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Measurement of the elastic modulus of soft, viscoelastic liquids with cavitation rheometry is

demonstrated for specimens as small as 1ll by application of elasticity theory and experiments on

semi-dilute polymer solutions. Cavitation rheometry is the extraction of the elastic modulus of a

material, E, by measuring the pressure necessary to create a cavity within it [J. A. Zimberlin, N.

Sanabria-DeLong, G. N. Tew, and A. J. Crosby, Soft Matter 3, 763–767 (2007)]. This paper

extends cavitation rheometry in three ways. First, we show that viscoelastic samples can be

approximated with the neo-Hookean model provided that the time scale of the cavity formation is

measured. Second, we extend the cavitation rheometry method to accommodate cases in which the

sample size is no longer large relative to the cavity dimension. Finally, we implement cavitation

rheometry to show that the theory accurately measures the elastic modulus of viscoelastic samples

with volumes ranging from 4ml to as low as 1 ll.VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4896108]

The linear elastic modulus of a soft material is a mechan-

ical property measurable by techniques such as mechanical

rheometry, microrheology, and atomic force microscopy

(AFM).1,2 Needs for both in vivo characterization of linear

elasticity (such as in tissue viability) as well as rapid mea-

surement (such as in quality control applications) have driven

recent methods development.3–5 Mechanical rheometry typi-

cally requires approximately milliliter sample volumes and, if

sample loading and testing durations are considered, requires

as much as 5 min to test one specimen at one deformation fre-

quency. Passive microrheology is a widely used technique to

study the mechanical properties of small volumes (between

�3 and 50ll) of soft matter. One method of microrheol-

ogy—which uses the multiple scattering technique of diffus-

ing wave spectroscopy—requires as much as an hour of

measurement time. This method can probe elastic moduli up

to �2000Pa.1,6,7 Microrheology measurements can also be

impacted by the stability of the dispersed probes and the het-

erogeneity of the material studied.8,9 AFM can also be used

to characterize the elastic modulus of very small volumes

(<1ll) of material; however, this technique requires long

durations for measurements and sample preparation time.3,10

The duration of these techniques makes them challenging for

high throughput applications, while their lack of portability

complicates their use as in vivo diagnostics.

The cavitation rheometry technique of Zimberlin et al.

characterizes the linear elastic modulus of soft matter with

Young’s modulus in the range of 0.12 kPa<E< 40 kPa.11,12

It is an inexpensive, fast, and portable method that estimates

the elastic modulus by measurement of the critical pressure

(Pc) required for internal cavitation. Cavitation is induced by

air pumped through a needle inserted into the sample. The

critical pressure predicts the elastic modulus, E, through the

theory of cavitation in an incompressible hyperelastic mate-

rial.11 A hyperelastic material is described by a rate inde-

pendent constitutive model that relates the stress to a strain

energy density function.13 Using a neo-Hookean strain

energy function, the inflation pressure (P), cavity expansion

ratio (k), and the elastic modulus (E) are related by14

P

E
¼

5� 4k�1 � k�4

6
: (1)

The cavity expansion ratio is the ratio of the radius of the

bubble (Rc) formed to the inner diameter of the needle (Ri),

k¼Rc/Ri.
11 The critical pressure, Pc, is the maximum infla-

tion pressure, achieved as k approaches infinity. If the sur-

face tension (c) of the material is accounted for, the critical

pressure is11,15

Pc ¼
5E

6
þ
2c

Ri

: (2)

A linear fit of Pc versus 2/Ri yields the elastic modulus.

Two limitations of Eqs. (1) and (2) restrict the scope of

this method. The first is that because the analysis assumes a

neo-Hookean strain energy function, cavitation rheometry

has only been used to characterize materials that are elastic

solids.11,12,16–19 To extend this method to viscoelastic mate-

rials, the assumption of neo-Hookean mechanics must be

examined relative to their rheological behavior. The second

limitation is that Eqs. (1) and (2) are valid only in the “thick-

shell” case of a sample volume whose dimension is large

relative to the radius of the expanding cavity.14 To extend to

smaller volumes, the cavitation rheology should be genera-

lized to materials of finite volume. In this paper, we examine

these two limitations by theoretical analysis, numerical simu-

lation, and experimental validation. We find that the assump-

tions that underlie both limitations can be relaxed, allowing

cavitation rheometry to be applied to a greater set of materi-

als and a broader range of conditions.

We use semi-dilute solutions of high molar mass poly

(ethylene oxide) (PEO, Polysciences, Inc., 1� 106g/mol) at

3.0%, 4.0%, 6.0%, and 8.0% (w/w) in water as model materi-

als. In the linear regime, the frequency dependent shear
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elastic (G0(x)) and viscous (G00(x)) moduli of these test flu-

ids are plotted in Fig. S1(a) (AR-G2 rheometer, TA

Instruments, strain amplitude ¼0.3). Because these solutions

are incompressible, Poisson’s ratio is approximately 0.5 and

the elastic and shear moduli are related as E0 ¼ 3G0.20

The mechanical rheometry (Fig. S1) differs from the

behavior of the neo-Hookean constitutive equation in two

critical ways: First, a neo-Hookean material is purely elastic,

while the polymer solutions display a finite viscous modulus,

G00. Second, in hyperelastic models, the stress-strain relation-

ship is independent of deformation path, strain rate and de-

formation history.19 Therefore, the neo-Hookean model

describes a frequency-independent elastic modulus, while

the polymer solution rheology exhibits frequency-dependent

elasticity. We hypothesize that neither of these differences is

critical to the application of cavitation rheometry. In the first

case, we show that the viscous contribution to cavitation

does not affect the data analysis of Eqs. (1) and (2). In the

second case, we show, via imaging, that cavitation occurs at

high frequency, at which G0 �G00 or greater. In this limit, the

estimate of G0 through cavitation rheometry agrees with me-

chanical rheometry.

The second limitation, the cavitation length scale, must

be addressed to extend the technique to small, microliter vol-

umes. The analysis for Eqs. (1) and (2) assumes that cavita-

tion occurs in a region that is small relative to the overall

volume of the material. Because the cavitation region scales

on the needle radius, the sample volume must be signifi-

cantly larger than �0.2 ll, the minimum volume of material

necessary when commercially available needles are used.

We hypothesize that, as the sample volume decreases into

the microliter range, the thick-wall assumption must be

relaxed and Eqs. (1) and (2) must be modified. To verify this

second hypothesis, we formulate the elastic analysis for arbi-

trary volume and validate it by numerical simulation and

small volume experiments.

The cavitation pressure of the four test fluids was meas-

ured with air as the cavitating agent, delivered at 0.4ml/min

via syringe pump (Fisher Scientific). To differentiate the

viscoelastic response from that of a purely viscous fluid,

experiments were also performed on glycerol. Cavitation

was induced with five needle radii from 0.084mm to

0.419mm (Hamilton). The specimen volume was greater

than 1ml, a limit in which Eq. (2) applies. The time for cavi-

tation was �10 s. Once initiated, cavity formation was rapid,

typically <80ms. The cavitation pressure is the maximum

pressure observed.

Fig. 1(a) yields the shear elastic modulus from the inter-

cept (i.e., it is 2/5 of the intercept) and c from the slope of

the fit. The cavitation of glycerol (gray) results in G0 ¼ 0,

within error. This result demonstrates an inelastic fluid can

be identified as such by the technique. The error for glycerol

provides a lower bound on the G0 resolution limit of cavita-

tion rheometry. Specifically, the �50 Pa error in the intercept

for glycerol indicates that a G0 of this magnitude or lower

cannot be resolved. These values and standard errors of the

mean are in Table I.

We compare the moduli to those determined from me-

chanical rheometry. We performed high-speed imaging of

the cavity formation (Fig. 1(b)). From these images, we esti-

mate a characteristic strain rate for cavitation at which me-

chanical and cavitation rheometry are compared. Images

were acquired with a CCD camera at 120 frames per second

(Pulnix Progressive Scan TM-6710) attached to a 20� stere-

oscope (Zeiss Stemi 2000-C). From the imaging, seen

FIG. 1. (a) Critical pressure of PEO solutions and glycerol, as a function of

needle size; 3% (blue), 4% (red), 6% (black), 8% (green), and glycerol

(grey). Five needle sizes were used (Ri of: 0.084mm, 0.13mm, 0.207mm,

0.302mm, and 0.419mm), with three replicates each. The vertical error bars

are standard error of the mean and the horizontal error bars are the manufac-

turer’s variability in needle size. Inset: An individual cavitation experiment

with 4% PEO and Ri¼ 0.419mm, with Pc denoted as the maximum pres-

sure. (b) Frame-by-frame images of cavitation event 4% PEO with

Ri¼ 0.084mm, captured at 120 fps.

TABLE I. The shear elastic modulus and surface tension from cavitation curves of Figure 1(a) compared to the modulus from mechanical rheometry at a strain

rate estimated from high-speed imaging. The total strain to cavitation and correction factor is also reported. The rheometry values for the 3% PEO sample

were not evaluated due to limitations of the camera frame rate.

Test material Rheometry G0 (Pa) Cavitation G0 (Pa) Correction factor, k Total strain, e Characteristic strain rate, _e (s�1) Surface tension, (N/m)

3% PEO … 916 33 … … … 0.0666 0.006

4% PEO 140 2056 31 0.706 0.11 1.80 270 0.0716 0.006

6% PEO 290 2556 20 1.16 0.09 0.65 130 0.0776 0.004

8% PEO 590 3056 47 1.96 0.30 0.21 74 0.0886 0.008

Glycerol … �86 48 … … … 0.0696 0.009
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frame-by-frame for a 4% PEO solution in Fig. 1(b), we

measured the bubble radius for each frame of cavity growth

using image processing software (ImageJ). The local strain,

eL, and the strain rate, _e, were determined at each frame as

eL ¼ ðRj � Rj�1Þ=Rj�1 and _e ¼ eL=tc, where tc is the time

between frames j and j-1. The point of maximum strain rate

was designated the critical condition for cavitation. The total

strain, e, was determined from the beginning of the experi-

ment to the point of cavitation as e ¼ ðRj; critical � RiÞ=Ri.

The cavitation rate varied from 74 s�1 (8% PEO) to 270 s�1

(4% PEO) for the cavitation pressures and surface tensions

listed in Table I. By means of the Cox-Merz rule, we com-

pare G0 at the cavitation rate to G0(x) at the equivalent fre-

quency from the mechanical rheology.21

The shear elastic moduli at the aforementioned frequen-

cies are in a region at which G0 �G00 and the elasticity of the

system is significant. This correlation validates our first hy-

pothesis and therefore, we directly compare the cavitation

and mechanical rheometry at these deformation rates.

We establish a correction factor, k¼G0
Rheo/G

0
Cav to

connect cavitation and mechanical rheometry. We find that

the average correction factor (kavg¼ 1.236 0.17) results in a

cavitation rheometry deviation from the mechanical rheome-

try modulus that is not more than a factor of two. Although

cavitation and mechanical rheometry agree to within a factor

of two and both sets of moduli increase with increasing PEO,

the dependence of each displays a different dependence of

PEO concentration. This result is likely tied to the sensitivity

of the comparison to the strain rate extracted from imaging;

additional experimental and theoretical effort to improve this

comparison is warranted. Nevertheless, the cavitation and

mechanical rheometry results differ, on average, by less than

a factor of two. Although not exact, this accuracy would be

acceptable for many applications. For example, the differ-

ence in G0 between healthy tissue and a cancerous tumor is

approximately an order of magnitude or greater.4

Table I also indicates that the liquid-air c of the solu-

tions increases modestly with PEO concentration. The c of

PEO solutions should be bounded 0.043N/m and 0.072N/m,

the values for PEO and pure water, respectively.22–24 A

value closer to water is expected because the polymers in so-

lution have yet to diffuse to the freshly created interface.25,26

There is also the additional effect of finite viscosity, as dis-

cussed in the supplementary material (Fig. S3).31 Although

this effect vanishes in the limit used to characterize the elas-

tic modulus, it may affect c characterization, and thereby be

a determinant of the values and errors discussed.

We now address the second, volumetric, limitation of

cavitation rheometry. The “thick-shell” assumption in

Eqs. (1) and (2) takes the deformation due to cavitation to be

local and contained within an infinitesimal volume surround-

ing the needle.27 The outer boundary of the specimen is suffi-

ciently far from the needle and therefore unperturbed by

cavitation deformation. However, with decreasing sample

volume, the outer boundary approaches the radius of the

expanding cavity, which creates a deformation field extend-

ing to the outer boundary (cf. supplementary material).31

To study these mechanics, we performed finite element

simulations (COMSOL Multiphysics) of cavitation in finite

volumes of a neo-Hookean material with internal loading

and unconstrained radial expansion of the outer boundary,28

details of which can be found in the supplementary mate-

rial.31 The volume of material was varied through the

thickness of the elastic shell, H. The pressure curves found

from simulation (Fig. 2 Inset) are plotted as P/E as a function

Rc/Ri, where Rc is the cavity radius. The response is depend-

ent on the amount of material initially present (i.e., (RiþH)/

Ri, where RiþH is the radius of the specimen). At small ma-

terial volumes ((RiþH)/Ri� 5), after reaching its critical

value, the pressure decreases with increasing cavity expan-

sion. This effect physically would be manifested as an

unbounded expansion at this critical pressure.13 For

(RiþH)/Ri> 5, the critical pressure increases and occurs at

increasingly larger values of Rc/Ri. At large volumes, such

as (RiþH)/Ri¼ 20, the pressure reaches an asymptotic limit

of �5E/6, consistent with Eq. (2). The critical pressure is

significantly lower for finite volumes (i.e., Pc� 0.5E and

�0.2E at (RiþH)/Ri equal to 5 and 1.5, respectively). This

difference indicates that applying Eq. (2) in this regime is

not valid.

We analyzed the mechanics of cavity deformation in a

neo-Hookean material. The material is defined as a hollow

sphere of internal radius, Ri, and an external radius, RiþH,

which is free to expand. Assuming incompressibility, the

application of a pressure at the inner wall generates equibiax-

ial extension.27 Upon solving the equilibrium momentum

balance subject to the boundary conditions of internal load-

ing and an unbounded surface, we find that the applied pres-

sure, P, and deformation, k, are related as

P ¼
E

6k4b
þ

2E

3kb
�
E

3

1

2k4
þ
2

k

� �

: (3)

Here, k is the spatially varying stretch ratio of the cavity and

kb is the stretch ratio of the material at any point within the

elastic shell. Additional details are found in the supplemen-

tary material.31 By numerically solving Eq. (3) and compar-

ing to simulations, we find that the theory curve overlays

exactly with the simulation results (Fig. 2 Inset).

Furthermore, we numerically generate pressure-stretch

curves to determine Pc at many dimensionless sample

FIG. 2. The dependence of normalized critical pressure (Pc/E) on the volume

ratio of material as from finite element analysis (black circles) and theory

(blue line). These results were fit with Eq. (4) to determine parameters a and

b. Inset: Simulation and theory of normalized pressure versus normalized

cavity radius (Rc/Ri) during inflation. The curves are for [RiþH]/Ri of 1.5

(blue), 2.0 (red), 5.0 (green), and 20.0 (black).
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thicknesses. From these calculated values, we obtain the

modified cavitation equation by fitting the results (Fig. 2) to

Pc ¼
5E

6

6a

5

Ri þ H

Ri

� �b

þ 1

" #

; (4)

where a and b are fitting parameters, equal to �0.8558 and

�0.6547, respectively. Under the limit of infinite material

volume ((RiþH)/Ri ! 1), Eq. (4) approaches Eq. (2)

monotonically, thus validating our fit. This equation is valid

for all H> 0, as RiþH>Ri.

Equation (4) predicts that the cavitation pressure in finite

volumes is a function of the elastic modulus and the geomet-

ric parameter (RiþH)/Ri. To test this equation in the finite

volume limit, 4% PEO droplets of varying volume were dis-

pensed on a glass slide. To cause the PEO droplet to bead,

the glass was coated with a hydrophobic layer (Rain-X). The

droplet dimensions were measured with a stereoscope

equipped with a CCD camera (PCO Pixelfly QE). The over-

all volume of our PEO droplets were approximately 1 ll.

Cavitation was induced in the small volume drops by

pressurization of the syringe. The measured cavitation pres-

sures, after subtracting the surface tension term as deter-

mined by large volume cavitation (2c/Ri), are plotted for a

range of drop dimensions in Fig. 3(b). The trend between the

small volume (circles) and large volume experiments

(squares) is consistent with both the simulation and theory

reported earlier. The small volume experiments were fit with

Eq. (4), which yielded an elastic modulus of 840 Pa. The

large volume experiments, from Table I, found E¼ 615 Pa, a

discrepency of 35%. Moreover, the large volume data fell

within the 95% confidence interval of our small volume fit-

ting, further indicating the applicability of Eq. (4).

In conclusion, cavitation rheometry has been extended

to estimate the elastic modulus of viscoelastic fluids and

small volumes. Areas for future attention include viscoelastic

modeling of the cavitation experiment; this step would allow

correspondence between this technique and other methods

for elongation deformation, and their accompanying instabil-

ities, to be better assessed.29,30 These extensions improve the

scope for the method’s application to areas such as in situ

and high throughput rheology.
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FIG. 3. (a) Image of �1 ll droplet of 4% PEO solution on a hydrophobic

glass slide for small volume cavitation. The needle and characteristic dimen-

sion, RiþH, are shown. (b) Pc, with the surface tension contribution sub-

tracted, plotted for a range of drop dimensions. Small (circles) and large

(squares) volume cavitation experiments are plotted and fit (solid line) with

Eq. (4). The 95% confidence interval (dotted lines) are shown.
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