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Abstract: A periodic metagate is designed on top of a boron 

nitride-graphene heterostructure to modulate the local 

carrier density distribution on the monolayer graphene. 

This causes the bandgaps of graphene surface plasmon 

polaritons to emerge because of either the interaction 

between the plasmon modes, which are mediated by the 

varying local carrier densities, or their interaction with 

the metal gates. Using the example of a double-gate gra-

phene device, we discuss the tunable band properties of 

graphene plasmons due to the competition between these 

two mechanisms. Because of this, a bandgap inversion, 

which results in a Zak phase switching, can be realized 

through electrostatic gating. Here we also show that an 

anisotropic plasmonic topological edge state exists at the 

interface between two graphene gratings of different Zak 

phases. While the orientation of the dipole moments can 

differentiate the band topologies of each graphene grat-

ing, the angle of radiation remains a tunable property. This 

may serve as a stepping stone toward active control of the 

band structures of surface plasmons for potential applica-

tions in optical communication, wave steering, or sensing.

Keywords: graphene plasmons; band topology; active 

metasurface; topological interface state.

1   Introduction

Motivation. Topological photonics is a new and exciting 

area of optical science that deals with and employs the 

robust characteristics of periodic structures, also known 

as topological indices, to produce scattering-free, local-

ized optical excitations. Such excitations exist at the 

edges or domain walls of photonic topological insula-

tors (PTIs) [1] and are spectrally located inside PTIs’ 

bandgaps. The PTI concept is intimately connected 

to that of the topological insulator [2, 3], which is one 

of the most vibrant areas in today’s condensed matter 

physics. While most emphasis in topological photon-

ics has been on two- and three-dimensional PTIs sup-

porting either edge or surface states [1, 4–14], it is well 

known that even one-dimensional photonic crystals 

(PhCs) can have topological properties. As was the case 

with 2D and 3D PTIs, the original concept for such con-

fined zero-dimensional states emerged from studying 

electronic systems such as polyacetylene [15]. The Su-

Shrieffer-Heeger (SSH) model, which was developed to 

explain “soliton” formation in 1D long-chain polyenes, 

was crucial in interpreting the experimentally discov-

ered interface states, which require less energy to excite 

than the gap energy and play a fundamental role in the 

charge-transfer doping mechanism.
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More recently, a variety of periodic platforms trying to 

emulate the SSH model have been proposed, and robust 

zero-dimensional states have been found in acoustic crys-

tals [16–18], PhCs [19–23], and even cold atoms in optical 

lattices [24, 25]. Our emphasis is on the photonic systems 

in the remainder of this article. In such 1D PhCs, topologi-

cal properties of Bloch bands can be characterized by a 

topological invariant, referred to as the Zak phase. It is 

a geometric phase resulting from completing the loop of 

adiabatic evolution of the relevant bulk wavefunction 

(e.g. a scalar electric potential field on graphene of a 

plasmon mode in the electrostatic approximation) across 

the Brillioun zone [26]. A nontrivial Zak phase predicts 

the existence of protected SSH interface states localized 

at the boundaries of the 1D PhCs [27–29]. Such boundaries 

also include the domain walls between two PhCs sharing 

the same photonic bandgap but characterized by different 

Zak phases.

In recent studies, the flip of the Zak phase was found 

to be related to the inversion of Bloch bands [26]. More-

over, it was found to be connected to experimentally 

measurable surface impedance or reflection coefficients 

from the PhC interface [20, 27], thereby establishing a 

connection between physical observables and the Zak 

phase. However, because, by their very definition, PhCs 

enable the creation of bandgaps due to Bragg scattering, 

both the lattice period and the confinement length of the 

interface states must be comparable to the wavelength of 

light for conventional photonic structures constructed out 

of metals and dielectrics. For example, it is challenging 

to construct a conventionally composed PhC operating in 

the mid-infrared (MIR) portion of the spectrum that con-

fines light to smaller than a micrometer.

Moreover, a predesigned dielectric- or metal-based 

PhC cannot be easily changed in time. Therefore, active 

control of the SSH interface states in conventional PhCs is 

challenging. In this work, we demonstrate how a special 

class of electromagnetic excitation – graphene surface 

plasmon polaritons (GSPPs) – can be utilized to produce 

strongly localized (sub-wavelength) interface states at the 

domain wall between two metallic electrically biased 1D 

Bragg gratings described below. The 1D metallic gratings 

affect the propagation of GSPPs in two distinct ways. First, 

they directly interact with the graphene plasmons by pro-

ducing strong horizontal and vertical dipole moments. 

Second, when an electric field is applied between gra-

phene and the grating, the carrier density in graphene is 

also modulated. The resulting modulation of the chemi-

cal potential modulates graphene’s conductivity, thereby 

inducing additional Bragg scattering of GSPPs. Thus, the 

metallic grating simultaneously serves as a metagate and 

a PhC. The interplay between these two scattering path-

ways can either open or close a propagation bandgap for 

GSPPs at the center or edge of the Brillioun zone. We demo-

nstrate that the Zak phases of the two interface-forming 

1D graphene-plasmonic Bragg gratings can be controlled 

through electrostatic gating, thereby controlling the prop-

erties of the interface states. As we demonstrate in the 

following text, such interface states can be excited in the 

far-field. The conceptual device to be presented in this 

study has three distinct new features compared to a previ-

ous proposal [14]. In the current 1D-periodic metasurface, 

the band topology and the Zak phase can be controlled 

with fast, real-time electrostatic gating. Secondly, these 

1D gratings are electrically disconnected from each other. 

It allows electromagnetic waves to directly access surface 

plasmon polaritons. Far-field techniques can be applied to 

interrogate the band topologies of plasmons. Last but not 

least, a domain wall separating two topologically distinct 

crystals is now reconfigurable because the metagates are 

individually tunable.

Brief description of graphene surface plasmon polari-

tons. Since its first production by exfoliation from graphite 

[30–32], monolayer graphene has attracted a tremendous 

amount of research interest. In particular, graphene-based 

metasurfaces have been developed into a technologically 

important platform for the testing of innovative ideas and 

applications [33–61]. One major advantage of graphene 

is that it supports plasmons that can operate over the 

terahertz (THz) to mid-infrared (mid-IR) spectral range, 

where many important applications are implemented. 

As compared with the metallic counterparts, GSPPs are 

much more confined and significantly less lossy, leading 

to the design of smaller footprint devices featuring higher 

field enhancements and longer propagation lengths [34, 

44, 62–66]. In addition, its infrared (IR) properties can be 

actively modified and modulated [65, 67, 68], owing to the 

pronounced ambipolar electric field effect [69, 70].

One of the most remarkable and attractive properties 

of graphene is that the Fermi level of the free carriers (i.e. 

its chemical potential) can be continuously tuned from 

its valence band to the conduction band by the injec-

tion of charge carriers, providing linear control of the 

frequency-dependent optical conductivity of graphene 

over a very wide spectral band. Molecular doping [71] 

and electrostatic gating [72] are two parallel approaches 

to achieve this goal. In particular, the electrostatic gating 

of graphene using patterned metasurfaces benefits from 

semiconductor-compatible fabrication technologies and 

thus has been widely implemented in both fundamental 

and advanced device research. Using such approaches, 

the conductivity of graphene can be changed by at least 
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two orders of magnitude [31, 73]. The control of local Fermi 

levels and conductivity of graphene in practice can be 

utilized to modulate optical transmission [36–39, 60, 61] 

through graphene-based metasurfaces, which is useful 

for sensing or optical communications applications for 

instance. It can also create p-n junctions or quantum dots 

confined spatially within the graphene layer by more 

sophisticated patterning of local carrier distribution, 

which allows for the manipulation of electrons [74–77].

Patterning of graphene with permanently imprinted 

geometries has been previously proposed [60, 61, 78, 79]. 

On the other hand, multiple possibilities of transforming 

a uniform carrier density distribution within a graphene 

sheet into a complicated spatial dependence, e.g. into a 

periodic Bragg grating, have also been demonstrated [41, 

80–84]. The one approach that does not require graphene 

patterning of chemical doping relies on the electrostatic 

field being periodically shaped using a patterned meta-

surface or grooved substrates [14, 85]. Potential applica-

tions in active plasmonics could also benefit from the 

ultrafast process of carrier generation and relaxation in 

graphene, as the Fermi level has been demonstrated to be 

electrostatically adjusted at sub-nanosecond time scales 

[86]. Marrying the sub-wavelength nature of graphene 

plasmonics with local nanoscale patterning of the carrier 

density distribution in graphene-based metasurfaces thus 

offers promising opportunities in active and ultrafast 

manipulation of light at the nanoscale.

The rest of this article is organized as follows. In 

Section 2 we discuss the physics of controlling the carrier 

density in graphene using a periodic metallic metagate. 

Quantum capacitance is taken into account by requiring 

the constancy of the electrochemical potential in gra-

phene. In Section 3, we briefly introduce the calculation 

of the Zak phase for Bloch plasmon bands that emerge as 

a result of the periodic modulation of carrier density. The 

photonic band structure of GSPPs in a periodic chemical 

potential of graphene is calculated, and the concepts of 

band inversion and bandgap closing are introduced. In 

Section 4, we show numerical simulation of far-field trans-

mission spectra of a graphene device applied with differ-

ent gate voltages. The manifestations of band inversion 

and bandgap closing in reflection/transmission spectra 

strongly rely on the presence of metallic top gates. Local-

ized interface states at the interface between graphene-

based gratings of different Zak phases are identified, and 

their coupling to the incident far-field radiation is calcu-

lated as a proof of concept. We show that an interface state 

can be anisotropic because of the hybridization of wave-

functions from the adjacent 1D PhCs with different Zak 

phases. In addition, because the hybridization strongly 

depends on the localization of the evanescent mode into 

the interface-forming PhCs, the effective polarizability 

tensor of the interface state becomes tunable, making it a 

promising fundamental building block for actively tunable 

electro-optic devices. Finally, quantum nonlocality effects 

are discussed in Section 5. We compare the tunability of 

the band structures calculated using both COMSOL Mul-

tiphysics with a local Drude conductivity and a program 

developed in house by Jung et al. [14]. The latter takes into 

account nonlocal effects [67].

2   Periodically gated graphene

2.1   Graphene conductivity

Properties of GSPPs interacting with light rely on the 

response of oscillating carriers of graphene. Such response 

can be described by an optical conductivity, which was 

previously derived from a linear response of electronic 

current to external fields for a tight-binding Hamiltonian 

of carbon atoms sitting on the honeycomb lattice [87]. It 

was found that graphene with a uniform distribution of 

carriers has the following response in the infrared regime:
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where σ
g
 is the surface conductivity depending on the 

temperature T, frequency ω, local chemical potential E
F
, 

and scattering time τ due to carrier scattering [88]. We will 

take the low-temperature and low-photon-energy limit for 

our application. Therefore, it leads to a Drude model after 

those considerations:
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We use Eq. (2) in both the quasi-electrostatic model 

and full-wave simulation of the optical properties of 

GSSPs. The chemical potential E
F
 should be taken as a 

constant if the carrier distribution is uniform. But, here, 

the surface conductivity of graphene is further assumed 

to be a local property of the carrier density distribution. 

We extend the relationship of local chemical potential to 

be position-dependent, 
F F
( ) ( ).E x v n xπ= ℏ  This allows us 

to conveniently prescribe a Fourier series of E
F
(x) and σ

g
(x) 
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in a periodic system for numerical simulations, with coef-

ficients of both expansions connected through Eq. (2). A 

periodic carrier distribution can be induced by gating the 

graphene periodically using a metallic metasurface. This 

will be discussed in the next section utilizing an intuitive 

electrostatic model. However, such a conductivity model 

solved from electrostatics needs to be modified in the 

presence of nonlocal effects when a finite wavevector of 

GSSP is considered. This nonlocal effect will also be evalu-

ated for our application at the end of this study.

2.2   Description of the graphene-based 
photonic platform

In Figure 1A, we show a schematic of the photonic plat-

form to be analyzed in this work. It is a double-gated 

device, with a single-layer graphene (SLG) encapsulated 

between two hexagonal boron nitride (hBN) layers, and a 

periodic metagate placed atop of the structure. The hBN 

layers provide protection of the SLG from the environ-

ment and ensure that the electronic transport properties 

correspond to the intrinsic values of graphene. A periodi-

cally patterned metal metasurface serves as the top gate 

with an electric potential V
1
, thus controlling the carrier 

density n(x) inside the SLG with high spatial precision. 

From a practical perspective, the geometric dimensions of  

graphene-based devices, such as the metasurface periodic-

ity P
x
, can potentially be made at deeply sub-wavelength 

length scales for the MIR GSPPs: 
0 eff

2 / 2 / ,
x

P nπ π λ ⋅∼  

when MIR GSPP with extremely high effective index 

n
eff

 > 100 is excited [67]. Such nanoscale patterning of 

chemical potential inside the SLG can be accomplished 

using e-beam lithographically defined metallic meta-

gates. Both the amplitude of modulation and sharpness of 

n(x) and of the corresponding chemical potential E
F
(x) are 

absolutely crucial for the control of the photonic bandgap. 

One additional degree of control over optical properties of 

the SLG comes from the back gate kept at the potential V
2
. 

The back gate serves the role of contributing to an offset 

in the average carrier density n
0
 = ⟨n(x)⟩ in the SLG and, 

therefore, will be used to adjust the mid-gap frequency.

Unlike a perfect electric conductor (PEC), which com-

pletely screens the tangential component of the electric 

field, graphene does not do so, especially at low bias of 

electrostatic gating. Therefore, while the electric potential 

ϕ is a constant at the surface of a PEC, the quantity that 

remains constant on the surface of graphene is the so-

called electrochemical potential. The underlying physics 

is governed by [89]

 F g
,e E eVϕ + =  (3)

where the energy needed for supplying one extra electron 

into graphene is described by an electrochemical poten-

tial energy eV
g
, which should be equal to the increase in 

potential eϕ and an extra E
F
 needed to inject the electron 

into graphene. In a general case, voltages are applied to 

the top and bottom gates, while a constant electrochemi-

cal potential can be assumed in the graphene, as shown in 

Figure 1A. A solution is found by implementing the non-

linear boundary condition of Eq. (3) in a finite element 

(FEM) solver [90]. For the specific design (Figure 1A), we 

Figure 1: An electrostatic model of patterning chemical potential on a double-gated graphene encapsulated by two hBN layers.

(A) A side view of the unit cell of graphene metasurface. Periodic gold metagates are supplied with top gating voltage V
1
, graphene has 

V
g
 = 0 as electrochemical potential, and a back gate is far away from the graphene which has V

2
 as the back gate voltage. The back gate can 

be a monolayer of graphene or doped silicon substrate. (B) Using the geometry in (A), local carrier density distribution is calculated and it 

defines E
F
(x), which is the local Fermi level of free carriers. In this example, h = 6 nm, H = 50 nm, w = 40 nm, and P

x
 = 100 nm. The height of 

Au bars is 30 nm, but the thickness plays a less significant role in either electrostatic gating or infrared scattering. Electrostatic permittivity 

of hBN is ε
xx

 = 7 and ε
yy

 = 4.5. Gating voltages are V
1
 = –0.35 V and V

2
 = 11 V for the black curve, V

1
 = 0.29 V and V

2
 = 9.0 V for the green dashed 

curve, V
1
 = 1.3 V and V

2
 = 6.3 V for the blue curve, and V

1
 = 4.5 V and V

2
 = 1.7 V for the red curve.
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calculated the local E
F
 functions for various combinations 

of input gating voltages, as shown in Figure 1B. For a peri-

odic structure, we can expand the local E
F
 functions as a 

Fourier series

 
(0) (1) (2)

F F F F
( ) cos cos2 ,E x E E Gx E Gx= + + +⋯  (4)

where G = 2π/P
x
, and P

x
 is the period of the grating. This 

expansion can also be applied to the E
F
 functions in 

Figure 1B. We give the expansion coefficients in Table 1. 

These profiles can change the photonic band structures of 

GSPPs, and they will be used as local conductivity input 

for optical simulations in the following sections. Note 

that the green dashed E
F
 profile in Figure 1B is flat, cor-

responding to a uniform distribution of carrier density. As 

expected from Eq. (3), its electric potential equals the top 

gate bias, instead of the 0 electrochemical potential sup-

plied on graphene. This means no carriers are effectively 

contributed by the top gate.

For now, we focus on the effect of the geometric 

parameters of graphene-based metasurfaces, such as 

the  metagate-to-SLG spacing h and the grating periodic-

ity P
x
 (see Figure 1A for the definitions of the geometric 

parameters), and on the spatial Fourier components of 

the periodic E
F
(x). We consider a simple parallel capaci-

tor model. The model is applied to the SLG and to the 

bottom surface of the metagate. The two are separated by 

the distance h. Graphene is assumed to be electrochemi-

cally grounded, i.e. V
g
 = 0. To induce spatial modulation 

of carrier density in graphene, we assume that a spatially 

harmonic potential V(x) is applied to the top plate:

 0
sin ,V V V kxδ= +  (5)

where V
0
 is a constant, δV characterizes a perturbation, 

and k is the spatial frequency of the Fourier component. 

The carrier density of graphene can be found in the fol-

lowing form in the small modulation limit:

 

0 0
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where 
0 F

= 4 / / 2e v eα πε ⋅ℏ  is a parameter that depends 

on the properties of the graphene layer and on the spatial 

scale of the imposed voltage perturbation, and a = V
0
/h 

is the average gate field applied between the SLG and 

the gate. The term with a nonvanishing α accounts for 

an unscreened electric field behind the graphene sheet 

as compared to the response of a perfect metal. We note 

that the combination 2 2 2 1 2 2

g F e
=( / ) (2 ) ( / 2 )

r
E k v c er k mα

−
≡ ℏ  

has the dimension of the electric field inside graphene. 

Here, r
e
 = e2/mc2 is the classical electron radius, and 

v
F
/c ∼ 1/300. For example, for k = 2Nπ/100  nm, we esti-

mate that E
gr

 ∼ N210−4 V/nm. The relative magnitude of E
gr

 

and the imposed gate field V
0
/h determines the degree of 

screening of the imposed spatially varying electrostatic 

potential by graphene compared to a PEC. For example, 

if E
gr

  V
0
/h, then graphene behaves as a PEC. Note that 

Eq. (6) has used the assumption that δV/V
0
  1; therefore 

the scaling law of E
gr

 is only used to emphasize the sig-

nificant contribution to screening effects from high-order 

spatial harmonics in the carrier density distribution.

Equation (6) also indicates that the carrier density 

profile becomes flattened as kh increases. For a metagate 

that is over 100  nm away from the graphene, this will 

result in a vanishing variation in the charge carrier density 

set by the varying potential, which is characterized by 

δV/V
0
 < 0.5. The value of δV/V

0
 in principle can be esti-

mated from an FEM simulation, depending on the geom-

etry and input voltages to be used. For a metagate that 

is less than 10 nm removed from the graphene layer, the 

Fourier transform of the resultant E
F
(x) can have consider-

able presence of the high-harmonic Fourier components. 

These harmonics are essential for creating propagation 

bandgaps for the GSPPs.

3   Optical properties of GSPPs

3.1   Calculation of the photonic band 
structure of GSPPs supported by 
graphene with nonuniform chemical 
potential

In order to demonstrate clearly the physics of band inver-

sion due to a spatially varying surface charge distribution, 

we first analytically calculate the band structures of gra-

phene plasmon modes in a much simpler scenario, that is, 

a graphene sheet suspended in air. This is done to avoid the 

complications related to optical phonon excitations in the 

hBN encapsulation layers [55, 56, 91] and to the interaction 

Table 1: Fourier expansion coefficients of E
F
 funtions in Figure 1B.

(eV)   (0)

F
E   (1)

F
E   (2)

F
E

E
F1

  0.300  0.041  –0.011

E
F2

  0.298  0.000  –0.002

E
F3

  0.301  –0.058  0.020

E
F4

  0.347  –0.206  0.048
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of the GSPPs with a metallic metasurface. Surface plasmon 

on graphene is deeply sub-wavelength, and its electrody-

namic formalism can be approximated using electrostatics. 

For a free-standing graphene layer in air, electric field of a 

resonant GSPP mode can be found by solving the Poisson 

equation for a potential field with properly imposed bound-

ary conditions across the graphene. The basis of a solution 

in free space takes the following form:

 
,

,
( , ) ,m k

yikx imGx

m k
x y e e e

α
φ

±± =  (7)

where k is the Bloch wave number, G = 2π/P
x
 is the lattice 

vector due to a periodic modulation of carrier distribu-

tion, m is an order index used in Fourier expansion, 

and 
m,

| |
k

k mGα = +  is the transverse decay constant in 

the electrostatic limit for the mth evanescent wave. The 

symbol ± denotes whether the potential field is above or 

below the graphene sheet. A GSPP mode has a trial poten-

tial field, which can be expanded on such basis [Eq. (7)]:

 
, ,

( , ) ( , ) ( , ),ikx

k m k m k k
m

x y c x y e u x yϕ φ± ± ±= =∑  (8)

with expansion coefficients 
,m k

c±  of a particular GSPP mode 

to be determined by matching boundary conditions. u
k
(x, y)  

is the periodic part of the wavefunction and will be used 

for the evaluation of the geometric Zak phase. The oscil-

lating charges must satisfy the following three conditions:

 0 0
| | ,

x k y x k y
ϕ ϕ+ −

= =
∂ = ∂  (9)

 0 0 s 0
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iωσ σ ϕ

=
+ ∂ ∂ =  (11)

where σ
s
 is the surface charge density, and 

( )

g g
( ) m imGx

m
x eσ σ= ∑  is the Fourier expansion of the local 

conductivity of graphene. These three equations denote, 

respectively, the continuity of the transverse electric field, 

Gauss’s law of surface charges, and the continuity equa-

tion of oscillating carriers.

Using the trial solution Eq. (8) with unknown coeffi-

cients and Eqs. (9)–(11), we can derive the following eigen 

equation [Eq. (12)] and solve it for the eigen modes and 

eigen frequency in the momentum space, given either arti-

ficial or realistic chemical potential distributions using 

the Fourier expansion
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where 
2

0
4

e
Gβ

πε

=  and ( ) 2 ( ) 2

F g
/ ,m m m mE i eωσ

− −′ ′
= − ℏ  after the 

scattering time constant τ from the conductivity equation 

[Eq. (2)] is neglected for this theoretical analysis. kɶ and 

,m k
αɶ  are the Bloch number and transverse decay constant 

normalized to magnitude of the lattice vector. In the first 

example to demonstrate bandgap inversion, we solved 

for the eigen frequencies for four different carrier dis-

tributions as those indicated in the captions of Figure 2. 

The prescribed (e.g. induced by chemical doping) profile 

of the chemical potential is assumed to be of the form of 

Eq. (4).

This spatial dependence is sufficient for opening the 

first bandgap at the Γ-point with a nonzero (2)

F
E  coeffi-

cient. For generality, a nonvanishing (1)

F
E  is also assumed. 

A band inversion at the Γ-point can be observed by com-

paring Figure 2A and B, or Figure 2A and C, when the (2)

F
E  

parameter is tuned across zero. We can also see that the 

symmetry property of the modes change as a result.

3.2   Band topology in 1D graphene 
metasurfaces

Band inversions are associated with a change of band 

topology, and are characterized by a 1D geometric phase 

called the Zak phase. The Zak phase is a robust index that 

characterizes the 1D topological properties of bulk bands. 

It is defined as

 

Z

, ,
d | | ,ak

n n k k n k
i k u uθ

∗= 〈 ∂ 〉∫  (13)

where the integration of k is performed inside the first 

Brillioun zone for any band n using its Bloch wavefunc-

tions u
n,k

(x) [26]. Another way to calculate the Zak phase 

is to use its discretized form as was previously utilized 

in [16]:

 
1

1

Zak

, ,cell
{ }

Im ln d ( ) ( ),
i i

N
i i

n n k n k

k

xu x u xθ
+

=

∗= − ∑ ∫  (14)

where k
1
, k

2
,..., k

N
 are taken as a sequential wave number 

partition of the Brillioun zone, with k
1
 = k

N
 to close the 

loop. Its numerical evaluation is straightforward when 

the Bloch wavefunctions for each band u
n,k

(x) are known 

from solving Eq. (12), or more generally from FEM eigen 

frequency simulations.

Although it is stated that the topological property of 

a bandgap is determined by the summation of the Zak 

phases [Eq. (14)] of all the bands below this gap, it is 

however relevant to know the symmetry of the two modes 

at the bandgap of interest in this 1D case, given that the 

Zak phase can be uniquely associated with the symme-

tries of modes at the center and edge of each band [16, 20]. 

Flipping the symmetry at any lower bandgap will lead to 

a 2π total Zak phase change, while flipping the symmetry 
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of modes at the bandgap of interest leads to a π total Zak 

phase change. In Figure 2, we numerically demonstrate 

for the second band that the Zak phase is correlated with 

the mode symmetries. Correspondingly, the symmetry of 

the wavefunctions is color-coded, and the single-band 

Zak phases are labeled.

To approximate the Hamitonian in Eq. (12), we take 

into consideration only the three lowest Bloch bands, 

namely the m = 0 and ±1 bands. Our model Hamiltonian 

is recast into two parts in Eq. (15). The first term has plane 

wave solutions of uniformly gated graphene and two 

perturbed terms describing the spatial modulation up to 

the second order of the E
F
 expansion, which is minimally 

required to couple the m = ± 1 bands:

 

(0)

F

(1) (2)

F F

1 0 0

0 | | 0

0 0 1

0 0
0 0 ( 1)

( 1) 0 ( 1) 0 0 0 .
| | | |

1 0 0
0 0

k

k

H E k

k

k
k

k k
E k k E

k k
k

k

 −
 

=  
 + 
 −  − +    + − + +     −   

 

(15)

This model Hamiltonian can be easily solved, and quan-

titative comparison are made with the band structures 

plotted in Figure 2A–D.

Figure 2: A simplified model platform for investigating topological properties of 1D graphene metasurface: a suspended nonuniformly 

gated graphene layer with the chemical potential given by Eq. (4).

Four different combinations of (1) (2)

F F
( , )E E  are used to create band gaps at the Γ- and X-points. (A) =(1)

F
0.05 eV,E  =(2)

F
0.05 eV,E  

(B)  =(1)

F
0.05 eV,E  = −

(2)

F
0.05 eV,E  (C) = −

(1)

F
0.05 eV,E  =(2)

F
0.05 eV,E  and (D) = −

(1)

F
0.05 eV,E  = −

(2)

F
0.05 eV.E  The circles are solved by COMSOL 

Multiphysics and the colored solid lines are obtained by solving Eq. (12). Each band is color-coded according to the symmetries of full 

wavefunctions. The Zak phases are numerically calculated. (E) Eigen modes of bridged graphene Bragg gratings are simulated for all 

different combinations of those from (A)–(D). Interface states present in various bandgaps when the two graphene Bragg gratings different 

in Zak phase. (F) For the case labeled with a red hollow star, local chemical potential distribution and a localized profile of an interface state 

are plotted.
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3.3   Interface state

One important application of the Zak phase is that it 

establishes the relation of the existence of an interface 

state through the comparative difference in the Zak phase 

between bulk materials on either side of this edge state. 

Simulations show that the phase of a reflected beam 

from a bulk crystal in the bandgap can have a phase dif-

ference of π when the bulk Zak phase is different by the 

same quantity, which has also been demonstrated using 

PhCs [16]. Both simulations and experiments have probed 

the phase relations between the different electromagnetic 

field components of an evanescent wave decaying into the  

bulk crystal. It suggests that an edge state can exist in 

the bandgap common to both adjacent bulk crystals when 

the total Zak phase of the bandgaps is different by π. On our 

graphene platform, we verify this conclusion using the four 

graphene Bragg gratings in previous simulations, in which 

all bandgaps have been labeled a Zak phase. We show the 

frequency of eigen modes of all six combinations of bridged 

Bragg gratings (Figure 2E, F). Simulations were performed 

on a 100-unit cell-long graphene grating with a Floquet 

periodicity. Divided in the middle, each 50 unit cells are 

given a carrier density chosen from the four configurations. 

Figure 2E shows consistent results of the presence of inter-

face states as predicted by the Zak phase analysis.

4   Far-field manifestation

In a practical design, the GSPP modes have an evanes-

cent field profile in the vertical direction, which inevita-

bly interacts with the off-resonance spoof plasmon modes 

[92] supported by the metagates in the vicinity. Thanks to 

material dispersion of the highly anisotropic hBN [91, 93], 

the vertical decay of infrared plasmons is faster than that 

of the gating electrostatic field. Therefore, it is possible to 

offset the GSPP-spoof-plasmon interaction by tuning the 

top gate voltage in an intuitively perturbative model, with 

the bandgap inversion occurring when the voltage on the 

top gate is nonzero. We chose the demonstration opera-

tional frequency to be near 28 THz [91]. The closing of a 

bandgap can be manifested as a merging of a pair of trans-

mission dips in the spectra of oblique transmission through 

the structure, considering that the metasurface unit cell 

is extremely sub-wavelength. In addition, this graphene 

Bragg grating can be used to create a resonating interface 

state by setting the various top metagates to two slightly dif-

ferent sets of applied biases and forming a domain wall in 

the middle of the graphene Bragg grating [94].

4.1   GSSP band inversion

To observe band inversion in 1D graphene-based meta-

surfaces using far-field illumination, we simulated 

transmission properties (Figure 3) of the device with an 

extra substrate consisting of a 200-nm-thick SiO
2
 layer 

and silicon. We clearly see two transmission dips in the 

spectra for E
F1

(x) (black line) and E
F4

(x) (red line) profiles. 

Because of the deeply sub-wavelength unit cell size of the 

metagate, the spectral positions of the transmission dips 

only slightly shift their frequency as the incident angle 

varies from θ = 20° to θ = 70°. Profiling the excited near-

fields of the metasurface at the dip locations reveals two 

important effects. First, we observe that the deeper trans-

mission dips (especially at small incidence angles) are 

associated with the excitation of the E
x
-even modes. This 

is because the even modes have a stronger electric dipole 

moment p
x
 and can be excited by a p-polarized light even 

under small-angle oblique incidence. Second, we observe 

that band inversion indeed occurs when the chemical 

potential profile switches from E
F1

(x) to E
F4

(x) cases. This 

is particularly clear for the small-angle (θ = 20°) transmis-

sion spectra, where the transmission dip at the even mode 

clearly jumps from low to high frequencies as the gating 

voltages change from Case 1 (corresponding to the E
F1

(x) 

profile) to Case 4 (corresponding to the E
F4

(x) profile). For 

large incidence angles (θ = 70°), both the high- and low-

frequency dips are observed in the spectra.

Considerable departure from Cases 1 and 4 can be 

observed in the spectra corresponding to the Case 3 (E
F3

(x) 

chemical potential profile). Almost no transmission dips 

are observed for small incidence angles, and only a single 

(merged) dip is observed for the largest incidence angles. 

This suggests that the two modes of opposite symmetry 

(even and odd) cross each other at the Γ-point for the gating 

voltages. In other words, the bandgap closes for the specific 

combination of the chemical potential profile E
F3

(x) and the 

metal grating location. The physical interpretation of this 

result is as follows. As GSPPs propagate along the 1D gra-

phene metasurface, they experience backscattering due to 

the two channels produced by two distinct Bragg gratings: 

(i) the metallic grating located in close proximity of the SLG, 

and (ii) the variable-conductivity grating defined by the 

E
F
(x) profile. The two scattering channels can interfere in 

a constructive or destructive way. The interference become 

destructive and there is an exact cancellation between the 

two scattering channel in Case 3. Therefore, the bandgap 

closes because a forward-traveling GSPP no longer scatters 

into its backward-traveling counterpart. On the other hand, 

channel (ii) overcomes channel (i) in Case 4 because of the 

large variation of E
F4

(x) inside the unit cell (compare the red 
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line Figure 1B to other lines in the same figure). However, 

the frequency order of the modes in Case 4 is now opposite 

to that in Case 1. As we have shown previously, this is con-

nected to the sign change of the second Fourier harmonic of 

the chemical potential E
F
(x) between Cases 1 and 4.

Case 2 (green dashed curve corresponding to E
F2

(x) 

profile) presents an interesting case when the surface 

conductivity is flat while only the scattering channel (i) 

is on. This allows us to observe GSPP scattering only due 

to metal metagates. When GSPP interacts with a uniform 

metal gate that is placed at h over the graphene, it is 

known that the GSPP forms an acoustic mode for small 

h [95]. We use the electrostatic approximation discussed 

above and show that its mode dispersion is as follows:

 

2
2 / 2

2

F

2
(1 ) ,xx yy

kh xx yy
k e

e E

ε ε
π ε ε

ω

−
− =

ℏ

 (16)

where E
F
 is the constant chemical potential, and ε

xx
 and ε

yy
 

are, respectively, the dielectric tensor elements of the sur-

rounding anisotropic material along the graphene sheet 

and perpendicular to it. k is the wave number for GSPP 

modes. For small h, GSPP frequency is linear in wave 

number and it is significantly red-shifted as compared with 

a GSPP on a free-standing graphene sheet. This offers an 

intuitive picture of the mode frequency shift due to a flat 

metal gate. However, when metagates are periodically pat-

terned, it supports evanescent modes in the air gap as well 

Figure 3: Farfield interrogation of GSSP band inversion.

(A) Illustration of the mounting of incident field and a unit cell of the structure. Here, silicon and 200-nm silicon dioxide are used as the 

substrates. We may assume that a uniform monolayer graphene can be deployed between SiO
2
 and the bottom layer hBN as the back gate, 

but it can be neglected in mid-IR transmission simulations. (B) Typical field profiles of E
x
-odd and E

x
-even modes whose optical responses 

are observed as transmission dips. Under normal or small-angle incidence, the modes at pronounced dips have stronger transverse dipole 

moments therefore are labeled as the even modes by a purple star. Respectively, the colored (C) band dispersion near the Γ-point and 

(D) transmission spectra correspond to the local carrier density distribution calculated in Figure 1B for various incident angles. In these 

simulations, the conductivity equation [Eq. (2)] is used, and scattering time of carriers is chosen to be 500 fs.
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as a TEM mode that channels plasmon mode energy into the 

far-field. Propagating acoustic modes would couple under 

these scattering processes and form a bandgap as shown in 

Figure 3C and D (green dashed curves). Its E
x
-even mode 

should take the lower frequency because a metal strip is 

sitting atop of its mode anti-node, offering more red shift 

of its resonance frequency than the E
x
-odd mode. This also 

helps us to identify the E
x
-even modes for any other band 

structure of the same topological phase before bandgap 

closing, in addition to the pronounced far-field signature.

4.2   Anisotropic interface state

It is known that leaky photonic modes can be utilized 

to probe and visualize topological states via Fano reso-

nances [96]. The nonvanishing dipole moments carried 

by the topological edge state come from an intrinsic prop-

erty of at least one of the bulk modes, which typically are 

observed from radiative non-Hermitian systems. Here we 

divert our attention to another new degree of freedom. We 

find that it is possible to change the far-field properties 

of a topological interface state, since this extra degree of 

freedom is not dictated by the topological property. To 

the best of our knowledge, systems that can support such 

functionalities have not been investigated to date.

To validate these concepts, we have constructed a gra-

phene Bragg grating of 20 unit cells. A domain wall in the 

center is created when two different sets of gate voltage 

are wired to the left or the right half of the grating. We 

explicitly prescribe the E
F
(x) landscape across the grating 

using functions, for example, such as Eq. (4), or that cal-

culated from the electrostatic simulation of E
F
(x). In the 

driven simulations, we employ focused Gaussian beams 

to excite this edge state, incident from different angles. 

In Figure 4C, we show the effective absorption cross-

sectional spectra for varying incident angles. This edge 

mode exhibits a clearly anisotropic response. This is the 

result of the hybridization of bulk evanescent plasmon 

modes in the crystal bandgap; the even mode is horizon-

tally polarized, and the odd mode is vertically polarized 

as a result of the free-charge distribution present on the 

Figure 4: A GSSP SSH interface state.

(A) A model of graphene gratings with tunable band topologies on two sides of a domain wall. Coefficients of E
F
 functions Eq. (4) are 

explicitly prescribed. E
F,left

 (eV): =
(0)

F
0.2,E  = −

(1)

F
0.03,E  = −

(2)

F
0.03E  and, for E

F,right
 (eV): =(0)

F
0.2,E  =(1)

F
0.03,E  =(2)

F
0.07.E  Only graphene and 

metal metagates are considered in the simulations. A Gaussian beam with waist size w
0
 = 6 µm is p-polarized and its incident angle sweeps 

from –75° to 75°. An edge-mode field enhancement is shown for incident angle –20° at wavelength 7.36 µm. (B) In the far-field, power 

flux is shown for the resonant edge mode excited by an –20° incident light. Insets: electric field profile of quadrupole E
2,A

 and E
2,S

, dipole 

E
1,A

 and E
1,S

, and an out-of-plane magnetic mode E
0
. Color represents their field amplitudes. (C) The color map shows effective absorption 

cross-section (1D) of the graphene grating. An edge mode is predicted by previous Zak phase analysis. Its spectral response, however, is 

not symmetric for incident light coming from opposite sides of the domain wall. (D) The edge mode far-field is expanded onto the multipole 

basis shown as insets in panel (B). Each mode amplitude is plotted as a function of wavelength for the –20° incident case.
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metal metagates. A comparison of the topological edge 

mode far-field with multipolar modes in Figure 4B and a 

multipole expansion in Figure 4D confirms the dominat-

ing presence of dipole moments as compared with weaker 

quadrupole and an out-of-plane magnetic moments. The 

localization of bulk evanescent modes can thus have 

an effect on the orientation of the mode. In the present 

model, the edge mode is highly localized and produces a 

small scattering cross-section under mid-IR illumination. 

The scattering effect can be improved by patterning unit 

cells with larger period, while a higher chemical poten-

tial is needed to offset the resonance red shift caused 

by a lower wave momentum according to Eq. (12). Then, 

an interesting possibility of manipulation of light with a 

high spatial localization and a tunable polarization can 

therefore be perceived by implementing this platform and 

benefit wave-steering applications.

Different from the graphene surface plasmon 

 waveguide-like cavity mode, the 1D SSH edge state is 

robust against local perturbations near the domain wall. 

Although both can be spatially reconfigured by changing 

the gating voltage profile, the SSH edge state is resilient 

to a local perturbation in carrier density, which can result 

from fabrication imperfections of metagates, for example, 

a missing metal electrode. Instead, it is more likely to 

shift the cavity mode out of the bandgap. In fact, for small 

metagates as we have used in the present study, the size 

inhomogeneity can be a challenge for electrostatically 

reconfiguring the metasurface to arbitrarily move a cavity 

mode on the metasurface. To prospect future opportuni-

ties, the SSH edge state can be utilized in a large array or 

even stacked into multiple layers in order to increase the 

efficiency of a wave-steering application.

Nevertheless, the tunable reflectivity dips shown in 

Figures 3 and 4 can feature much narrower bandwidths 

(Q > 100) compared to other active graphene-based mid-IR 

modulators such as graphene-integrated plasmonic meta-

surfaces (Q = 30) [38–40, 48] or graphene nanodisk arrays 

(Q = 20) [61]. This is because we utilize the high-quality, 

long-lived graphene plasmons [44, 65, 66] by avoiding the 

direct patterning of graphene. Therefore, supported by high 

tunability and sharp resonant responses, our proposed 

platform also promises potential applications for ultrafast 

and ultradense information encoders for mid-IR radiation.

5   Quantum nonlocality in 

graphene-integrated plasmonic 

structures

Finally, we will briefly discuss the nonlocal effects that 

occur with this system of Dirac fermions and its potential 

opportunities in this platform. In small plasmonic nano-

structures, the key physical quantities that determine 

plasmonic resonance frequencies and the correspond-

ing optical response, such as the electron conductivity or 

material permittivity, are more accurate using quantum 

mechanical or quasi-classical frameworks [67, 97–109]. For 

our current designs, which feature relatively large spac-

ings between graphene and metagate contacts, the local 

carrier density profile is relatively smooth, i.e. contains a 

smaller contribution from the high-frequency spatial har-

monics. Qualitative estimations [14, 67] suggest a relatively 

low degree of nonlocal effects that does not change the 

Figure 5: Comparison of band gap frequencies between local and non-local conductivity model.

(A) Using the conductivity equation [Eq. (2)] in COMSOL simulations, mid-gap frequencies = +
odd even

( )/2f f f  are plotted in color as a function 

of top gate and back gate voltages. White dashed lines illustrate contours labeled with the bandgap size, defined as f
even

 − f
odd

. (B) Same as 

(A), but using a nonlocal conductivity model [14]. In these simulations, the electrostatic gating was first solved, and the local carrier density 

is known. Then the infrared properties are simulated using the input carrier density for describing local or nonlocal response functions. The 

geometry would take the same template as shown in Figure 1A but without fillet features on metagates. w = 30 nm and h = 6 nm. Metal is 

treated as PEC in infrared property calculations. The electrostatic permittivity of hBN was taken from [110].
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resonant frequency or band topology significantly. Nev-

ertheless, the plasmonic structures with a stronger cou-

pling between the Fourier components considered in this 

article represent a promising platform for future investiga-

tions of nonlocal effects of different quantum mechanical 

origins. Below we describe a simple model that captures 

the quantum mechanical nonlocality of electron-hole 

optical conductivity of graphene with nonuniform chami-

cal potential.

For the noninteracting free carriers in graphene with 

inhomogeneous density, the following expression [14, 

108] for the Hartree response has been suggested:

 

1

F F
H 2 2
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For the system simulated in Figure 3, a quick estimate 

shows the following hierarchy of energy scales: 0.1 eV,ω ≈ℏ  

F
| | 0.04 eV,v q ≈ℏ  and 

F
(0) 0.3 eV,E ≈
ɶ  1 1

F
(0) 3.4 eV ,E− −

≈
ɶ  

1 2

F F
| ( ) / ( ) | 10 eV ,E G E G− −

≈
ɶ ɶ  1 2

F F
| (2 ) / (2 )| 10 eV ,E G E G− −

≈
ɶ ɶ  etc. 

Therefore, the magnitude of the second and third terms in 

Eq. (17) are small compared to the response because of a 

local conductivity equation [Eq. (2)], with the contribution 

of the third term being on the order of 10%. This impact 

on the graphene plasmon dispersions can be observed 

by comparing Figure 5A and B, where mid-gap frequency 

shifts by less than 5% for the same set of gate voltages. 

Overall, the contour lines resulting from the two models 

qualitatively resemble each other. These effects can be 

managed by more refined control of the gate voltages, as 

is observed in the comparison of simulations using local 

and nonlocal models in Figure 5A and B. Note that in this 

theoretical exploration, we have used rectangular-shaped 

metal stripes as top gates, so a sharper carrier density 

distribution may be expected. This allows us to observe 

a more profound nontrivial dependence of frequencies on 

local carrier densities designed by the local control of the 

gate voltages and device geometry, especially when con-

tributions from higher momentum terms increase. As a 

final remark, it was also demonstrated that it discretizes 

the energies of the electronic states as a result of the high 

spatial confinement of the free carriers [77]. The charac-

teristic energy may be on the order of 10 meV, estimated  

by a Dirac fermion-in-the-box model. It can poten-

tially change the distribution of carriers and hence the 

optical conductivity [103, 104]. Therefore, the proposed 

 graphene-integrated photonic platform can be employed 

in future studies of nonlocal quantum mechanical effects 

in graphene.

6   Conclusion

In this article, we have demonstrated a promising approach 

toward utilizing a double-gated graphene device for realiz-

ing a tunable plasmonic Bragg grating. The metal metas-

urface provides an interface for active and effective spatial 

modulation of local carrier densities, which mediates the 

hybridization of Bloch plasmonic modes and interacts 

directly with the GSPP modes in the infrared regime. We 

also showed that hBN, which provides protection against 

phonon scattering, mediates the decay factors of evanes-

cent fields in different frequency regimes. The bandgap 

inversion was demonstrated in a transmission simulation, 

thus this inversion resulting in a switching of the Zak phase, 

as predicted by our theoretical calculations. An anisotropic 

edge state was found to exist between two such graphene 

Bragg gratings featuring different Zak phases. We predict 

that the orientation of the dipole moment can be tunable 

electrically, thereby making this a promising fundamental 

building block for ultrafast electro-optic devices. To design 

a useful device, however, it usually involves a multiphys-

ics optimization which also takes into consideration the 

constraints resulting from imperfect fabrication as well as 

the exact material electrical and optical properties. Appli-

cations such as fast optical switches, tunable resonators 

or absorbers, and beam-steering devices can thus be per-

ceived to benefit from this approach.
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