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emulating synaptic response in n‑ 
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Brain-inspired, neuromorphic computing aims to address the growing computational complexity 
and power consumption in modern von-Neumann architectures. Progress in this area has been 
hindered due to the lack of hardware elements that can mimic neuronal/synaptic behavior which 
form the fundamental building blocks for spiking neural networks (SNNs). In this work, we leverage 
the short/long term memory effects due to the electron trapping events in an atomically thin channel 
transistor that mimic the exchange of neurotransmitters and emulate a synaptic response. Re-doped 
(n-type) and Nb-doped (p-type) molybdenum di-sulfide  (MoS2) field-effect transistors are examined 
using pulsed-gate measurements, which identify the time scales of electron trapping/de-trapping. 
The devices demonstrate promising trends for short/long term plasticity in the order of ms/minutes, 
respectively. Interestingly, pulse paired facilitation (PPF), which quantifies the short-term plasticity, 
reveal time constants (τ1 = 27.4 ms, τ2 = 725 ms) that closely match those from a biological synapse. 
Potentiation and depression measurements describe the ability of the synaptic device to traverse 
several analog states, where at least 50 conductance values are accessed using consecutive pulses of 
equal height and width. Finally, we demonstrate devices, which can emulate a well-known learning 
rule, spike time-dependent plasticity (STDP) which codifies the temporal sequence of pre- and 
post-synaptic neuronal firing into corresponding synaptic weights. These synaptic devices present 
significant advantages over iontronic counterparts and are envisioned to create new directions in the 
development of hardware for neuromorphic computing.

Despite the enormous success of scaling the complementary metal–oxide–semiconductor (CMOS) transistor, 
the inability to control the rising computational complexity and associated power consumption have revealed 
inherent limitations of the von-Neumann  architecture1. In the von-Neumann model, the logic and memory 
elements are functionally and physically separated, and connected via a data bus which is expected to facilitate 
rapid and efficient exchange of  information2. With the increasing operational frequencies and computing require-
ments, one of the primary bottlenecks in terms of data throughput and power consumption/heat dissipation 
is centered on the capability of these data exchange  buses3. The recognition of this limitation was concurrent 
with the development of artificial intelligence (AI) algorithms that mimic the low-power learning algorithms in 
the biological  brain4,5. The biological computing paradigm is essentially non-Von Neumann; computation and 
memory are tightly interwoven in functionality and  morphology5. In contrast to the sequential instruction set in 
CMOS architecture; learning and computing in the brain happen in a parallel, event-based manner. Therefore, 
the attempt to integrate an essentially non-Von Neumann AI algorithm into a von-Neumann CMOS architecture 
was generally unsuccessful due to two core issues vis-à-vis complexity/scalability and power  consumption6–8. To 
replicate the analog computing scheme of one synapse, at least 10 CMOS transistors are  warranted9. Considering 
that these architectures demand tightly interwoven elements, the scalability of these systems becomes a primary 
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 challenge8. Furthermore, in conjunction with the aforementioned issue, large power (> 1,000 W) is consumed 
by such platforms to perform tasks that the human brain achieves with < 4  W10. This points to the immediate 
need to explore electronic devices that can mimic the synaptic/neuronal response and are compatible with the 
CMOS fabrication process.

Memristive devices have been employed to successfully demonstrate synaptic behavior and emulate learning 
rules with a variety of physical mechanisms (resistive switching, phase change, spintronic etc.)6,11. This approach 
presents the dual advantages of scalability and very low power  consumption12. However, because these devices are 
two-terminal, the signal transmission is inhibited during the learning operation, where the output signal is fed 
back to the synaptic  device13. Since the signal transmission and learning function cannot be carried out simul-
taneously, the emulation of a natural synaptic response is hindered, and the complexity of the read-out/learning 
circuitry is significantly increased. To address this issue, three-terminal ‘iontronic’ transistors were developed 
where both signal transmission (through source-drain terminals) and learning (through the gate terminal) can 
be achieved  simultaneously14,15. While the use of ‘movable’ alkali metal ions through a gel electrolyte intuitively 
matches the signal transmission mechanism in a biological synapse; however, this approach will be difficult to 
implement in the alkali metal–ion free policy of CMOS fabrication  facilities14.

In this work, we demonstrate that the dynamics of charge trapping and de-trapping in a single n- and p-chan-
nel  MoS2 transistor can be effectively employed to mimic a synaptic response (Fig. 1a,b). Owing to their inherent 
‘thinness’, electronic transport in two-dimensional materials demonstrates an enhanced susceptibility to the 
influence of trapped charges in the surrounding  medium16–18. This is generally observed by a reduced mobility 
and a large hysteresis in the device transfer  characteristics19. The presence of a hysteresis, where the drain current 
becomes a multi-value variable with respect to the gate voltage is a serious issue for digital computing. However, 
as we shall demonstrate in this work the same hysteresis induced multi-states can be effectively engineered to 
mimic synaptic memory and learning. First, we examine the trapping and de-trapping dynamics of electron traps 
using pulsed measurements, assess their stability and the ability to tune many intermediate conductance states. 
Next, we perform a careful evaluation of the essential synaptic behaviors such as potentiation and depression 
(P-D), pulse paired facilitation (PPF) and spike time-dependent plasticity (STDP), which codify the ‘event-based’, 
parallel, analog-computing paradigm in these devices. Remarkably, the time constants for short and long-term 
phase in these devices are commensurate with those observed in biological synapses. We envision that the con-
trolled engineering of a simple physical mechanism (trapping dynamics in 2D semiconductor/insulator material 
systems) can help re-shape the development of synaptic elements for next-generation neuromorphic computing.

Figure 1.  (a) Schematic representation of the synaptic response where action potentials control the release 
and absorption of neurotransmitters, with an associated excitatory postsynaptic current (EPSC), (b) The 
measurement scheme is illustrated in the cartoon, where charge trapping and de-trapping dynamics in an 
atomically thin channel 2D material (in our case Re- or Nb- doped  MoS2) is used to mimic the synaptic 
response, where the presynaptic pulse is applied on the back-gate terminal and the excitatory post-synaptic 
current [EPSC] is measured at the source-drain terminal at a constant drain bias of 1 V. (c) Optical microscope 
image of a fabricated Re-doped  MoS2 transistor on an  SiO2 (85 nm) substrate which also serves as the back-gate. 
(d) DC characterization of a hysteresis loop for both Re- (n-type, red curve) and Nb- (p-type, blue curve) doped 
 MoS2 transistors showing clear evidence of electron trapping and de-trapping. (e) Shift in threshold voltage after 
50 consecutive pulses to the gate, in order to determine the average charge trapping/de-trapping after each pulse.
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Results and discussion
MoS2 flakes of Rhenium (Re) n-doped and Niobium (Nb) p-doped serve as the channel material for n-FET and 
p-FET, respectively, on thermally grown  SiO2/p++ Si (Fig. 1c) (Please see “Methods” for more details). The study 
was conducted for transistors with both polarities to emphasize the universality of the physical mechanisms and 
serve as a platform for future CMOS integration. The choice of a constrained channel thickness enabled through 
the use of an atomically thin 2D semiconductor, is instrumental in maximizing the influence of charge trapping 
and de-trapping events in the gate oxide on the measured drain current and hence the synaptic weights. Elec-
trical measurements were performed in two configurations. First, standard DC measurements using a B1500 
semiconductor device analyzer (SDA) were performed with the underlying  SiO2 used as the back gate. Second, 
the pulsed measurements were performed using the Keithley 4200 semiconductor characterization system (SCS) 
with additional pulse measurement units (PMU). The pulsed signal was applied to the back gate and the response 
of the drain current  (Ids) to these pulses was measured at a constant drain-source bias  (Vds) (Fig. 1b) (please see 
“Methods” for more details). All measurements were performed in ambient conditions. In this case, the drain 
current serves as the excitatory postsynaptic current (EPSC), which is a direct measure of the device conduct-
ance as a function of time. The pre- and post-synaptic pulses, which are applied on the  SiO2/Si++, back gate 
and the  MoS2 channel can be thought of as an analog to the synaptic fluid where neurotransmitters (in this case 
trapped charges) are released and absorbed. In (Fig. 1d) we examine the DC characteristics of the devices, where 
the clockwise and anti-clockwise hysteresis for the n-FET and p-FET, respectively. This can be attributed to the 
trapping and de-trapping of electrons from donor-like traps in the  MoS2/SiO2 structure, as commonly seen in 
other thin-film  semiconductors17,20. In back-gated  MoS2 transistors, the primary source of trapped charges has 
been attributed to the  MoS2/SiO2 interface and surface absorbents/water dipoles on the top  MoS2  surface21. The 
hysteresis behavior can be understood as follows: sweeping of the gate to positive biases increases the occupancy 
of electron traps, thus inducing a positive (negative) shift of the threshold voltage of the n-FET (p-FET) and 
hence decreasing (increasing) the channel conductance for the same gate bias. The equivalent trap density  (Ntrap) 
at the  MoS2/SiO2 interface can be estimated by the following expression,

where  Cox = 4 × 10–8 F/cm−2 is the oxide capacitance of the  SiO2 back gate,  Vth is the threshold voltage of the (for) 
forward and (rev) reverse sweep and q is the elemental charge constant. The  Ntrap of 3.2 × 1012 cm−2 for n-FET 
and 5.9 × 1012 cm−2 for p-FET is estimated for a  Vbg swing of ± 40 V. A larger trap density and hence more defec-
tive interface of Nb-MoS2 (with  SiO2) as compared Re-MoS2 is further evidenced by the degraded sub-threshold 
slope of the p-FET vis-à-vis the n-FET (please see Supporting Information S1 for semi-log plot of transfer char-
acteristics). The field-effect mobility of the n-FET ~ 26.2 cm−2 V−1 s−1 and p-FET ~ 12.6 cm−2 V−1 s−1 can also be 
evaluated using the standard long channel approximation,

where L/W is the length to width ratio of the transistor and  Vgs is the gate-source voltage, at a source-drain 
voltage  (Vds) of 50 mV. The field-effect mobility values calculated for these devices are smaller than those with 
an un-doped channel, which is expected due to the additional impurity  scattering18. To gain further insight into 
the charge trapping behavior, the hysteresis of the transistors was measured as a function of sweeping the  Vgs 
sweep range and delay/sweep time (Supporting Information S2). The magnitude of the hysteresis loops, and the 
associated charge trapping, is determined by the maximum  Vbg and the hold time in accumulation. Next, we 
proceed to the focus of this work; using controlled pulses to trap and de-trap electrons from the  MoS2 chan-
nel and hence modulate the channel conductance, which represents the EPSC. As illustrated in (Fig. 1e), for a 
n-channel device a large change in the threshold voltage is observed before (red curve) and after (blue curve) the 
application of a series of 50 pulses to the back-gate with a pulse height of − 20 V and width of 500 ms (indicated 
by blue potentiation pulses in the figure inset). The average density of trapped charges per pulse can be calculated 
using Eq. (1) to be ~ 2.9 × 1011 cm−2. Furthermore, the initial position of the threshold voltage can be recovered 
by applying the same number of pulses of the opposite polarity + 12 V (indicated by red depression pulses). This 
suggests the ability to control different conductance states of the device repeatedly and reversibly using appropri-
ate pulses applied to the back gate. A more nuanced examination of the same effect will be demonstrated shortly 
in the form of potentiation and depression measurements. The same effect is also reproduced for the p-channel 
device but with the opposite polarity for potentiation and depression (please refer Supporting Information S3).

The foundational basis of the biological brain to learn, memorize and forget hinges on the plasticity of syn-
apses i.e. the ability to change the ‘conductance state’ depending on the previous history of action  potentials22. The 
plasticity of the brain can be broadly sub-divided into long and short-term plasticity (LTP, STP), distinguished 
by their characteristic retention time(s). While the LTP is postulated to be responsible for experience-dependent 
modification of the synaptic weights (i.e. learning), the STP is largely effective for motor functions, auditory 
and visual perception  etc23. Therefore, we focus on the STP and LTP behavior of the charge trapping devices by 
examining the transient response of the EPSC (or channel conductance) when a single pulse is applied at time, 
t = 0. Figure 2a,b illustrates the response of the channel conductance (EPSC) as a function of time when pulses 
of different height and width are applied to the back gate of the n-channel  MoS2 transistor. The back-gate pulse 
polarity is selected to drive the n-channel  MoS2 MOSFET to the off condition. The plot shows the evolution of 
the EPSC after the pulse has returned to the baseline value of 2 V, which demonstrates a sharp rise from the pre-
pulse level, followed by a rapid decrease and subsequent slower decrease, indicative of the two time constants 

(1)Ntrap = Cox|Vth(for) − Vth(rev)|/q,

(2)µFE =

L

CoxWVds

dIds

dVgs
,
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associated with the trapping/emission of electrons from defect sites. The two time constants associated with 
the electron trapping process is more clearly seen in the log time plot (see Supporting Information S4) which 
has been observed in back gated  MoS2  MOSFETs24. The fast (~ 0.2 s) and slow (~ 5 s) time constants for n- and 
p-type device are extracted using a double exponential function for a pulse height and width 10 V and 100 ms 
respectively (see Supporting Information S5). The time constants for three n-type and two p-type devices are 
presented in Supporting Table S1. The presence of two-time constants for electron trapping or de-trapping is 
central to the emulation of a synaptic response. As we shall demonstrate shortly, using a pulsed paired facilitation 
(PPF) technique, the initial fast transient (typically < 1 s after the gate voltage pulse is applied) can accurately 
codify the short-term  plasticity25,26. The change in the conductance of the synaptic transistor with respect to 
the baseline and the decay rate can be modulated by varying the pulse height and width respectively. As seen in 
Fig. 2a,b, for a pre-synaptic pulse width of 50 ms, which is in the same range of action potentials as in biological 
systems, the conductance value shows a distinguishable ‘memory effect’ with reasonable stability for the measure-
ment window of > 10 s. Furthermore, the long-term retention of these devices can be extended to a few minutes 
by modulating the number of trapped charges introduced at the  MoS2/dielectric interface, which demonstrates 
reasonable stability of conductance state with a very slow decay (see Supporting Information S6). This behavior 
can be taken to represent long-term stability. Eventually, there is a very gradual decay of the memory effect due 
to electron capture by defect sites. However, this phenomenon can be controlled in future design iterations by 
possibly including a trapping and tunneling layer as commonly implemented in modern floating-gate memories. 
Figure 2c delineates the short/long-term plasticity into volatile and non-volatile memory effects as a function 
of pulse  width27.

As indicated earlier, we perform pulse-paired facilitation (PPF) measurements to extract the characteristic 
time constants for short-term  plasticity26. In PPF measurements we monitor the EPSC when the device is sub-
jected to a pair of pre-synaptic pulses (of the same magnitude) separated by a short time duration, Δt, typically 
in the order of 10–1,000  ms26. As shown in Supporting Information S7, the EPSC amplitude generated by the 
second pulse is greater than the first when a pulse of W = 5 ms is separated by a duration, Δt = 75 ms. The PPF 
index can be extracted by the formula

Figure 2.  Pulsed measurements: Transient response of EPSC conductance as a function of (a) pulse height 
and (b) pulse width with a single pulse applied at time, t = 0 s for a n-channel  MoS2 FET, at a constant  Vds = 1 V, 
baseline/rest value of  Vbg =  + 2 V (c) Delineation of short- and long-term plasticity effects seen in the charge 
trapping devices, which are responsible for motor functions and experience-based learning in synapses. (d) 
Quantification of short-term plasticity using pulse paired facilitation measurements which shows time constants 
closely resembling those from a biological synapse for both n- and p-type devices. Please note  Vds = 1 V and 2 V 
for n- and p-type devices respectively.
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where the ΔEPSCPeak is the difference between the peak current amplitude between the second and first pulse 
and ΔEPSC1 is the difference between the peak after the first pulse and the baseline (before the first pulse was 
applied)27. Figure 2d illustrates the PPF% as a function of pulse separation Δt from 10 to 1,000 ms for both p- and 
n-type devices. As is observed for biological synapses, the PPF% rapidly falls with increasing pulse separation. 
This can be explained as follows, let us suppose when the first pre-synaptic pulse is applied electrons are emitted 
from n trap sites in the device (neurotransmitters in a biological synapse) which is seen with the EPSC current 
value reaching a peak value, say  I1 (n) which is a function of n. After a short time Δt, which is much smaller than 
the time required to reach steady-state conductance, a few trapped sites re-capture electrons, making the number 
of trapped sites n-Δn. When the second pre-synaptic pulse is applied, let us assume (for the sake of simplistic 
understanding) that electrons are emitted from n trap sites, taking the total tally of charge carriers to 2n-Δn and 
therefore changing the peak instantaneous current to  I2(2n-Δn) such that I (2n) > I2(2n − Δn) > I1(n). Since the 
re-capture of electrons into trap-sites is an exponential function of time Δn ∝ e Δt; therefore, for Δt → 0,  I2 → I 
(2n) (PPF% ≤ 50%) and Δt → ∞,  I2 → I1 (PPF% = 0). The PPF% exhibited by our samples can be fit to a double 
exponential function,

where τ1 and τ2 are the relaxation time constants associated with fast- and slow- term relaxation phases. The 
extracted values of (τ1, τ2) for the n-FET and p-FET are (111.9 ms, 1,140 ms) and (27.4 ms, 725 ms). By coinci-
dence, these values are strikingly close to those of the biological synapse (40 ms, 300 ms)28.

Next, we proceed to examine potentiation-depression (P-D) and spike time-dependent plasticity (STDP) in 
these synaptic devices, which is a crucial property in regard to the realization of neuromorphic circuits. P-D 
refers to the ability of the synaptic device to cyclically traverse through a multitude of analog conductance states 
when subjected, ideally, to pulses of consistent heights and  widths29. Figure 3a demonstrates that both the n-
FET and p-FET devices can access up to 50 such conductance states in a repeatable manner over several cycles. 
The pulse height (− 10 V, + 5 V, with a baseline of 2 V) and width (100 ms) was optimized to ensure multi-cycle 

(3)PPF =

�EPSCPeak

�EPSC1

× 100%,

(4)PPFfit = A1e
−

�t
τ1 + A2e

−
�t
τ2

Figure 3.  (a) Potentiation and depression measurements show the multi-cycle ability to traverse through at 
least 50 analog conductance states for both n- and p-type devices. Please note  Vds = 1 V and 2 V for n- and p-type 
devices respectively. Spike time-dependent plasticity that encodes the temporal firing of pre-synaptic neurons 
as channel conductance (ΔG%), synaptic weight (%) (please see Supporting Information S9 for more details) 
shows excellent resemblance to biological synapse for both (b) n-type and (c) p-type devices.
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behavior without any significant shift to the initial baseline between consecutive cycles. The conductance states 
were determined by measuring the EPSC in the 200 ms rest period and with  Vbg (rest) = 2 V in between two 
consecutive pulses at a constant  Vds of 1 V and 2 V for the n- and p-type transistors respectively. The higher value 
of  Vds for the p-type transistor was to compensate for the lower mobility in Nb-MoS2. The repeatable, multi-cycle 
potentiation-depression characteristics of one such device for 600 pulses (12 cycles) is presented in Supporting 
Information S8.

Here, it shall be instructive to estimate the energy dissipation per pulse during potentiation and depres-
sion for this device. The average energy consumed per pulse E = �IdsVdstpulse where, �Ids is average change in 
drain source current per potentiation/depression pulse  Vds = 1 V and tpulse = 100 ms. Using the data presented 
in Fig. 3a we arrive at 1.6 (2.8) nJ for n(p)-FET. We compare this with the one of the best values reported from 
three-terminal devices with similar architecture but utilizing ion-transport30. In this work, Yang et.al. report a 
value of ~ 25 pJ for a 100 ms pulse width, which was achieved at a much lower source drain voltage of 50 mV. 
Since our devices show near-linear output characteristics Ids ∝ Vds ,the energy consumption scales as square of 
drain voltage E ∝ V

2

ds
 . Therefore, in principle, at a drain voltage of 50 mV one can project our devices to work at 

4(7) pJ per pulse for n(p)-FET demonstrating, as expected, a lower energy dissipation per pulse for an electron 
device compared to an iontronic device. In another report, Zu et al.31 utilize nanowire structures (and hence very 
small W/L ratio in a transistor) to achieve very small  Ids (in pA) for small  Vds (20 mV) to demonstrate ~ fJ power 
consumption, the lowest in literature. Though these reports may be scientifically interesting, the arbitrarily low 
drain voltage and current biasing conditions used in these reports will be challenging to implement in a practical 
circuit without low-noise amplifiers at each stage. Nonetheless, it is instructive to calculate the lowest theoretical 
limit of power consumption in the charge-trapping synaptic devices reported in this work. Since the fundamental 
mechanism of our device depends on the trapping and de-trapping of charge carriers the lowest possible limit 
of energy consumption will be E = �QtrapVds , where �Qtrap is the number of traps contributing per pulse. This 
of course assumes that all other DC, parasitic and transistor biasing currents to be zero and that a generation of 
�Qtrap at the  MoS2/SiO2 interface induces equal number of charges in the channel. As demonstrated in Fig. 1e 
and Supporting Information Fig S3, one could calculate the �Ntrap (trap density) per pulse by measuring the 
shift in the threshold voltage of the transistor averaged over many pulses. Subsequently �Qtrap = q�NtrapA , 
where q is the fundamental charge constant, 1.6 × 10–19 and A is the area of the device. Considering our devices 
which are ~ 5 μm2 in area, this yields a value of 0.64 fJ (for 50 ms pulse) and 2.56 fJ (500 ms pulse) for a  Vds of 1 V.

In addition to systematic traversing of conductance states, a synaptic device is also expected to emulate com-
monly known learning rules, whereby the channel conductance is encoded as a function of the temporal firing 
of the pre- and post- synaptic neurons. Amongst many postulated rules, STDP is widely believed to be the basis 
of learning, information storage, and refinement of neuronal pathways, as popularized by the adage ‘neurons 
that fire together, wire together’32. In STDP, the conductance of the channel (ΔG) is potentiated or depressed 
based on whether the pre-synaptic neuron fires before or after the post-synaptic neuron and the magnitude of 
the potentiation or depression is exponentially determined by the time difference (Δt) between the two  firings31. 
Mathematically, this can be expressed as:

where �t ≥ 0 ( �t ≤ 0 ) refers to the case where pre-synapse fires before (after) post synapse and τ+, τ− are the 
respective time constants. To examine STDP behavior in our devices we use a commonly prescribed mapping 
function for three-terminal geometries that transform/codifies the time difference between two pulses to vary-
ing magnitudes of the pre-synaptic  pulses33,34. This is enabled by using a 2 × 1 multiplexer connected to the 
gate terminal, where the post-synaptic neuron is used as a control signal to modulate the pre-synaptic pulse 
and grounded terminal (see Supporting Information S9 for pulsing scheme drain current characteristics)35. 
Figure 3b,c demonstrates the STDP response for n- and p-type FETs, both showing exponential modulation of 
channel conductance (%G) as a function of Δt, where,

Gbefore and  Gafter are the conductance of the channel before and after the application of the post-synaptic 
pulse. The shape of the symmetric Hebbian post and pre-synaptic pulses are also illustrated in the insets. The 
extracted time constants for potentiation and depression (τ+, τ−) for n-FET and p-FET is (4.77 s, 4.96 s) and 
(8.84 s, 6.65 s) respectively.

conclusions
In summary, we demonstrate how the simple process of electron trapping/de-trapping events in a back-gated 
 MoS2 transistor can electrically mimic the release and absorption of neurotransmitters/ions in a biological syn-
apse. The use of charge trapping devices offers significant advantages in terms of reliability and manufacturability 
over “iontronic” devices. To generalize our observations and demonstrate complementary behavior, which shows 
promise for CMOS integration, we examine both n- (Re-doped) and p-doped (Nb-doped)  MoS2 transistors as 
three-terminal synaptic devices. The charge trapping and release from defect states in the devices exhibits time 
constants which allows the emulation of both short- and long-term plasticity, an important property in biological 
synapses which aids learning and memory. Interestingly, PPF measurements on these devices, which quantify 
the short-term plasticity reveal time constants that closely resemble those from a biological synapse. Further-
more, potentiation-depression characteristics showing at least 50 analog conductance states and the ability of 
these devices to codify commonly used learning rules such as STDP lays special emphasis on the flexibility and 
adaptability of charge trapping devices. The extraction of the plasticity, PPF and STDP related time constants 

(5)For�t ≥ 0,�G ∝ e
−

|�t|
τ+ ; For�t ≤ 0,�G ∝ −e

−
|�t|
τ− ,

(6)
(

G, synaptic weight %
)

=

(

Gbefore − Gafter

)

/Gbefore × 100%



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12178  | https://doi.org/10.1038/s41598-020-68793-7

www.nature.com/scientificreports/

from this work can be used to initiate circuit level simulations for SNNs. The efficacy of trapping/de-trapping 
events in the gate oxide in emulating the behavior of biological synapses opens up new avenues in the design of 
neuromorphic devices.

Methods
Re-doped and Nb- doped  MoS2 crystals procured from HQ Graphene were exfoliated on 85 nm  SiO2 using the 
scotch-tape method. Thin flakes in the optimal range of 4–8 nm were identified using optical contrast and con-
firmed using atomic force microscopy. Flakes thinner than this suffer from reduced drain currents and mobility 
because of a larger band-gap and poorer contacts; whereas, drain current in thicker films become less sensitive 
to the trapped charges in the  MoS2/SiO2 system, and hence are undesirable. On the selected flakes, source-drain 
contacts with a channel length and width of 1 μm were defined using electron beam lithography (EBL). Next, a 
mid-gap metal Ni/Au (20/40) which shows reasonable contacts to both n and p doped  MoS2 was deposited using 
electron beam evaporation, followed by a lift-off step. Figure 1c presents an optical image of one of the fabricated 
transistors. Electrical measurements were performed in two configurations. First, standard DC measurements 
using a B1500 semiconductor device analyzer (SDA) were performed with the underlying  SiO2 used as the back 
gate. Second, the pulsed measurements were performed using the Keithley 4200 semiconductor characterization 
system (SCS) with additional pulse measurement units (PMU).
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