Hd and radius rk. In the work of Sharma and Dixit,13 we show that

Hd ∼ R0Ca
1/2
g , where Cag = We/St is the capillary number based

on gas viscosity and rk ∼ R0We1/4. Using these expressions, viscous
dissipation reduces to

D ∼ μgV0R
2
0 We

1/2
St

1/2
. (19)

Figures 14(a) and 14(b) show variation of non-dimensional viscous
dissipation with the Stokes number (at fixed We) and Weber num-
ber (at fixed St), and the agreement with the scaling law derived
in Eq. (19) is excellent except for low values of We. Our scal-
ing law derivation makes two important assumptions: (i) valid-
ity of the lubrication approximation and (ii) time scale T ≈ τ. At
very low We, the extent of the gas film, defined as the radial loca-
tion of the outer minima in gas film thickness, follows the scaling
rk ∼ R0We1/4. Hence, in the lowWe cases, lubrication approximation
becomes questionable. Following the work of Moláček and Bush18

who showed that, at low We, the time of contact increases with a
decrease in the Weber number, our second assumption becomes
questionable at low We. These two reasons explain the deviation of
our results in Fig. 14(b) from the scaling law (19).

IV. ENERGY LOSSES DURING A BOUNCING CYCLE

In Sec. III B, the coefficient of restitution was estimated based
on the velocities before and after impact. Richard and Quéré14 esti-
mated that most of the energy lost in their experiments was due to
viscous dissipation during flight. This can occur owing to drag from
the surrounding gas and internal motions generated inside the drop
due to surface oscillations. It is also relevant to note that Kolinski
et al.10 calculated the coefficient of restitution based on maxi-
mum drop heights given in Eq. (15). Large amplitude multi-mode
drop oscillations generate large internal circulations inside the drop,
which leads to viscous dissipation that cannot be accounted for in
the restitution coefficient based on the change in the velocity dur-
ing impact. In Fig. 15(a), we first plot the total energy loss, LT = E0− E1, that occurs during one complete bouncing cycle, i.e., until the
centroid of the drop attains a maxima after impact. The contour of
energy loss, LT , strongly depends on We as evident from the nearly
vertical contours. At large We, energy loss reaches to about 0.4, i.e.,
40% of drop’s energy is lost in one bouncing cycle.

To investigate whether this loss occurs during contact or dur-
ing flight, we plot the ratio of energy lost during contact to total
energy lost, Lc/LT , as shown in Fig. 15(b). We are primarily inter-
ested in the wettability-independent region, which occurs below
the dotted curve in Fig. 15(b). Consistent with the discussion in
Sec. III B, at highWe, energy lost during contact is the primary con-
tributor for total energy loss and can be up to 80% of the total loss.
At a high Weber number, which is also the region of interest in the
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FIG. 15. Variation of (a) energy loss during one complete bouncing cycle, LT /E0,
and (b) relative contribution of energy loss during contact vis-à-vis total energy
loss, Lc /LT . Panel (a) shows that the maximum energy loss occurs at high Weber
numbers and is only weakly dependent on the Reynolds number. Panel (b) shows
that at higher Weber numbers, contact losses dominate over the energy loss that
occurs during flight. The symbols correspond to experimental parameters used by

de Ruiter et al.15 (∗) and Kolinski et al.10 (▲).

work of Kolinski et al.,10 the drop assumes complex shapes, gener-
ating a great deal of internal motion inside the drop.13 This results
in significant energy loss during contact. However, at very low We
where the contact time is also very short, most of the energy is lost
during flight. AtWe ≈ 1, the loss of energy is nearly equipartitioned
between loss during contact and loss during flight. Figure 15(b) is
one of the key findings of this study and establishes the role of We
unequivocally on energetics of drop impacts. The patchy region that
occurs in the wettability-dependent region at high Re andWe is also
the region where bubble entrapment and escape occurs. Energy loss
during contact in this region depends on the precise nature of the
bubble entrapment process, which requires a further study.

The role of the Weber number is best illustrated by examining
its effect on the drop shape during impact. We illustrate this with

one specific example taken at Re = 51.7 and atWe = 2.14, 3.21.Modal
decomposition is carried out by expanding the drop shape in terms
of Legendre polynomials,

R(t, θ) ≙ R0 +
∞∑
n≙0

cn(t)Pn(cos θ), (20)

where n is the mode number, Pn(⋅) is the Legendre polynomial
of order n, and cn(t) is the corresponding coefficient. We use the
orthogonality of the Legendre polynomials to estimate cn in terms of
drop shapes,

cn(t) ≙ 2n + 1

2 ∫ 1

−1
(R(t, θ) − R0)Pn(cos θ)d(cos θ). (21)

We extract the coefficients cn for two different Weber numbers
at various times, as shown in Fig. 16, for the first ten modes. At
We = 0.53, a dominant surface mode of the drop occurs at n = 2,
which corresponds to a prolate–oblate shape transition through-
out the contact process, while higher modes have a significantly
lower amplitude. However, atWe = 3.21, significant energy is trans-
ferred to higher modes, which also leads to faster decay of energy

FIG. 16. Modal decomposition for two different cases: (a) We = 0.53, Re = 51.7
and (b) We = 3.21, Re = 51.7 at various times during drop evolution. For lower
values of Weber numbers, the fundamental oscillation mode n = 2 absorbs most
of the energy, whereas at higher Weber numbers, energy is distributed to higher
modes too. Three-dimensional drop shapes shown in each panel correspond to
the instants of time when decomposition is carried out.
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of the drop at this Weber number. Prosperetti30 studied the viscous
decay of an oscillating drop and obtained the decay rate of surface
oscillations as

b0 ≙ (n − 1)(2n + 1) μl
ρlR

2
0

. (22)

This is consistent with the expression for viscous dissipation
obtained by Moláček and Bush18 assuming that the flow is approxi-
mately irrotational inside the drop,

D ≙ 8πμR3
0∑(n − 1

n
)c2n. (23)

As one may expect, higher modes, indeed, decay more rapidly than
lower modes as is also found in our simulations.

V. SUMMARY AND CONCLUSIONS

In the current work, we present an axisymmetric numerical
study of a drop impacting a dry solid surface. In a related study by
Sharma and Dixit,13 it was shown that drop impact dynamics can
be divided into wettability-dependent and wettability-independent
regimes depending on the value of Reynolds and Weber numbers.
The present study explores energetics of drop impact with the aim of
investigating the role of Reynolds and Weber numbers on the coef-
ficient of restitution. A parametric study is carried out for a wide
range of Re and We at fixed density and viscosity ratios. In each
case, potential, kinetic, and surface energies as well as viscous dis-
sipation are calculated for one complete bouncing cycle. A detailed
energy budget is presented for two special cases at We = 3.21 and
Re = 207, 1035 shown in Figs. 3 and 6. Before impact, surface energy
remains constant, while gravitational potential energy is converted
to kinetic energy. Due to low values of gas viscosity used in the
current study (equivalent of an air–water system), viscous dissipa-
tion due to drag is negligible. The onset of impact is indicated by a
steep rise in the surface energy at the expense of the drop’s kinetic
energy until the drop spreads to its maximum radial extent. In the
wettability-independent bouncing process where the drop is sup-
ported on a thin cushion of gas, rapid recoil occurs, resulting in
a sharp decline in the surface energy. In the wettability-dependent
process, recoil occurs only for hydrophobic and superhydrophobic
surfaces like in the present study. Even for such impacts, the drop
first spreads on a thin gas film sometimes referred to a “skating pro-
cess”9 before contact eventually occurs. Strong shear is generated
in the gas layer below, causing a large amount of viscous dissipa-
tion. The drop eventually lifts off completing the contact process.
The energy loss that occurs during contact, Lc, is the major contrib-
utor in total loss, LT , for high Weber number cases and is weakly
dependent on the Reynolds number. Viscous dissipation is found to

follow a simple scaling law, given byD ∼ μgV0R
2
0We1/2St1/2. For high

We and Re, bubble entrapment can often occur, as shown in Figs. 8
and 9. During this process, the drop assumes complex shapes and
involves ejection of high speed jets, causing additional viscous dis-
sipation. As the drop rises after contact, strong surface oscillations
result in vigorous internal motions inside the drop. Such motions
cause additional viscous dissipation, which can be obtained as
(LT − Lc). As is clearly evident in Fig. 15(b), for low We, bulk of
the energy loss occurs during flight, whereas at high We, bulk of
the energy loss occurs during contact. This is consistent with the

FIG. 17. A schematic view showing various types of drop–solid interactions as a
function of We and Re. Physical contact with the solid surface occurs at higher
values of Re, while surface-oscillation-induced dissipation occurs at higher Weber
numbers. Region 4, at higher values of We and Re, corresponds to bubble
entrapment cases.

experiments of Kolinski et al.10 carried out for We > 1 who noted
that shear in the gas layer causes bulk of the dissipation, clearly sug-
gesting that Lc is the dominant contributor in the total energy loss
for highWe impacts.

A key result of this paper is a detailed quantification of the
coefficient of restitution, rc, shown in Fig. 11. Low Weber num-
ber impacts were found to have a high value of rc, whereas high
Weber number impacts were found to have lower values of rc. Satis-
fyingly, the simulations were found to be in excellent agreement with
those of Kolinski et al.10 and de Ruiter et al.15 For the first time, our
study systematically showed how energetics of a bouncing drop sub-
tly depend on the value of Weber and Reynolds numbers. The main
findings of this paper can be summarized with a simple schematic
shown in Fig. 17.

A number of open questions remain that need careful exper-
iments and further numerical studies. Our simulations fail to cap-
ture dynamics if gas film thicknesses reach sub-micrometer levels.
For high speed impacts, it is well known that gas films can eas-
ily reach nanometer ranges where both the rarefaction and non-
continuum effects become important. Their role in energetics of
impact is unclear and requires further investigation. Our simulations
also assume that the impact, even in wettability-dependent regimes,
is axisymmetric, but a number of experiments have revealed that
localized contacts first occur, and the subsequent contact linemotion
is highly non-axisymmetric. Roughness of the substrate is another
important feature that requires further investigation, mainly with
regard to its effect on the coefficient of restitution. Some of these top-
ics are currently under investigation and will be presented in future
studies.

SUPPLEMENTARY MATERIAL

See the supplementary material for a three-dimensional evolu-
tion of bubble entrapment and escape during drop impact.
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