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The gas flow between two concentric rotating cylinders is considered in order to

investigate non-equilibrium effects associated with the Knudsen layers over curved

surfaces. We investigate the nonlinear flow physics in the near-wall regions using a

new power-law (PL) wall-scaling approach. This PL model incorporates Knudsen

layer effects in near-wall regions by taking into account the boundary limiting effects

on the molecular free paths. We also report new direct simulation Monte Carlo results

covering a wide range of Knudsen numbers and accommodation coefficients, and for

various outer-to-inner cylinder radius ratios. Our simulation data are compared with

both the classical slip flow theory and the PL model, and we find that non-equilibrium

effects are not only dependent on Knudsen number and accommodation coefficient

but are also significantly affected by the surface curvature. The relative merits and

limitations of both theoretical models are explored with respect to rarefaction and

curvature effects. The PL model is able to capture some of the nonlinear trends

associated with Knudsen layers up to the early transition flow regime. The present

study also illuminates the limitations of classical slip flow theory even in the early

slip flow regime for higher curvature test cases, although the model does exhibit

good agreement throughout the slip flow regime for lower curvature cases. Torque

and velocity profile comparisons also convey that a good prediction of integral flow

properties does not necessarily guarantee the accuracy of the theoretical model used,

and it is important to demonstrate that field variables are also predicted satisfactorily.
C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807072]

I. INTRODUCTION

Isothermal gas flow between two concentric rotating cylinders is a classical fluid dynamics

problem that is detailed for the no-slip case in many well-known textbooks (e.g., Schlichting1).

However, under certain rarefied conditions the flow between the cylinders can exhibit highly non-

intuitive behaviour. For example, if the outer cylinder is stationary and the inner cylinder is rotating,

it is possible for the velocity profile to become inverted, i.e., the velocity will increase from the inner

to the outer cylinder wall. This unusual flow phenomenon was first described theoretically by Einzel

et al.2 for the case of liquid helium. Using the direct simulation Monte Carlo (DSMC) technique,

Tibbs et al.3 extended the analysis to the case of a rarefied gas and demonstrated that velocity inversion

could occur provided the tangential momentum accommodation coefficient (TMAC) for the surfaces

was small. This early work has led to a number of theoretical and simulation studies for rotating

Couette flow4–12 and oscillating Couette flow.13 These confirmed the existence of velocity inversion
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for small values of TMAC and also showed there was a critical accommodation coefficient.14, 15

Indeed, Yuhong et al.5 derived an analytical criterion for the critical accommodation coefficient and

showed that velocity inversion was solely dependent on the value of TMAC at the stationary outer

cylinder.

Yuhong et al.5 also discussed the limitations of classical slip flow theories: they are only appli-

cable up to Kn ∼ 0.1. This has generally led to second-order treatments of the velocity slip at solid

bounding surfaces,16 but with limited success because this approach fails to reproduce the nonlinear

stress/strain-rate relationship observed in the Knudsen layer (KL).10, 17–19 The behaviour of a rar-

efied gas in the Knudsen layer can accurately be predicted by the Boltzmann equation.20, 21 However,

directly solving the Boltzmann equation for practical gas flow applications remains computationally

intensive due to the complicated structure of the molecular collision term. Other alternatives are

to introduce a slip coefficient that depends on the Knudsen number22 or to introduce an effective

viscosity term.23, 24 Cercignani used kinetic theory to propose a “wall-function” that scales with

the mean free path.20 This function complements the constitutive relation by effectively modifying

the viscosity, and is able to capture some non-equilibrium behaviour of the Knudsen layer. This idea

has been adopted and extended16, 25–28 with some success.

Dongari et al.29 carried out molecular dynamics (MD) simulations of gases and the results

indicate that molecules perform Lévy-type flights30 under rarefied conditions, i.e., the free paths of

gas molecules follow a power-law (PL) distribution. Consequently, these authors hypothesised that

the probability distribution function for the molecular free paths of a rarefied gas followed a PL form,

and this was validated against MD data under various rarefied conditions. Using a PL distribution

to describe free paths, Dongari et al.31 and Dongari et al.32 derived effective mean free path (MFP)

models for flows confined by planar and non-planar surfaces, respectively, by taking into account

the solid boundary effects. PL effective MFP models showed good agreement with the MD data up

to the early transition regime (Kn ∼ 1), while classical exponential MFP scaling models33, 34 are

limited up to Kn ∼ 0.2. In addition, these authors modified the Navier-Stokes constitutive relations

and slip boundary conditions using PL-based MFP scaling and were then able to accurately capture

several non-equilibrium effects in the Knudsen layer for both isothermal and thermal gas flows.

On the other hand, particle simulation methods such as DSMC35 and MD36 not only provide

excellent alternatives to solve rarefied gas flows, but also aid in rigorously validating these kinds of

extended hydrodynamic models. Existing simulations for cylindrical Couette flows3, 37 do not cover

a wide range of Knudsen numbers, and they are only carried out for limited ratios of radii of the

outer (R2) to inner (R1) cylinders. Tibbs et al.3 presented DSMC results for Kn = 0.5, with R2/R1

= 5/3, while Kim’s37 MD numerical experiments are conducted for Kn ≃ 0.01, with R2/R1 = 5.

Although Jung38 has performed MD simulations for various radii ratios, the R2/R1 values in this

work are quite large (≫5) and the rotating inner cylinder may have lesser influence on the velocity

profile results.

There is also a scarcity of torque data for the rotating Couette flow test case. The existing

experimental data can be traced back to Kuhlthau,39 however, these experiments were performed

for a set-up where the length of the inner cylinder is comparable to its radius. It has been mentioned

by Agrawal and Prabhu,14 that one needs to incorporate a correction factor to match the classical

theories in the continuum regime.

In view of the above, we carry out rigorous DSMC simulations of cylindrical Couette gas flow

for Knudsen numbers covering the slip (Kn = 0.1) and transition flow regime (Kn = 0.5 and 1). At

each Kn, a variety of TMAC (σ ) and R2/R1 values are used to check the sensitivity of surface and

curvature effects, respectively. The resultant velocity and torque data are compared with the classical

slip theory and the new PL wall scaling model.31, 32 A brief overview of our DSMC simulations and

the PL wall-scaling model are outlined in Secs. II–IV.

II. DSMC SIMULATIONS

We investigate gas flows in the transition flow regime, so the DSMC method35 is chosen to

provide our numerical results. DSMC is a stochastic particle-based method, in which a single

DSMC simulator particle can represent any number of real gas molecules, and particle movements
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FIG. 1. Contours of velocity calculated by dsmcFoam for a typical concentric cylindrical Couette flow case.

and collisions are decoupled. Particle movements are handled deterministically according to the

particle velocity vectors and the simulation time step. Binary inter-molecular collisions and surface

interactions are dealt with in a probabilistic manner. Macroscopic properties are recovered as a

spatial and time average of the microscopic particle properties.

The DSMC solver used in this paper is dsmcFoam, an open source solver that is part of the

free-to-download C++ fluid dynamics toolbox, OpenFOAM.40 This solver has previously been

rigorously validated for a variety of benchmark cases.41, 42 Two-dimensional DSMC simulations of

cylindrical Couette flows are reported in the present paper, where argon gas is trapped between

two concentric cylinders. The inner cylinder is rotating and the outer cylinder is stationary. Our

simulations do not utilise quarter or half symmetry: a full circular domain is modelled as shown in

Figure 1.

As validation for dsmcFoam for rarefied, low-speed cylindrical Couette flow, results are com-

pared to previous DSMC results for the transition regime with hard sphere STP argon as the working

gas.3 The inner cylinder has a radius R1 of 1.875 × 10−7 m and the outer cylinder’s radius R2 is

3.125 × 10−7 m, which gives R2/R1 = 5/3. The Knudsen number based on the hard sphere mean free

path λ (6.33 × 10−8 m) and the gap between the two cylinders is 0.5. The inner cylinder rotates with

a constant velocity of 96.94 m/s, giving a Mach number of 0.3. Excellent agreement with previous
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FIG. 3. Schematic of Couette flow between concentric rotating cylinders.

results for the normalised velocity profiles with four different accommodation coefficients (1.0, 0.7,

0.4, and 0.1) can be observed in Figure 2.

For all of the remaining DSMC simulations reported in this paper, the numerical cell size is

chosen such that the cells are much smaller than the mean free path, and so that enough cells are

placed throughout the domain to recover macroscopic properties with sufficient resolution. The

Knudsen number is based on the ratio of the unconfined mean free path value (λ) to the radial

distance between the cylinder surfaces (R2 − R1). The time step is smaller than the mean collision

time, and also small enough that particles are likely to spend multiple time steps within a single

computational cell. All simulations are initialised with at least 20 DSMC particles per cell, and

500 000 particles in the whole domain. Each case was solved in parallel on 4 cores of the 1100 core

High Performance Computer (HPC) facility at the University of Strathclyde. The run time for each

case was around 60 h to achieve a total of at least 300 000 samples. The variable hard sphere collision

model43 is used to perform collisions, and all surface-particle interactions are dealt with as a mixture

of specular and diffuse interactions in order to simulate various accommodation coefficients. The

torque on the rotating inner cylinder is calculated from the measured viscous drag force acting on

the inner cylinder surface.

Numerical results are obtained for a variety of outer-to-inner cylinder radius ratios (R2/R1

= 6/5, 5/3, 2, 3, and 5), Knudsen numbers (0.1, 0.5, and 1.0) and accommodation coefficients (0.1,

0.4, 0.7, and 1.0), as shown in Figure 3. The inner cylinder is rotating at a Mach number (Ma

= R1ω/
√

γ RT ) of 0.20 for all simulated test cases. Here ω is the angular velocity of the inner

cylinder, γ the ratio of the specific heat capacities, R the gas constant, and T the temperature. The

surface temperature of both cylinders is constant at 273 K. The radii ratio is varied by fixing R1 and

increasing R2, and Kn is maintained constant by proportionally modifying the gas density. As the

Mach number is fixed, the Reynolds number (Re = Ma/Kn
√

πγ/2) remains constant for different

geometric configurations, as long as Kn is constant.

III. POWER-LAW WALL SCALING MODEL

Close to a solid boundary, gas molecule-surface interactions start to dominate gas inter-molecular

collisions. Hence, the gas MFP will effectively be reduced in the near-wall regions, leading to a

nonlinear variation of MFP with surface normal distance.33 This leads to the formation of a KL: a

local thermodynamically non-equilibrium region extending ∼O(λ) from the surface.21 The state of

non-equilibrium induced by a surface should be spatially extended in proportion to the probability of

a collisionless trace of molecule travelling a certain distance from a wall. Therefore, by investigating

the variation of the effective MFP a more accurate indication of the KL extent can be obtained.
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Dongari et al.32, 44 derived a PL-based effective MFP model for non-planar surfaces by incorpo-

rating the effects of curvature. They developed a curvature-dependent MFP solution for both convex

and concave surfaces, and extended this analysis to deduce the effective MFP for a gas confined

between two concentric cylinders. In the present paper, we incorporate this power-law wall scaling

model developed for cylindrical surfaces into the Navier-Stokes equations. The non-planar MFP so-

lution reduces to the planar wall MFP model31 when the curvature tends to zero and the non-planar

solution also satisfies other limiting conditions.32

The current setup has gas confined between two co-axial cylinders. In this context, the curvature

effects are induced due to both the convex (inner cylinder) and the concave (outer cylinder) nature

of the surfaces, and it is very important to capture this nonlinear behaviour accurately. For example,

in the case of planar parallel walls, it is equally probable that a molecule travels towards one

surface or the other.31 However, in the present case solid angle theory is used to determine the

likelihood of a molecule travelling in the direction of cylinder, as opposed to travelling towards the

bulk or other cylinder. From this weighting, the general expression for the effective mean free path

of a gas is obtained.32 The convex surface (inner cylinder) overpredicts gas MFP compared to a

planar case, while the concave surface (outer cylinder) underpredicts it. This stems from the fact

that gas molecules near a convex surface have more probability to travel towards the bulk, while

they have smaller probability near a concave surface.32 The differences between these over- and

underpredictions are magnified with increase in R2/R1. So the curvature effects are very important

for the current power-law model and used to modify the Navier-Stokes equations to explore the

nonlinear physics associated with the Knudsen layers of rarefied gas flows confined between rotating

co-axial cylinders.

A. Effective mean free path

The complete expression for the normalised (by the conventional unconfined MFP) effective

mean free path of a gas confined between two concentric cylinders is32, 44

β =
(

θ−
u

π

)
[

1 −
1

θ−
u

∫ θ−
u

0

(

1 +
R−(r, θ−)

a

)(1−n)

dθ−

]

+

[

1 −
(

θ−
u

π

)]
[

1 −
1

θ+
u

∫ θ+
u

0

(

1 +
R+(r, θ+)

a

)(1−n)

dθ+

]

, (1)

with

θ−
u = arcsin

(
R1

r

)

, (2)

θ+
u = π − θ−

u , (3)

R−(r, θ−) = r cos(θ−) −
√

(r cos(θ−))2 + R2
1 − r2, (4)

R+(r, θ+) = −r cos(θ+) +
√

(r cos(θ+))2 + R2
2 − r2, (5)

where r is the distance of a molecule from the centre of the co-axial cylinders and R− the travelling

distance limit for a molecule moving towards the inner cylinder surface, for a given zenith angle

θ−. The largest travelling distance R−
u is achieved for the zenith angle direction θ−

u , above which

the molecule bypasses the cylinder surface and travels into the bulk or towards the outer cylinder

surface. The molecule has a travelling distance of R+ to the outer cylinder surface for a travelling

direction of θ+.

Here, β is the geometry-dependent normalised MFP based on a power-law distribution function

and is dependent on the Knudsen number Kn through the mean free path λ and a geometry constraint
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R2/R1. The Knudsen number is defined as

Kn =
λ

R2 − R1

. (6)

The power-law exponent n acts as a decisive parameter to define the extent of deviation from

equilibrium. For larger values of n (→ ∞) the PL distribution function simply reduces to the

classical exponential one,45 i.e., molecules follow Brownian motion rather than Lévy-type flights.30

For a finite n, the distribution function describes a system deviating from equilibrium. Through

MD simulations, Dongari et al.29, 31 determined that an n value of 3 in both the slip and transition

regimes gave very good results for both isothermal and thermal gas flows in planar and non-planar

geometries.32 Therefore, we use n = 3 for all of our PL model results presented in this paper, although

we recognise that the value of this parameter should usefully be the subject of future investigations.

B. Shear flow between two parallel plates

The physics of Knudsen layers is best illustrated through a simple set-up of shear flow between

two parallel plates. Ansumali et al.18 provided the exact solution to the hierarchy of nonlinear lattice

Boltzmann kinetic equations for the stationary planar Couette flow test case. They presented not only

the slip velocity results as a function of Knudsen number, but also the shear stress and normal stress

difference, which arise due to the non-continuum effects. Other researchers have also carried out

studies on planar Couette flow in order to analyse Knudsen layer effects in near-wall regions.10, 19, 46

The flow is assumed to be fully developed, one-dimensional, isothermal, laminar, and steady,

with a low Reynolds number (Re) so that inertial effects may be neglected. As Ma
2
Kn

2 is assumed

to be very small, non-continuum effects which trigger a normal stress difference are also negligible.

With these assumptions, the governing equation and the first-order slip boundary condition for planar

Couette flow can be given as

∂

∂y

(

βPL

∂U

∂y

)

= 0, (7)

Usli p = Uw − C1Kn

(

βPL

∂U

∂y

)

w

, (8)

where βPL is the normalised effective mean free path in planar geometries,29, 31 Uw is the wall

velocity, and C1 is the first-order slip velocity coefficient (taken as unity).

The distance between the two parallel plates is H, and they are set at y = ±H/2. The Knudsen

number is given by Kn = λ/H . The upper and lower plates move with a constant velocity Uw

= ±50 m s−1, in opposite directions, and the external acceleration ax = ay = 0. Energy transfer

considerations are not included at this stage, but the plate temperatures are considered to be equal

and constant to allow the properties of the gas flow to be determined. Equation (7) is numerically

solved for the normalised axial velocity profiles U∗ by applying the slip boundary condition (8) at

the upper and lower walls (i.e., at y∗ = ±0.5). A second-order slip boundary condition has not been

implemented, as the higher order term reduces to zero due to Eq. (7).

In Figure 4, we compare our PL model with the DSMC data, and results of the R13 and R26

equations,46 in order to illustrate the predictive capabilities of our Navier-Stokes based continuum

equations relative to other extended hydrodynamic models. We chose to compare our results with the

DSMC data of Gu and Emerson,46 as their simulations are carried out for a very low Mach number,

which is consistent with our assumption of neglecting inertial forces. In the early transition regime,

Kn = 0.25, the velocity profile predicted by the R13 equations is linear. In the core part of the

flow (i.e., outside of the Knudsen layer), all three hydrodynamic models are in agreement with the

DSMC data.46 However, in the region close to the wall, the DSMC results indicate a Knudsen-layer

velocity profile, i.e., nonlinear variations. The R13 equations do not follow this behaviour, while the

PL model and the R26 equations are in excellent agreement with the DSMC data. At Kn = 0.5 and

above, i.e., well into the transition regime, the DSMC data clearly show the expected Knudsen-layer

velocity profile with substantial velocity slip at the surface due to strong rarefaction effects. The R13
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FIG. 4. Normalised half channel velocity profiles for planar Couette flow at various Knudsen numbers. Comparison of our

power-law (PL) model results with the DSMC data, and the R26 and R13 moment equations.46

equations fail to capture this aspect of the velocity profile, and overpredict the amount of velocity

slip. In contrast, the results from the PL model are in very good agreement with both the DSMC data

and the R26 equations, and the new model not only predicts the correct velocity slip but also, and

more importantly, captures the power-law behaviour of the velocity profile in the Knudsen layer,47

even up to Kn = 1.0.

IV. CYLINDRICAL COUETTE FLOW

A. Governing equations

We consider a rarefied gas confined between two concentric rotating cylinders as shown in

Figure 3. The flow is assumed to be fully developed, two-dimensional, isothermal, laminar, and

steady, with a low Reynolds number (0.32 ≤ Re ≤ 3.22 for the cases considered) so that inertial

effects may be neglected. As Ma
2
Kn

2 is assumed to be very small, non-continuum effects which

trigger normal stress difference are also negligible. With these assumptions, the governing flow
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equation in cylindrical coordinates is

1

r2

d

dr

(

r2τrφ

)

= 0, (9)

where r is the radial coordinate, φ is the tangential coordinate, and τ rφ is the tangential stress, which

is defined as

τrφ = μ

(
duφ

dr
−

uφ

r

)

, (10)

where μ is the fluid dynamic viscosity and uφ is the velocity of the fluid in the tangential direction.

From the kinetic theory of gases, the fluid viscosity can be understood in terms of the collisions

between gas molecules, and of the free paths of molecules between collisions. The unconfined MFP

is then related to the shear viscosity:48

μ = ρ
λ

√
π/2RT

, (11)

where ρ is the gas density, R the specific gas constant, and T the gas temperature.

Equation (11) is only valid for flows that are in quasi-equilibrium. Within the Knudsen layer,

the flight paths of the gas molecules are affected by the presence of a surface. If the unconfined

expression for the MFP, λ, is replaced by our geometry-dependent mean free path for the non-planar

case, λeff = λβ through Eq. (1), we obtain a non-constant, geometry-dependent, effective viscosity,

μeff, that can then be used to deduce a nonlinear stress/strain-rate relation:

τrφ = μβ
︸︷︷︸

μeff

(
duφ

dr
−

uφ

r

)

. (12)

Substituting Eq. (12) into Eq. (9) results in the modified governing equation:

μ

r2

d

dr

[

r2β

(
duφ

dr
−

uφ

r

)]

= 0. (13)

This model needs to be solved in conjunction with the following slip boundary conditions at the

inner and outer cylinder surfaces, respectively,

uφ |r=R1
= ω1 R1 +

2 − σ1

σ1
︸ ︷︷ ︸

α1

λ

[

β

(
duφ

dr
−

uφ

r

)]

r=R1

, (14)

uφ |r=R2
= ω2 R2 −

2 − σ2

σ2
︸ ︷︷ ︸

α2

λ

[

β

(
duφ

dr
−

uφ

r

)]

r=R2

, (15)

where ω1 and ω2 are the angular velocities and σ 1 and σ 2 are the tangential momentum accommo-

dation coefficients of the inner and outer cylinders, respectively.

The solution for the velocity profile can then be obtained as

uφ(r ) = r

[

ω1 +
α1λC

R3
1

+ G(r )C

]

, (16)

where

G(r ) =
∫ r

R1

dr

r3β
, (17)

C =
ω2 − ω1

[

H1 + α1λ

R3
1

+ α2λ

R3
2

] , (18)

H1 =
∫ R2

R1

dr

r3β
. (19)
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When the effects of the Knudsen layer are neglected, i.e., the mean free path has no geometry

dependence, then Eq. (16) simply reduces to the velocity profile based on the classical slip solution,

as presented in Yuhong et al.5

The accurate prediction of integral flow parameters in micro-/nano-conduits is important in

engineering MEMS devices. Here, the torque exerted on the rotating inner cylinder is given as

Ŵ = f AR1, (20)

with

f =
[

μeff

(
duφ

dr
−

uφ

r

)]

r=R1

, (21)

A = 2π R1L , (22)

where L is the length of the inner cylinder.

When the no-slip boundary condition is applied and the Knudsen layer effects are negligible,

the torque expression for flows in the continuum regime is14

ŴC =
4πμωL

(
1

R2
1

− 1

R2
2

) . (23)

V. RESULTS AND DISCUSSION

Normalised velocity profiles [U∗ = uφ /(ω1R1)] are presented in Figures 5–11 for various Knud-

sen numbers and R2/R1 values, and different combinations of accommodation coefficients. To high-

light the phenomenon of velocity inversion, the outer cylinder is kept stationary (ω2 = 0) and the

inner cylinder is allowed to rotate. For an initial study, the ratio of the radii of the inner and outer

cylinders R2/R1 is chosen to be 5/3, and the accommodation coefficients are assumed to be equal

at the inner and outer surfaces (σ 1 = σ 2 = σ ). Figure 5(a) presents a comparison between our

solution based on the PL effective MFP (Eq. (16)) and the DSMC data. The PL model is in excellent

agreement with the simulation data for the Kn = 0.1 case, at all σ values. Figure 5(b) presents

the results based on the classical governing equation together with the conventional slip boundary

conditions, i.e., without considering any Knudsen layer effects (see Yuhong et al.5), alongside the

PL model results. The classical slip model results are in good agreement with the PL, with slight

deviations in the near-wall regions. For Kn = 0.1, i.e., the end of the slip flow regime, no velocity

inversion is predicted by either the simulation data or the theoretical models.

FIG. 5. Variation of the non-dimensional velocity [U∗ = uφ /(ω1R1)] with normalised radial distance for cylindrical Couette

flow with σ 1 = σ 2 = σ . Comparison of PL model results against (a) DSMC data and (b) the classical slip solution (Yuhong

et al.5). The results are presented for Kn = 0.1 and R2/R1 = 5/3.
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FIG. 6. Variation of the non-dimensional velocity [U∗ = uφ /(ω1R1)] with normalised radial distance for cylindrical Couette

flow with σ 1 = σ 2 = σ . Comparison of PL model results against (a) DSMC data and (b) the classical slip solution.5 The

results are presented for Kn = 0.5 and R2/R1 = 5/3.

Comparisons for the Kn = 0.5 case are presented in Figure 6. The PL model is in very good

quantitative agreement with the DSMC results for the σ = 1.0 and 0.7 cases. The results show that

the DSMC data and PL formulation follow the same basic trends and predict an inverted velocity

profile when the accommodation coefficient is 0.1. However, slight deviations are discernible at

the surface of the outer cylinder for the σ = 0.4 and 0.1 cases. It is interesting to note that, for

the specific case of the accommodation coefficients of the inner and outer cylinders having the same

value, the family of velocity profiles all pass through a common point that is independent of the

value of the accommodation coefficient. This intersection point in the PL profiles is fairly close to

the point predicted by the DSMC data, whereas the classical slip solution predicts this point closer

to the outer cylinder, as shown in Figure 6(b). The classical slip solution does not account for any

variation in MFP and hence fails to capture nonlinear effects associated with the Knudsen layers at

the inner and outer cylinders; it underpredicts the slip velocity at the inner cylinder and overpredicts

at the outer one, i.e., accounting for larger slip effects. The discrepancies are greatest at σ = 1.0

and decrease as σ is reduced. At very low values of σ , the PL model and classical slip solutions are

identical and yield the same solid body rotation solution as σ → 0.

Figure 7 shows velocity profiles for the Kn = 1 case, and deviations between the PL model

and DSMC data are discernible in the near-wall regions at both the inner and outer cylinders, for

all σ values. The PL model underpredicts the slip velocities at the inner cylinder for all σ values;

however, at the outer cylinder it overpredicts for σ = 0.1, 0.4, and 0.7, and slightly underpredicts

FIG. 7. Variation of the non-dimensional velocity [U∗ = uφ /(ω1R1)] with normalised radial distance for cylindrical Couette

flow with σ 1 = σ 2 = σ . Comparison of PL model results against (a) DSMC data and (b) the classical slip solution.5 The

results are presented for Kn = 1.0 and R2/R1 = 5/3.
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FIG. 8. Effect of the power-law (PL) exponent n on the cylindrical Couette flow velocity profiles. Variation of

the non-dimensional velocity [U∗ = uφ /(ω1R1)] with normalised radial distance for σ 1 = 1.0 and (a) σ 2 = 1.0,

(b) σ 2 = 0.4, and (c) σ 2 = 0.15, for Kn = 0.5 and R2/R1 = 5/3.

FIG. 9. Variation of the non-dimensional velocity [U∗ = uφ /(ω1R1)] with normalised radial distance for cylindrical Couette

flow with σ 1 = σ 2 = σ . Comparison of PL model results against DSMC data. The results are presented for Kn = 0.1 and

R2/R1 = 6/5 (top left), 2 (top right), 3 (bottom left), and 5 (bottom right).
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FIG. 10. Variation of the non-dimensional velocity [U∗ = uφ /(ω1R1)] with normalised radial distance for cylindrical Couette

flow with σ 1 = σ 2 = σ . Comparison of PL model results against DSMC data. The results are presented for Kn = 0.5 and

R2/R1 = 6/5 (top left), 2 (top right), 3 (bottom left), and 5 (bottom right).

for σ = 1. The classical slip model comparisons with the PL model are qualitatively similar to the

Kn = 0.5 case. The intersection point of the family of velocity profiles, for both the DSMC data

and the PL model, moves towards the inner cylinder as Kn increases. However, for the classical slip

model, the intersection point is found to stay at about the same location (approximately 0.7 on the

abscissa) for all Kn cases.

As mentioned earlier, the value of the power-law exponent has been fixed to n = 3 for all the

reported results so far. Figure 8 demonstrates the effect of the value of n on the structure of the

velocity profile in the Knudsen layer, for σ 1 = 1.0 and (a) σ 2 = 1.0, (b) σ 2 = 0.4, and (c) σ 2 = 0.15.

The velocity profiles are almost unaffected by the value of n at high values of the accommodation

coefficients (σ 2 = 1.0) across the entire annular clearance. For small accommodation coefficients

(σ 2 = 0.4 and 0.15), the velocity profiles are shown to depend on the value of n, and the sensitivity to

this increases towards the outer cylinder. However, the maximum deviation is limited to only around

3%–4%, and this is obtained with n varying from 2.5 to 10. As mentioned in the paper, previous MD

results indicate that the value of n is around 3, and so velocity profiles may not be too sensitive to

small variations in n.

To check the sensitivity of curvature effects on the velocity profiles, we now present results for

R2/R1 = 6/5, 2, 3, and 5 cases, and at Kn = 0.1, 0.5, and 1. The radii ratio is varied by fixing R1 and

increasing R2, and Kn is set by modifying the gas density. The Reynolds number (Re) is the same

for different geometric configurations for a given Kn, as Ma is kept constant.

Figure 9 demonstrates the velocity profiles for the Kn = 0.1 case, at different R2/R1 values.

For each R2/R1 value, the PL model results are compared with DSMC data for σ = 0.1, 0.4, 0.7,

and 1. For lower R2/R1 values (6/5 and 2), the PL model is in excellent agreement with simulation

data in the whole of the annular gap. However, with an increase in R2/R1, deviations are noticed in
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FIG. 11. Variation of the non-dimensional velocity [U∗ = uφ /(ω1R1)] with normalised radial distance for cylindrical Couette

flow with σ 1 = σ 2 = σ . Comparison of PL model results against DSMC data. The results are presented for Kn = 1 and

R2/R1 = 6/5 (top left), 2 (top right), 3 (bottom left), and 5 (bottom right).

the near-wall region at the inner cylinder. Here the PL model slightly underpredicts the wall-slip

velocities for the R2/R1 = 3 and 5 cases, although at the outer cylinder velocities are accurately

predicted. The profiles intersection point moves towards the outer cylinder with an increase in R2/R1.

Slip velocities decrease at both the inner and the outer cylinders with an increase in R2/R1. When

the size of the inner cylinder is relatively reduced in comparison with the outer one, relatively larger

and smaller slip effects are noticed, at the inner and outer cylinders, respectively. This may be due

to relatively fewer molecules interacting with the inner cylinder, compared to the outer one. On the

other hand, for the R2/R1 = 6/5 case, no velocity inversion is observed at σ = 0.1; however, partially

inverted velocity profiles are predicted in cases with higher values of R2/R1. For partial inversions,

the gradient of the velocity profile has to be zero at some position in the annular gap, and this point

moves towards the inner cylinder with an increase in R2/R1.

Similar comparisons are carried out for Kn = 0.5 and 1 cases, and are shown in Figures 10

and 11. For the R2/R1 = 6/5 case, the PL model is in excellent agreement with DSMC data at

both Kn = 0.5 and 1. Deviations are noticed as R2/R1 increases, becoming quite significant for the

R2/R1 = 5 case, especially in the near-wall region of the inner cylinder. Similar to the Kn = 0.1

case, the slip velocities at the inner cylinder decrease significantly with an increase in R2/R1. For

the Kn = 0.5 and σ = 1 case, with an increase in R2/R1, the slip velocities at the inner cylinder

predicted by DSMC vary approximately from 0.73 to 0.4, whereas for the PL model from 0.72 to

0.25. For the Kn = 1 and σ = 1 case, they vary from 0.7 to 0.38, and from 0.68 to 0.2, for the DSMC

and PL model, respectively. This conveys that deviations between the PL model and our DSMC data

approximately vary from 1% to 38% with an increase in R2/R1 from 6/5 to 5, for the Kn = 0.5 and

σ = 1 case. They vary from 2% to 47% with an increase in R2/R1 from 6/5 to 5, for the Kn = 1

and σ = 1 case. Deviations decrease with decrease in σ , and hence the above mentioned deviations

of the PL model illustrate the maximum ones. With an increase in curvature effects, deviations are
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FIG. 12. Variation of normalised torque Ŵ exerted on the rotating inner cylinder with Knudsen number (Kn). Our DSMC

data are compared with both the slip and the PL models. The data are obtained for a specific case, where the accommodation

coefficients of both the inner and outer cylinders are unity (σ 1 = σ 2 = 1) and R2/R1 = 6/5 (top left), 5/3 (top right), 3 (bottom

left), and 5 (bottom right).

significant in the transition regime, which suggests that the simple power-law free path distribution

function has limitations and it needs to be revisited for larger curvature geometries.

The position of the profile intersection point is relatively insensitive to a change in R2/R1 for

the Kn = 0.5 and 1 cases, when compared with the Kn = 0.1 one. On the other hand, for the R2/R1

= 6/5 case, complete velocity inversion is observed at σ = 0.1, and only partially inverted velocity

profiles are predicted for higher values of R2/R1, at σ = 0.1. For the Kn = 0.5 and 1 cases, the

position where the gradient of the velocity profile becomes zero moves away from the inner cylinder

with an increase in R2/R1. These findings are in contrast with the velocity profiles for the Kn = 0.1

case, see Figure 9.

Figure 12 presents the variation of the normalised torque (Ŵ) exerted on the rotating inner

cylinder with Knudsen number (Kn), and our DSMC data are compared with the slip and PL

models. The data are obtained for a specific case, where the accommodation coefficients of both

the inner and the outer cylinders are unity (σ 1 = σ 2 = 1), and for R2/R1 = 6/5, 5/3, 3, and

5. Torque values are normalised by the continuum-fluid values of the torque (ŴC), see Eq. (23).

The PL model is in good agreement with the DSMC data up to Kn ∼ 2 for R2/R1 = 6/5

and 5/3 (i.e., cases with lower curvature). The classical slip model, however, shows substantial
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deviations beyond Kn ∼ 0.2. For cases with larger curvature (R2/R1 = 3 and 5), the PL model

also exhibits deviations from Kn ∼ 0.2 onwards, although these are limited to 10%–15% up to

Kn = 1. The classical slip model predicts significant deviations even within the slip flow regime (Kn

∼ 0.05), which conveys that non-equilibrium effects are more pronounced for larger curvature test

cases.

VI. CONCLUSIONS

The non-equilibrium flow physics of isothermal rarefied gases interacting with non-planar

surfaces in cylindrical Couette flow has been described using detailed DSMC simulations for different

Knudsen numbers, and a variety of accommodation coefficient values and outer-to-inner radius ratios.

Simulation data have been compared with both the classical slip theory and our new PL wall scaling

model, and both rarefaction and curvature effects on flow properties have been rigorously explored.

Velocity profile comparisons for Kn = 0.1, 0.5, and 1, at R2/R1 = 5/3, highlight the known fact

that while the classical slip model is valid in the slip flow regime, it exhibits significant deviations in

the transition regime. However, our PL wall scaling model predictions are in very good agreement up

to Kn ∼ 1, with only slight deviations in the near-wall region at the inner cylinder. The simulation

data and the PL model also predict partially inverted velocity profiles for moderate σ values, whereas

the classical slip model does not capture this phenomenon. The classical slip theory significantly

underpredicts the velocity profile at the inner cylinder and overpredicts it at the outer cylinder, and

velocity inversion is also predicted at the incorrect σ values (see Figures 6(b) and 7(b)). Our torque

investigations indicate that classical slip flow theory may also not be accurate enough even in the

slip flow regime for larger curvature test cases.

The DSMC data of velocity profiles for larger R2/R1 values illuminate the limitations of the PL

wall scaling model in the transition regime. With an increase in the R2/R1 value and for Kn ≥ 0.5,

the PL model significantly underpredicts the velocity in the near-wall region of the inner cylinder,

but does obtain fair comparison in the near-wall region of the outer one. This shows that the

non-equilibrium effects in the near-wall region are not merely dependent on Kn , but that they

are also influenced by curvature, since deviations between the DSMC data and PL model are

more pronounced for larger R2/R1 values. These findings are consistent with our DSMC torque

measurements, where the deviations from continuum theory are higher for larger R2/R1 (different

geometric configurations), for a given Kn and Ma (i.e., a fixed Reynolds number).

Although the predictive capabilities of the PL model are fair for torque comparisons up to the

transition regime, the model fails to capture some of nonlinear trends associated with the Knudsen

layers at the inner cylinder, as shown in Figures 10 and 11 for R2/R1 = 3 and 5. Hence, torque and

velocity profile comparisons together convey that mere prediction of integral flow parameters does

not guarantee the complete accuracy of any theoretical model, and it is important to demonstrate

that the field variables are also in agreement with other accurate simulation data.

The major advantage of our new PL model is that it can be easily implemented in conventional

computational fluid dynamics (CFD) solvers in order to produce substantially better results in

Knudsen layers when compared to the classical slip model. This is very pertinent from the point of

view of simulation of fluid flows in arbitrary geometries, as the DSMC method is computationally

intensive. In our comparisons with DSMC data in the current paper we used the PL exponent n = 3,

as in previous planar test cases,29, 31 and n = 3 may be applicable in non-planar test cases with lower

curvature. However, the current results may motivate future work into understanding the Knudsen

layers in arbitrary geometries, including:

(i) rigorous molecular dynamics simulations of rarefied gases confined in arbitrary geometries and

subjected to a range of complex flow conditions, for establishing properly and generally the

value of n for non-planar cases;

(ii) whether Lévy free flights are an appropriate model for molecules of rarefied gases in non-planar

geometries, or whether an alternative form of distribution function is necessary;
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(iii) revisiting the classical slip and jump boundary conditions, where were originally derived

assuming constant MFP in Knudsen layers, and using geometry-dependent effective MFP

models instead.
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