
Editing to Connected f -Degree Graph∗

Fedor V. Fomin1, Petr Golovach1, Fahad Panolan3, and

Saket Saurabh4

1 Department of Informatics, University of Bergen, Norway

fomin@ii.uib.no

1 Department of Informatics, University of Bergen, Norway

petr.golovach@ii.uib.no

3 The Institute of Mathematical Sciences, India

fahad@imsc.res.in

4 Department of Informatics, University of Bergen, Norway; and

The Institute of Mathematical Sciences, India

saket@imsc.res.in

Abstract

In the Edge Editing to Connected f-Degree Graph problem we are given a graph G, an

integer k and a function f assigning integers to vertices of G. The task is to decide whether

there is a connected graph F on the same vertex set as G, such that for every vertex v, its

degree in F is f(v) and the number of edges in E(G)△E(F), the symmetric difference of E(G)

and E(F), is at most k. We show that Edge Editing to Connected f-Degree Graph is

fixed-parameter tractable (FPT) by providing an algorithm solving the problem on an n-vertex

graph in time 2O(k)nO(1). Our FPT algorithm is based on a non-trivial combination of color-

coding and fast computations of representative families over direct sum matroid of ℓ-elongation

of co-graphic matroid associated with G and uniform matroid over E(G), the set of non-edges of

G. We believe that this combination could be useful in designing parameterized algorithms for

other edge editing problems.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Connected f -factor, FPT, Representative Family, Color Coding

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.36

1 Introduction

A subgraph F of a graph G is a factor of G, if F is a spanning subgraph of G. When a

factor F is described in terms of its degrees, it is called a degree-factor. For example, one

of the most fundamental notions in Graph Theory is 1-factor (or a perfect matching), the

case when a factor F has all of its degrees equal to 1. Another example is r-factor, a regular

spanning subgraph of degree r. More generally, for a function f : V (G) → N, subgraph F is a

f -factor of G if for every v ∈ V (G), dF (v), the degree of v in F is exactly equal to f(v). The

study of degree factors is one of the mainstays of combinatorics with a long history dating

back to 1847 to the works of Kirkman [10], and Petersen [18]. We refer to surveys [1, 19], as

well as the book of Lovász and Plummer [13] for an extensive overview of degree factors.

Another broad set of degree-factor problems is obtained by requesting the factor to be

connected. The most famous examples are another old classical Graph Theory notion, the

∗ Supported by the European Research Council (ERC) via grants Rigorous Theory of Preprocessing,
reference 267959 and PARAPPROX, reference 306992.

© Fedor V. Fomin, Petr Golovach, Fahad Panolan, and Saket Saurabh;
licensed under Creative Commons License CC-BY

33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016).
Editors: Nicolas Ollinger and Heribert Vollmer; Article No. 36; pp. 36:1–36:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

36:2 Editing to Connected f -Degree Graph

Hamiltonian cycle, which is a connected 2-factor, and the Eulerian subgraph, which is a

connected even-degree factor. We refer to the survey of Kouider and Vestergaard [11] on

connected factors, as well as to the book of Fleischner [6] for a thorough study of Eulerian

graphs and related topics.

A natural algorithmic problem concerning (connected) f -factors is for a given graph G

and a function f , to decide if G contains a (connected) f -factor. While deciding if a given

graph contains an f -factor can be done in polynomial time for any function f [3], deciding

the existence of even a connected 2-factor (Hamiltonian cycle) is NP-complete. In this work

we study parameterized complexity of the following algorithmic generalization of the problem

of finding a connected f -factor.

Edge Editing to Connected f-Degree Graph (EECG)

Input: An undirected graph G, a function f : V (G) → {1, 2, . . . , d} and k ∈ N

Question: Does there exist a connected graph F such that for every vertex v, dF (v) =

f(v), and the cardinality of the symmetric difference |E(G)△E(F)| ≤ k?

Apart from studying a classical problem algorithmically, one of the main motivations for

our interest in the generalization of the classical f -factor problem comes from the recent

developments in parameterized algorithms for graph modification problems. These recent

algorithmic advances were important not only due to the problems they settled but also for

the kind of techniques they brought to the area. For example, the work on cut (or edge-

deletion) problems of Kawarabayashi and Thorup [9] and Chitnis et al. [4] brought recursive

understanding and randomized contraction techniques. The work on Feedback Arc Set in

Tournaments [2] led to the chromatic coding. Study of chordal graph completions from [7]

triggered the usage of potential maximal cliques in subexponential parameterized algorithms.

The main result of our paper is the following theorem.

◮ Theorem 1. EECG is solvable in time 2O(k)nO(1) deterministically.

The proof of our theorem is based on (i) color-coding and (ii) fast computation of

representative family over a linear matroid. While using graphic matroids to resolve different

types of connectivity issues has become a popular theme in algorithms, our proof requires

the usage of some non-standard matroids. In particular, we use fast representative family

computations over the direct sum matroid of ℓ-elongation of the co-graphic matroid associated

with G and a uniform matroid over E(G), the set of non-edges of G. We believe that this

combination could be useful for designing parameterized algorithms for other edge editing

problems. To the best of our knowledge this is the first uses of elongation of matroids in

designing of parameterized algorithms.

One of the nice properties of using (graphic) matroids is that often they allow us to lift

solutions from unweighted problems to problems with costs. It would be natural to suggest

that the nice properties of matroids would help us with the “weighted” version of EECG as

well. However, in spite of our attempts, we could not extend Theorem 1 to the weighted

version of EECG. We proved that the weighted version of EECG when parameterized by

k + d is W[1]-hard and its proof is deferred to the full version of the paper due to paucity of

space. Also, proofs of lemmata marked with a ⋆ are deferred to the full version of the paper.

Previous work. It was shown by Mathieson and Szeider [15] that the problem of deleting

k vertices to transform an input graph into an r-regular graph, where r ≥ 3 is W[1]-

hard parameterized by k. For edge-modification problems to a graph with certain degrees,

Mathieson and Szeider have shown in [15] that Edge Editing to f-Degree Graph, the

F. V. Fomin, P. Golovach, F. Panolan, and S. Saurabh 36:3

case when the requirement that the resulting graph F is connected is omitted, is solvable

in polynomial time. As with the f -factor problem, the situation changes drastically when

one adds the requirement that the resulting graph F is connected. A simple reduction from

Hamiltonian cycle shows that in this case deciding if a graph can be edited into a connected

2-degree graph, i.e. a cycle, by changing at most k adjacencies, is NP-complete [8].

Golovach in [8] has shown that when parameterized by the maximum vertex degree d in

the resulting graph plus the number of editing operations k, the problem Edge Editing

to Connected f-Degree Graph is FPT. In the same paper, it was shown that the

variant when the resulting graph F is regular, the problem is FPT parameterized by k.

However, prior to our work the complexity status of Edge Editing to Connected f-

Degree Graph parameterized by k remained open. Thus Theorem 1 resolves the problem

in affirmative. However, we still do not know the kernelization status of this problem and

leave it as an interesting open problem.

Our Approach. Each solution to our problem is of the form D ∪A where D ⊆ E(G) and

A ⊆ E(G). The sets D and A are called a deletion set and an addition set, respectively,

corresponding to the solution D ∪ A. We start by characterizing our solution in terms of

deletion set D, called nice deletion set. Nice deletion sets satisfy certain properties and

have an accompanying map ψ. This map together with other properties of nice deletion

sets allows us to recover the addition set A in polynomial time. Thus, our whole effort is in

finding a nice deletion set D with map ψ. This viewpoint allows us to concentrate on finding

a nice deletion set with an accompanying map ψ. However, this is not useful for designing

the dynamic programming (DP) algorithm. To achieve this we view the solution D ∪A as a

system of “alternating walks and alternating even closed walks”. Alternating (closed) walks

are essentially normal (closed) walks with edges from D ∪ A such that they do not have

consecutive edges from either D or A, and no edge from D ∪A is repeated in the walk. We

take this view point to construct the dynamic programming algorithm as this allows us to

proceed between the states of the program by using one edge (either of an addition set or of

a deletion set). The number of states can be upper bounded by 2O(k). However, the number

of sets D′ ∪A′ that could satisfy the prerequisite of being in a particular table entry could

be as large as nO(k) and thus this would not lead to an FPT algorithm. However, we follow

this template for our algorithm and use some more structural properties to prune the family

of partial solutions stored at a DP table entry.

Our pruning is based on the proof that D∪A is an independent set in some linear matroid.

The first observation towards an FPT algorithm is that after we delete the edges in D from

the input graph G, the number of connected components can at most be k − |D| + 1. This

allows us to show that in fact we can think of D being an independent set in the matroid

MG(ℓ). That is, ℓ-elongation of the co-graphic matroid, MG, associated with G, where

ℓ = |E(G)| − |V (G)| + k− |D| + 1 (we refer to preliminaries for the definition). Next we show

that for addition set A, all we need to store is some form of disjointness and that can be

captured using uniform matroid over the universe E(G). Let Um′,k−k′ be a uniform matroid

with ground set E(G), where m′ = |E(G)| and k′ = |D|. From the definition of Um′,k−k′ , any

set A of size at most k − k′ is independent in Um′,k−k′ . We have already explained that we

view the deletion set D as an independent set in MG(ℓ) where ℓ = |E(G)|−|V (G)|+k−k′ +1.

Thus, to see the solution set D ∪A as an independent set in a single matroid, we consider

direct sum of MG(ℓ) and Um′,k−k′ . That is, let M = MG(ℓ) ⊕ Um′,k−k′ . In M , a set I is

an independent set if and only if I ∩ E(G) is an independent set in MG(ℓ) and I ∩ E(G) is

an independent set in Um′,k−k′ . This ensures that any solution D ∪ A is an independent

STACS 2016

36:4 Editing to Connected f -Degree Graph

set in M . By viewing any solution of the problem as an independent set in the matroid

M (which is linear), we can use fast computation of q-representative families to prune the

table. However, we still need to take care of a technical requirement in the definition of a

nice deletion set. Towards this, we show that for every deletion set D there exists a set of

edges WD, disjoint from D, of size at most 6k such that if these edges are not selected then

we can satisfy that technical requirement. To achieve this we apply color coding technique

and this can be derandomized using a standard application of universal sets.

2 Preliminaries

Throughout the paper we use ω to denote the exponent in the running time of matrix

multiplication, the current best known bound for which ω < 2.373 [20]. We use [n] to denote

the set {1, 2, . . . , n}. For a set U ,
(
U
2

)
= {(u, v) | u 6= v ∧ u, v ∈ U}. For any multiset A and

an element x, by A(x) we denote the number occurrences of x in A. For any W ⊆ U × N,

where U is a set, W (u) = |{(u, i) ∈ W | i ∈ N}|. We use “graph” to denote simple graphs

without self-loops, directions, or labels. We use standard terminology from the book of

Diestel [5] for those graph-related terms which we do not explicitly define. In general we

use G to denote a graph. We use V (G) and E(G), respectively, to denote the vertex and

edge sets of a graph G. For a graph G, we use E(G) to denote the simple non-edge set(
V (G)

2

)
\E(G). For a vertex v ∈ V (G), we use EG(v) to denote the set of edges incident on v.

Now we give definitions related to matroids. A pair M = (E, I), where E is a ground

set and I is a family of subsets (called independent sets) of E, is a matroid if it satisfies

the following conditions: (i) ∅ ∈ I, (ii) if A′ ⊆ A and A ∈ I then A′ ∈ I; and (iii) if

A,B ∈ I and |A| < |B|, then there is e ∈ (B \A) such that A ∪ {e} ∈ I. An inclusion wise

maximal set of I is called a basis of the matroid. This size is called the rank of the matroid

M , and is denoted by rank(M). The rank function of a matroid M = (E, I) is a function

rM : 2E → N+ ∪ {0} which is defined as follows: rM (S) for any S ⊆ E is the cardinality of

the maximum sized independent set contained in S. For a broader overview on matroids,

including linear representations of matroids, we refer to [17].

Direct Sum of Matroids. Let M1 = (E1, I1), . . . , Mt = (Et, It) be t matroids with

Ei ∩ Ej = ∅ for all 1 ≤ i 6= j ≤ t. The direct sum M1 ⊕ · · · ⊕Mt is a matroid M = (E, I)

with E :=
⋃t
i=1 Ei and X ⊆ E is independent if and only if X ∩ Ei ∈ Ii for all i ∈ [t].

◮ Proposition 2 ([14, Proposition 3.4]). Given representations of matroids M1, . . . ,Mt over

the same field F, a representation of their direct sum can be found in polynomial time.

Uniform Matroids. A pair M = (E, I) over an n-element ground set E, is called a uniform

matroid if the family of independent sets is given by I = {A ⊆ E | |A| ≤ k}, where k is some

constant. This matroid is also denoted as Un,k. Every uniform matroid is linear and can be

represented over a finite field of size ≥ n+ 1 by a k × n matrix AM where AM [i, j] = ei−1
j ,

and e1, . . . , en are distinct non-zero elements from the field.

Co-graphic Matroids. Given a graph G with r connected components, the co-graphic

matroid associated with G, denoted by MG, is defined as (U, I), where U = E(G) and

I = {S ⊆ E(G) : G− S has exactly r connected components}. Co-graphic matroids are

representable over any field of size at least 2 [17].

F. V. Fomin, P. Golovach, F. Panolan, and S. Saurabh 36:5

Elongation of a Matroid. The ℓ-elongation of a matroid M , where ℓ ≥ rank(M) is defined

as a matriod M ′ = (E, I ′) such that S ⊆ E is a basis in M ′ if and only if, rM (S) = rM (E)

and |S| = ℓ. We use M(ℓ) to denote the ℓ-elongation of a matroid M .

◮ Theorem 3 ([12]). Given a representation of a matroid M and ℓ ≥rank(M), there is a

deterministic polynomial time algorithm to compute a representation of ℓ-elongation of M .

◮ Definition 4 (q-Representative Family [14]). Given a matroid M = (E, I) and a family S

of subsets of E, we say that a subfamily Ŝ ⊆ S is q-representative for S if the following holds:

for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y with X ∪Y ∈ I,

then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S is q-representative for

S, then we write Ŝ ⊆q
rep S.

◮ Theorem 5 ([12]). Let M = (E, I) be a linear matroid of rank n and let S = {S1, . . . , St}

be a family of independent sets, each of size b. Let A be an n × |E| matrix repres-

enting M over a field F, where F = Fpℓ or F is Q. Then there is deterministic al-

gorithm which computes a representative set Ŝ ⊆q
rep S of size at most nb

(
b+q
b

)
, using

O
((
b+q
b

)
tb3n2 + t

(
b+q
b

)ω−1
(bn)ω−1

)
+ (n+ |E|)O(1) operations over the field F.

3 An FPT Algorithm for EECG

Let (G, f, k) be an instance of EECG. Our algorithm finds a solution of size exactly k (if one

such solution exists) and outputs No otherwise. Any solution to our problem is of the form

D ∪A ∈
(
V (G)

2

)
where D ⊆ E(G) and A ⊆ E(G). The sets D and A are called a deletion set

and an addition set, respectively, corresponding to the solution D ∪A.

Characterizing the solution. The starting point of our algorithm is a characterization of

solution in terms of a deletion set D satisfying certain properties (such deletion sets are

called nice deletion sets). This, allows us to focus on finding nice deletion sets. To describe

the main steps and ideas involved in our algorithm we first give a definition of a nice deletion

set. Towards this we need definitions of following two sets .

def(G, f) = {v | v ∈ V (G), f(v) > dG(v)} − A set of deficient vertices.

S(G, f) = {(v, i) | v ∈ V (G), f(v) > dG(v), i ∈ {1, . . . , f(v) − dG(v)}}

The second set specifies for every vertex v ∈ def(G, f) how many edges in addition set must

be adjacent to v. Let W ⊆ V (G) × N. For convenience we denote a pair (v, i) ∈ V (G) × N

(or in W) by v(i). Let ψ : W → W be a bijection. Given ψ, we define a multiset Eψ as

follows. For each u(i) ∈ W we add (u, v) to Eψ if ψ(u(i)) = v(j) for some j ≥ i. We say that

ψ is a proper deficiency map if ψ is an involution, for any u ∈ V (G) (u, u) /∈ Eψ, Eψ is a

set and not a multiset, and Eψ ∩E(G) = ∅. In general we will have proper deficiency map

over the domain S(G, f) or some set related to this. Finally, a set D ⊆ E(G) is called a nice

deletion set if

(i) For all v ∈ V (G), dG−D(v) ≤ f(v);

(ii) |S(G−D, f)| = 2(k − |D|);

(iii) The graph G−D has at most k − |D| + 1 connected components;

(iv) Each connected component in G−D contains a vertex v deficient in G−D, i.e, such

that dG−D(v) < f(v).

(v) There exists a proper deficiency map ψ : S(G−D, f) → S(G−D, f).

Our main structural lemma is the following.

STACS 2016

36:6 Editing to Connected f -Degree Graph

◮ Lemma 6. Let (G, f, k) be an instance of EECG and let D ⊆ E(G). Then there exists

A ⊆ E(G), |A| = k − |D| such that A ∪D is a solution to EECG if and only if D is a nice

deletion set. Moreover, given a nice deletion set D ⊆ E(G) we can find A ⊆ E(G) such that

|A| = k − |D| and D ∪A is a solution to EECG in polynomial time.

Proof. (⇒) Let A ⊆ E(G), |A| = k − |D| such that A ∪D is a solution to EECG. We need

to show that D ⊆ E(G) is a nice deletion set. Since A ∪ D is a solution to EECG, we

have that dG−D(v) ≤ f(v) for all v ∈ V (G), satisfying condition (i). Furthermore, A ∪ D

being a solution also implies that
∑

{v : f(v)>dG−D(v)} f(v) − dG−D(v) = 2|A| = 2(k − |D|).

Hence |S(G−D, f)| = 2(k − |D|), satisfying condition (ii). Since G−D +A is a connected

graph, G − D can have at most |A| + 1 = k − |D| + 1 connected components, satisfying

condition (iii) in the definition. The graph G−D+A is connected and thus each connected

component F in G−D contains a vertex v ∈ V (F) such that (v, u) ∈ A for some u ∈ V (G).

Since D ∪A is a solution to EECG, dG−D+A(v) = f(v) and hence dG−D(v) < f(v) (because

(v, u) ∈ A), satisfying condition (iv). Finally, we show that D satisfies the last property. Let

A = {e1, e2, . . . , er} ⊆ E(G) where r = k − |D|. Since D ∪ A is a solution to EECG, we

have that for any vertex v, there are exactly f(v) − dG−D(v) edges in A which are incident

to v. Now we define a bijection ψ : S(G−D, f) → S(G−D, f) as follows: ψ(u(i)) = v(j) if

(u, v) = eℓ such that there are exactly i− 1 edges from {e1, . . . , eℓ−1} are incident on u and

there are exactly j − 1 edges from {e1, . . . , eℓ−1} are incident on v. That is, we traverse the

edges e1, . . . , er from left to right and find the ith edge incident to u, say eℓ = (u, v), and then

we assign it v(j), if there are exactly j − 1 edges incident to v present among {e1, . . . , eℓ−1}.

◮ Claim 7. ψ : S(G−D, f) → S(G−D, f) is a proper deficiency map.

Proof. By the definition of ψ, if ψ(u(i)) = v(j) then ψ(v(j)) = u(i), and so ψ is an involution.

Since G−D+A is a simple graph, for any u ∈ V (G), (u, u) /∈ Eψ. Now we need to show that

Eψ is not a multiset. Suppose not, then there exists u, v ∈ V (G) such that ψ(u(i1)) = v(j1)

and ψ(u(i2)) = v(j2) for some i1 6= i2 and j1 6= j2. This implies that there exist ei, ej ∈ A,

i 6= j such that ei = ej = (u, v). This contradicts the fact that G−D +A is a simple graph.

Since A is disjoint from E(G), Eψ ∩ E(G) = ∅. ◭

(⇐) Let D ⊆ E(G) be a nice deletion set. We need to show that we can find A ⊆ E(G)

such that |A| = k − |D| and G − D + A is a solution to EECG. Properties (i) and (ii)

imply that dG−D(v) ≤ f(v) for all v ∈ V (G) and |S(G − D, f)| = 2(k − |D|). Due to

the property (v) in the definition of nice deletion set, we know that there exists a proper

deficiency map ψ : S(G−D, f) → S(G−D, f). Define A1 = Eψ. By the definition of Eψ,

|A1| = |Eψ| = |S(G−D, f)|/2 = k−|D|. Also note that A1 ∩E(G) = ∅ because ψ is a proper

deficiency map. Now consider the graph G1 = G−D +A1. Note that G1 is simple graph

because ψ is a proper deficiency map. Also by the definition of Eψ, dG−D+A1
(v) = f(v)

for all v ∈ V (G). So G1 satisfies the degree constraints. If G1 is connected then D ∪ A1

is a solution to EECG. Thus, we assume that G1 is not connected. In what follows we

give an iterative procedure that finds the desired A. Suppose we are in ith iteration and

we have a set Ai such that G − D + Ai satisfies all degree constraints but G − D + Ai is

not connected. Then in the next iteration we find another addition set of size k − |D|, say

Ai+1, such that G−D +Ai+1 satisfies all degree constraints and G−D +Ai+1 has strictly

less number of connected components than in G−D +Ai. The procedure is started with

A1 = Eψ. Let i ≥ 1 and we have Ai such that G − D + Ai satisfies all degree constraints

but G−D +Ai is not connected. Since |Ai| = k − |D| and G−D has at most k − |D| + 1

connected components, Gi = G − D + Ai has a component F such that there is an edge

F. V. Fomin, P. Golovach, F. Panolan, and S. Saurabh 36:7

(u1, v1) ∈ Ai with the property that u1, v1 ∈ V (F) and (u1, v1) is not a bridge in F . Let F ′

be another connected component in Gi. Since each connected component in G−D contains

a vertex w ∈ V (G) such that dG−D(w) < f(w), there exists an edge (u2, v2) ∈ Ai such that

u2, v2 ∈ V (F ′). Now let Ai+1 = (Ai \ {(u1, v1), (u2, v2)}) ∪ {(u1, u2), (v1, v2)}. Observe that

Gi+1 = G−D +Ai+1 is a simple graph with strictly less connected component than in Gi
and dGi+1

(v) = f(v) for all v ∈ V (G). Observe that when the procedure stops we would

have found the desired A.

Given a nice deletion set D, we can find the desired A using the iterative procedure

described in the reverse direction of the proof. Clearly, this procedure can be implemented

in polynomial time. This completes the proof of the lemma. ◭

Thus, our problem reduces to finding a nice deletion set D ⊆ E(G) and an accompanying

proper deficiency map ψ on S(G−D, f), if it exists, using dynamic programming (DP).

Towards the states of dynamic programming algorithm. So how to find a nice deletion

set D? Throughout this section we will work with a hypothetical deletion set D. We partition

the vertices of G into Green and Red in the following way. We color v ∈ V (G) green if

dG(v) > f(v), and red otherwise. Let Er = E(G[Red]) and Eg = E(G) \ Er. We need

a quick sanity check. That is, if
∑

{v:dG(v) 6=f(v)} |dG(v) − f(v)| > 2k then we output No,

because in this case any solution to EECG requires more than k edge edits (addition/deletion

operations). Now we guess the size k′ ≤ k of D such that 2k′ ≥
∑
v:dG(v)>f(v) dG(v) − f(v).

Since D is our hypothetical deletion set, we have that for any v ∈ Green, the number of

edges in D which are incident with v is at least dG(v) − f(v). Now we guess the number

k1 of edges in D which are incident with only green vertices and the number k2 of edges in

D which are incident with at least one vertex in Red. Note that k1 + k2 = k′. Also note

that the number of ways we can guess (k′, k1, k2) is at most k2. Now for every v ∈ Green,

we guess the number of edges in D which are incident with v. In particular, we guess a

function Φ : Green → N such that for all v ∈ Green we have that Φ(v) ≥ dG(v) − f(v) and∑
v∈Green

Φ(v) ≤ 2k1 + k2. The number of possible such functions Φ is upper bounded by

O(4kk). From now onwards we will assume that we are given function Φ. In other words we

have guessed the function Φ corresponding to the hypothetical solution D.

We start with an intuitive explanation of the structure of the solution that is helpful in

designing partial solution for the DP algorithm. Given D ∪ A, we first define a notion of

an alternating walk. An alternating walk is a sequence of vertices u1, u2, . . . , uℓ such that

consecutive pairs of vertices ((ui, ui+1), (ui+1, ui+2)) either belong to D ×A or A×D and

{(ui, ui+1) | 1 ≤ i < ℓ} is a set (not a multiset). That is, an edge from D is followed by

an edge from A or vice-versa. In an alternating even length closed walk, u1 = uℓ and ℓ is

even. One might wonder about the definition of alternating odd length closed walk. For

our purposes we will think of them as alternating walks that start and end at the same

vertex. Essentially, these will be alternating walks that start and end with the same vertex

and the first and the last edge either both belong to D or both belong to A. From now

onwards whenever we say an alternating closed walk, we mean an alternating even length

closed walk. For every intermediate, i.e. not the endpoint, vertex in an alternating walk or

in an alternating closed walk, one of the edges incident with it belongs to D and while the

second edge belongs to A. Thus the degree of any vertex is not disturbed by an alternating

walk where this vertex is intermediate. We define alternating walks for the following reason.

Let D ∪A be a solution of EECG that satisfies Φ. We can think of edges in D ∪A forming

a family P of edge disjoint alternating walks and alternating closed walks with the following

properties.

STACS 2016

36:8 Editing to Connected f -Degree Graph

For every vertex v ∈ V (G) and a set Z ∈ {D,A}, we define apdeg(P, Z, v) as the number

of edges from Z that are incident with v and appear as (i) the first edge in alternating

walks from P that start with v; and (ii) the last edge in alternating walks from P

that end in v. Note that, if there is an alternating walk that both starts and ends in

v and the start edge as well as the last edge belong to Z then this walk contributes

two to apdeg(P, Z, v). For every vertex v ∈ Green, apdeg(P, D, v) = dG(v) − f(v) and

apdeg(P, A, v) = 0. Furthermore, for every vertex v ∈ Red, apdeg(P, D, v) = 0 and

apdeg(P, A, v) = f(v) − dG(v). When the number of edges in D which are incident with

v ∈ Green is greater than dG(v)−f(v), then the number of times v appear as intermediate

vertices in alternating (closed) walks is exactly equal to the number of excess edges and

these excess edges will not contribute to apdeg(P, D, v).

Every vertex v ∈ Green, appears as an intermediate vertex in an alternating (closed) walk

of P exactly Φ(v) − (dG(v) − f(v)) times.

For any solution P = {P1, P2, . . . , Pα}, without loss of generality we assume that there is η

such that P1, . . . , Pη are alternating walks and Pη+1, . . . , Pα are alternating closed walks. This

walk system view allows us to make a dynamic programming algorithm where we can move

from one state to another using one edge addition or deletion. In particular, the algorithm

works by constructing all alternating walks P1, . . . , Pη first and then construct alternating

closed walks Pη+1, . . . , Pα. Given a partially constructed walk system we try to append an

edge to the current walk we are constructing by adding an edge from
(
V (G)

2

)
to it; or declaring

that we are finished with the current walk and move to construct a new walk. During this

process we also keep a partial proper deficiency map ψ′ such that Eψ′ are addition edges in the

current partial solution. Thus, a state in the DP algorithm is given by our current guesses and

a subset of domain of partial proper deficiency map. For a formal description of our DP table

we need the following sets: (a) a multiset set Tm containing dG(v)−f(v) many copies of v for

all v ∈ Green; (b) a set Tg = {v(i) | v ∈ Green,Φ(v) > dG(v)−f(v), i ∈ [Φ(v)−(dG(v)−f(v))]};

(c) Tr = {v(i) | v ∈ Red, f(v) > dG(v), i ∈ [f(v) − dG(v)]}. We also need to keep two sets X

- a multiset and a set Y to take care of local deficiencies that occur while constructing our

walk system. Let X be a multiset of size 2. Then for all u ∈ X and B ⊆ E(G) such that

f(u) > dG−B(u) +X(u) − 1, define XB,f = {u(i) | u ∈ X, f(u) − dG−B(u) −X(u) + 1 ≤ i ≤

f(u) − dG−B(u), i ∈ N}.

Now we formally define a notion of partial solutions. Given an instance (G, f, k) we

define Tm, Tg and Tr as described earlier. Also, recall that we have k1, k2 and Φ. For any

T ′
m ⊆ Tm, T

′
g ⊆ Tg, T

′
r ⊆ Tr, k

′
1 ≤ k1, k

′
2 ≤ k2, i ≤ k, a multiset X containing elements from

V (G) and Y ⊆ V (G) such that |X| ≤ 2, |Y | ≤ 1, |X ∪ Y | ≤ 2 and X ∩ Y = ∅, we define a

family Q(T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y) of subsets of

(
V (G)

2

)
as follows. For any B ⊆ E(G) and

A ⊆ E(G), B ∪A ∈ Q(T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y) if the following conditions are met:

(a) |E(G[Green]) ∩B| = k′
1, |B \ E(G[Green])| = k′

2 and |B ∪A| = i.

(b) For any v ∈ Green, the number of edges in B which are incident with v is exactly equal

to T ′
m(v)+T ′

g(v)+X(v). That is, for all v ∈ Green, |B∩EG(v)| = T ′
m(v)+T ′

g(v)+X(v).

(c) |XB,f | = |X| and XB,f ⊆ S(G−B, f) \ Tr.

(d) G−B has at most k − k′ + 1 connected components.

(e) There is a proper deficiency map ψ′ : (S(G−B, f) ∪ T ′
g ∪ Y) \ (T ′

r ∪XB,f) → (S(G−

B, f) ∪T ′
g ∪Y) \ (T ′

r ∪XB,f) such that A = Eψ. Furthermore, for w ∈ Y , if ψ′(w) = u(j)

for some j then Tm(u) = T ′
m(u).

For T ′
m ⊆ Tm, T

′
g ⊆ Tg, T

′
r ⊆ Tr, k

′
1 ≤ k1, k

′
2 ≤ k2, i ≤ k, a multiset X containing elements

from V (G) and Y ⊆ V (G), we say that the tuple (T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y) is a valid tuple

if the following happens.

F. V. Fomin, P. Golovach, F. Panolan, and S. Saurabh 36:9

1. |X| ≤ 2, |Y | ≤ 1, |X ∪ Y | ≤ 2 and X ∩ Y = ∅

2. For w ∈ Y , w(j) /∈ T ′
r for all j.

3. If u(j) ∈ T ′
g then for all 0 < j′ < j, u(j′) ∈ T ′

g.

4. For any v ∈ X, Tm(v) = T ′
m(v).

For the correctness of the algorithm, it is enough to focus on partial solutions defined over

valid tuples. Now we prove that in fact Q(T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y) is “a correct notion of

partial solution”.

◮ Lemma 8 (⋆). Let (G, f, k) be an Yes instance of EECG with a solution D∪A such that

D ⊆ E(G), A ⊆ E(G), |D ∩ E(G[Green])| = k1, |D \ E(G[Green])| = k2, k1 + k2 = k′ and

|D ∩ EG(v)| = Φ(v) for all v ∈ Green. Let ψ be a proper deficiency map over S(G−D, f)

such that Eψ = A. Then for each i ≤ k, there exists D′ ∪ A′ ⊆ D ∪ A and a valid tuple

(T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y) such that D′ ∪ A′ ∈ Q(T ′

m, T
′
g, T

′
r, k

′
1, k

′
2, i,X, Y) and there is a

proper deficiency map ψ′ over R = (S(G−D′, f) ∪ T ′
g ∪ Y) \ (T ′

r ∪XD′,f) with Eψ′ = A′.

Our DP algorithm keeps a table entry D[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y] for each valid tuple

(T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y). The idea is to store a subset of Q(T ′

m, T
′
g, T

′
r, k

′
1, k

′
2, i,X, Y) in

the DP table entry D[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y] which is sufficient to maintain the correctness

of the algorithm. The algorithm computes D[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y] for all valid tuple

(T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y) and if there exists D ∪ A ∈ D[Tm, Tg, ∅, k1, k2, k, ∅, ∅] such that

D ∪ A is a solution to EECG, then outputs Yes, otherwise outputs No. In fact one can

show the following simple lemma which bounds the number of DP table entries:

◮ Lemma 9 (⋆). The number of valid tuples (T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y) is at most 2O(k)n3.

However, the size of family stored at (one table entry) D[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y] can

potentially be nO(i), thus this algorithm takes time nO(k). Next we observe that we can

prune each table entry to 2O(k)nO(1) and thus this leads to an FPT algorithm.

Pruning the DP table entry and an FPT algorithm. We need to prune the DP table in a

way that we do not change the answer to the given instance (G, f, k). Towards this we show

that if some subset we have stored in a DP table entry could lead to a nice deletion set then

we do have at least one such set after the pruning operation. Our guessing of k1, k2 and Φ

allows us to satisfy the properties (i) and (ii) of a nice deletion set. Property (iii) of nice

deletion sets implies that D is an independent set in the matroid MG(ℓ), the ℓ-elongation of

the co-graphic matroid MG associated with G, where ℓ = |E(G)|− |V (G)|+k−|D|+1. Thus

by only considering those D which are independent sets in MG(ℓ) we ensure that property

(iii) of nice deletion sets is satisfied. Now consider the property (v) of the nice deletion set,

i.e, there exists a proper deficiency map ψ : S(G − D, f) → S(G − D, f). Our objective

is to get a set D ∪ A such that there is a proper deficiency map ψ over S(G − D, f) with

the property that Eψ = A, along with other properties as well. Let D1 ∪ A1, D2 ∪ A2 be

two partial solutions belonging to the same equivalence class where D1, D2 ⊆ E(G) and

A1, A2 ⊆ E(G). Suppose D′ ⊆ E(G), A′ ⊆ E(G), (D1 ∪ D′)
⋃

(A1 ∪ A′) is a solution and

A2 ∩ A′ = ∅. Since D1 ∪ A1, D2 ∪ A2 belongs to same equivalence class and A2 ∩ A′ is

disjoint, there is a proper deficiency map ψ′ over S(G−(D2 ∪D′), f) such that Eψ′ = A2 ∪A′.

To take care of the disjointness property between the current addition set and the future

addition set while doing the DP, we view the addition set A of the solution as an independent

set in a uniform matroid over the universe E(G). Let Um′,k−k′ be a uniform matroid with

ground set E(G), where m′ = |E(G)|. From the definition of Um′,k−k′ , every set A of size

at most k − k′ is independent in Um′,k−k′ . We have already explained that we view the

STACS 2016

36:10 Editing to Connected f -Degree Graph

deletion set D as an independent set in MG(ℓ) where ℓ = |E(G)| − |V (G)| + k − k′ + 1. To

view the solution set D ∪A as an independent set in a matroid, we consider the direct sum

M = MG(ℓ) ⊕ Um′,k−k′ of two matroids. In M , a set I is an independent set if and only if

I ∩ E(G) is an independent set in MG(ℓ) and I ∩ E(G) is an independent set in Um′,k−k′ .

This ensures that any solution D ∪A is an independent set in M . By viewing any solution

of the problem as an independent set in a matroid M (which is linear by Proposition 2), we

can use the q-representative families, Theorem 5, to prune the table size to 2O(k)nO(1) .

However, we still need to ensure that property (iv) of nice deletion set is satisfied. In what

follows we explain how we achieve this. The following lemma helps us to satisfy property

(iv) partially.

◮ Lemma 10 (⋆). Let F be a connected component in the graph G[Red] and D′ ⊆ E(G). If

at least one edge in D′ is incident to a vertex in V (F), then for any connected component C

in G−D′ such that V (C) ∩ V (F) 6= ∅ there is a vertex v ∈ V (C) ∩ def(G−D′, f).

Now we explain how Lemma 10 is useful in satisfying property (iv) partially. Let C be the set

of connected components in G such that for each vertex v in the component, dG(v) = f(v).

C = {C | C is a connected component in G ∧ ∀v ∈ V (C), dG(v) = f(v)}.

Let D1 and D2 be deletion sets corresponding to two partial solutions such that for all

C ∈ C, D1 ∩E(C) 6= ∅ if and only if D2 ∩E(C) 6= ∅. Suppose there is a set D′ ⊆ E(G) such

that D1 ∪ D′ is a nice deletion set. Then we can show that any connected component F

in G− (D2 ∪D′) containing only red vertices will have a deficient vertex. Essentially due

to Lemma 10, if we partition our partial solutions based on how these partial solutions hit

the edges from C and keep at least one from each equivalence class property (iv) of nice

deletion set will be satisfied partially. But this only allows us to take care of connected

components containing only red vertices. Now we explain how we can ensure property (iv)

for the connected components containing vertices from Green as well.

To achieve this we will prove that corresponding to every deletion set D of a solution,

there is a “witness” of O(k) sized subset of edges whose disjointness from D will ensure

property (iv) of nice deletion sets. That is, these witnesses depend on solutions; the witness

for solution D could be different from the witness for solution D∗. Even then, these witnesses

allow us to satisfy property (iv). In order to avoid this witness being picked in a deletion

set D, that is to keep this witness non deletable, we use color coding in our algorithm on

top of representative family based pruning of table entries. Towards that we define a weight

function w on E(G) as follows.

w((u, v)) =

{
0 if u, v ∈ Red

1 otherwise

For any subset S ⊆ E(G), w(S) =
∑
e∈S w(e). The next lemma is crucial for our approach

as this not only defines the witness but also gives an upper bound on its size.

◮ Lemma 11. Let Green = {v1, v2, . . . , vη}, η ≤ 2k. Let D ⊆ E(G) such that for any

connected component F in G − D, V (F) ∩ def(G − D, f) 6= ∅. Then there exist paths

P1, . . . , Pη such that for all i, Pi is a path in G − D from vi to a vertex in def(G − D, f),

and w(
⋃
iE(Pi)) ≤ 6k where

⋃
iE(Pi) is the set of edges in the paths P1, . . . Pη.

Proof. We construct P1, . . . , Pη with the required property. Pick an arbitrary vertex u1 ∈

def(G−D, f) such that v1 and u1 are in the same connected component in G−D. Let P1

be a smallest weight path according to weight function w, from v1 to u1 in G − D. Now

F. V. Fomin, P. Golovach, F. Panolan, and S. Saurabh 36:11

we explain how to construct Pi, given that we have already constructed paths P1, . . . , Pi−1.

Pick an arbitrary vertex ui ∈ def(G−D, f) such that vi and ui are in the same connected

component in G−D. Let P be a smallest weight path from vi to ui in G−D. If P is vertex

disjoint from P1, . . . , Pi−1, then we set Pi = P . Otherwise, let x be the first vertex in P such

that x ∈ V (P1) ∪ . . . ∪ V (Pi−1). Let x ∈ Pj where j < i. Let P = P ′P ′′ such that P ′ ends

in x and P ′′ starts at x. Let Pj = P ′
jP

′′
j such that P ′

j ends in x and P ′′
j starts at x. Now we

set Pi = P ′P ′′
j . Note that Pi is a path in G−D from vi to a vertex in def(G−D, f).

Now we claim that w(
⋃η
i=1 E(Pi)) ≤ 6k. Towards the proof we need to count that

|(
⋃η
i=1 E(Pi)) ∩ w−1(1)| ≤ 6k. We assign each vertex v in

⋃η
i=1 V (Pi) to the smallest

indexed path Pj such that v ∈ V (Pj). That is, v is assigned to Pj , if v ∈ V (Pj) and

v /∈ (
⋃j−1
i=1 V (Pi). Note that each vertex in

⋃η
i=1 V (Pi) is assigned to a unique path. Consider

the edge set A∗ ⊆ (
⋃η
i=1 E(Pi)) ∩ w−1(1) as follows. An edge e = (u, v) belongs to A∗ if

w(e) = 1, e ∈ E(Pj), and vertices u and v are assigned to path Pj for some j. Observe

that each edge e ∈ A∗ has at least one end point in Green. Since each vertex is assigned to

exactly one path, each vertex in a path has degree at most 2 and |Green| ≤ 2k, we have that

|A∗| ≤ 4k.

Now we show that there exists sets ∅ = B1 ⊆ B2 ⊆ . . . Bη such that (
⋃j
i=1 E(Pi)) ∩

w−1(1) ⊆ A∗ ∪ Bj and |Bj | ≤ j. We prove the statement using induction on j. For j = 1,

we know that (
⋃j
i=1 E(Pi)) ∩ w−1(1) ⊆ A∗. Thus the statement is true. Now suppose

the statement is true for j − 1. Consider any path Pj . If the vertices in Pj are disjoint

from
⋃j−1
i V (Pi), then all the weight one edges in E(Pj) are counted in A∗. So we can set

Bj = Bj−1 and the statement is true. Otherwise by the construction of Pj , we have that

Pj = P ′
jP

′′
j and there exists r < j such that Pr = P ′

rP
′′
j . Let (u1, u2) be the last edge in P ′

j .

Note that all the weight one edges in E(P ′′
j) are counted in A∗ ∪Bj−1 and all the weight one

edges in E(P ′
j)\{(u1, u2)} are counted in A∗. In this case we set Bj = Bj−1 if w((u1, u2) = 0)

and Bj = Bj−1 ∪ {(u1, u2)} otherwise. This implies that |(
⋃η
i=1 E(Pi)) ∩ w−1(1)| ≤ 6k. This

concludes the proof. ◭

Recall that Er = E(G[Red]) and Eg = E(G) \ Er. Note that in Lemma 11, the weight of

each edge in Eg is 1 and the weight of each edge in Er is 0. By Lemma 11, we have that if

D is a nice deletion set, then there exists E′ ⊆ Eg of cardinality at most 6k such that E′

witnesses that each connected component of G−D containing at least one vertex from Green,

will also contain a vertex from def(G − D, f). We call such an edge set E′ as certificate

of D. Now we explain how Lemma 11 helps us to satisfy property (iv) of nice deletion sets

for components containing at least one vertex from Green. Let Green = {v1, . . . , vη} and

D1 ∪D′ be a deletion set corresponding to a solution. By Lemma 11 we know that there

are paths P1, . . . , Pη such that the total number of edges from Eg among these paths is

bounded by 6k, and each path Pi is from vi to a vertex in def(G− (D1 ∪D′), f). Suppose

we color the edges in Eg with black and orange such that the coloring guarantees that all the

edges in Eg ∩ (
⋃η
i=1 E(Pi)) are colored black and all the edges in Eg ∩ (D1 ∪D′) are colored

orange. Assume that we are going to find a nice deletion set which does not contains black

color edges. Let D2 be a deletion set corresponding to a partial solution. Also for a vertex

vi ∈ Green, there is path from vi to a vertex in def(G−D1, f) in the graph G−D1 which

does not contain any orange colored edge if and only if there is path from vi to a vertex in

def(G−D2, f) in the graph G−D2 which does not contain any orange colored edge. We can

show that any connected component in G− (D2 ∪D′) containing a vertex from Green will

contain a vertex from def(G− (D2 ∪D′), f). Essentially by Lemma 11 we get the following.

Suppose we take all partial solutions corresponding to a DP table entry (or a subset of it)

and now we partition these partial solutions based on which all green vertices have found

STACS 2016

36:12 Editing to Connected f -Degree Graph

their deficient vertex currently (there are 2|Green| such partitions), then it is enough to keep a

partial solution from each class. Furthermore, suppose A corresponds to partial solutions

with respect to one particular subset of Green and we have kept a set D1 in A and deleted

rest of the partial solutions from A (say one of the partial solution we threw out was D2).

Then, if there is D′ such that D2 ∪D′ is a solution, then all the connected components in

G− (D1 ∪D′) containing at least one green vertex will have a deficient vertex. Just a word

of caution that in our actual algorithm in fact we keep a subset of A of size 2O(k)nO(1) so

that we can also take care of all other properties of a nice deletion set.

We have explained how we will ensure each of the individual properties of a nice

deletion set. Now we design a randomized FPT algorithm for the problem. Later we

derandomize the algorithm. The algorithm is a DP algorithm in which we have DP

table entries indexed exactly in the same way as in the case of the XP algorithm. But

instead of keeping D[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y], we store a small representative family of

D[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y] which is enough to maintain the correctness of the algorithm.

The algorithm uses both color coding and representative family techniques. We have ex-

plained that we use color coding to separate the proposed deletion set from its certificate

mentioned in Lemma 11. Now our algorithm works with the edge colored graph (edges in

Eg are colored black or orange) and output a nice deletion set D, with the property that

D ∩ Eg ⊆ Eo, if there exists such a deletion set. Note that the edges in Er is uncolored.

Recall that C is the set of connected components in G such that for each vertex v in the

component, dG(v) = f(v). Now we define a family J of functions as,

J = {g : Green ∪ C → {0, 1}}.

Now we explain how to reduce the size of D[T ′
g, T

′
r, k

′
1, k

′
2, i,X, Y]. We say a partial

solution B ∈ D[T ′
g, T

′
r, k

′
1, k

′
2, i,X, Y] is properly colored, if B ∩ Eb = ∅. Since our ob-

jective is to find out a nice deletion set disjoint from Eb, we delete all partial solutions

which contains an edge from Eb. That is, if B ∈ D[T ′
g, T

′
r, k

′
1, k

′
2, i,X, Y] and B ∩ Eb 6= ∅,

then we delete B from D[T ′
g, T

′
r, k

′
1, k

′
2, i,X, Y]. So now onwards we assume that for

each B ∈ D[T ′
g, T

′
r, k

′
1, k

′
2, i,X, Y], B ∩ Eb = ∅. Further pruning of the DP table entry

D[T ′
g, T

′
r, k

′
1, k

′
2, i,X, Y] is discussed below.

For each valid tuple (T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y) we compute a representative partial solu-

tions for D[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y] in the increasing order of i and store it instead of

D[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y]. Now we explain how to compute it. First we compute a sub-

family S[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y] of D[T ′

m, T
′
g, T

′
r, k

′
1, k

′
2, i,X, Y] using the DP table entries

computed for value i − 1 and deleting all partial solutions which contain edges from Eb.

Now we partition S[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y] according to the refinement of each function in

J . That is S[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y] =

⋃
g∈J Ag where Ag is defined as follows. For each

g ∈ J and S ∪R ∈ S[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y] where S ∈ E(G) and R ∈ E(G), S ∪R ∈ Ag

if the following happens.

(i) For any v ∈ Green, g(v) = 1 if and only if there exists a path from v to a vertex in

def(G− S, f) in G[Eb ∪ (Er \ S)] (checking whether there is a witness path that do not

use edges in Eo).

(ii) For any C ∈ C, g(C) = 1 if and only if S ∩ E(C) 6= ∅.

Recall that any set S ∪R ∈ S[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y] is an independent set of size i in M .

Now we compute Âg ⊆k−i
rep Ag using Theorem 5. Then we set

̂D[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y] =

⋃

g∈J

Âg

F. V. Fomin, P. Golovach, F. Panolan, and S. Saurabh 36:13

and store it instead of D[T ′
m, T

′
g, T

′
r, k

′
1, k

′
2, i,X, Y]. We can show the correctness of algorithm

even after pruning the DP table entries and our algorithm runs in time 2O(k)nO(1) with success

probability at least (1 − 1
e
). Our algorithm can be derandomized using (n, 7k)-universal

sets [16].

References

1 Jin Akiyama and Mikio Kano. Factors and factorizations of graphs – a survey. Journal of

Graph Theory, 9(1):1–42, 1985.

2 Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In Proceedings of the

36th International Colloquium of Automata, Languages and Programming (ICALP), volume

5555 of Lecture Notes in Comput. Sci., pages 49–58. Springer, 2009.

3 R. P. Anstee. An algorithmic proof of Tutte’s f -factor theorem. J. Algorithms, 6(1):112–

131, 1985.

4 Rajesh Hemant Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk,

and Michal Pilipczuk. Designing FPT algorithms for cut problems using randomized con-

tractions. In Proceedings of the 53rd Annual Symposium on Foundations of Computer

Science (FOCS), pages 460–469, 2012.

5 Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-

Verlag, Berlin, 3rd edition, 2005.

6 Herbert Fleischner. Eulerian Graphs and Related Topics, Part 1, Volume 1. Annals of

Discrete Mathematics 45. Elsevier, Amsterdam, 1990.

7 Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for min-

imum fill-in. SIAM J. Computing, 42(6):2197–2216, 2013.

8 Petr A. Golovach. Editing to a connected graph of given degrees. In Proceedings of the

39th International Symposium on Mathematical Foundations of Computer Science (MFCS),

volume 8635 of Lecture Notes in Comput. Sci., pages 324–335. Springer, 2014.

9 Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded size is

fixed-parameter tractable. In Proceedings of the 52nd Annual Symposium on Foundations

of Computer Science (FOCS), pages 160–169. IEEE, 2011.

10 T Kirkman. On a problem in combinatorics. Cambridge and Dublin Math. J ., 2:191–204,

1847.

11 Mekkia Kouider and Preben D. Vestergaard. Connected factors in graphs – a survey. Graphs

and Combinatorics, 21(1):1–26, 2005.

12 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic

truncation of linear matroids. In Automata, Languages, and Programming – 42nd Inter-

national Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I,

volume 9134 of Lecture Notes in Computer Science, pages 922–934. Springer, 2015.

13 László Lovász and Michael D. Plummer. Matching theory. AMS Chelsea Publishing, Provid-

ence, RI, 2009.

14 Dániel Marx. A parameterized view on matroid optimization problems. Theoretical Com-

puters Science, 410(44):4471–4479, 2009.

15 Luke Mathieson and Stefan Szeider. Editing graphs to satisfy degree constraints: A para-

meterized approach. J. Comput. Syst. Sci., 78(1):179–191, 2012.

16 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal de-

randomization. In Proceedings of the 36th Annual Symposium on Foundations of Computer

Science (FOCS), pages 182–191. IEEE, 1995.

17 James G. Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics.

Oxford university press, 2nd edition, 2010.

STACS 2016

36:14 Editing to Connected f -Degree Graph

18 Julius Petersen. Die Theorie der regulären graphs. Acta Math., 15(1):193–220, 1891. doi:

10.1007/BF02392606.

19 Michael D. Plummer. Graph factors and factorization: 1985-2003: A survey. Discrete

Mathematics, 307(7-8):791–821, 2007.

20 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In

Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), pages

887–898. ACM, 2012.

	Introduction
	Preliminaries
	An FPT Algorithm for EECG

