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The temporal stability of a two-layer plane Couette flow with an interfacial heat
source/sink is studied, in the presence of a viscosity stratification, predicting unstable
streamwise and spanwise perturbations. Based on the wavenumber at onset, the
perturbations are further classified as long-wave and finite-wave, where the long-wave
mode is investigated using asymptotic and numerical analyses. The finite-wave instability
is expected to be relevant for highly viscous fluids. Generally, a heat source (sink) at the
interface is found to have a stabilising (destabilising) effect on the flow. However, if the rate
of heat release exceeds a certain threshold, a new instability emerges, referred to here as
an ‘explosive’ instability, characterised by an unbounded growth rate of the perturbations.
The interaction between the viscosity stratification, thermocapillarity and inertia leads to
the emergence of another new mode of streamwise instability, termed the ‘interaction’
instability. The spanwise perturbations possess higher growth rates than the streamwise
perturbations for the heat sink along the interface when inertia has a stabilising influence,

and vice versa. The heat sink leads to the emergence of thermocapillary instability by
generating a negative temperature gradient across the fluids. In contrast, a heat source
increases the temperature of the interface, resulting in a positive temperature gradient
across the fluids, leading to the suppression of the instabilities by the thermocapillary
effect. If the heat source provides energy at a faster rate than the energy lost due to
Marangoni convection and heat diffusion, then it leads to an accumulation of energy, which
presumably leads to the explosive instability.
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1. Introduction

Two-layer flows of immiscible fluids with a heat source/sink along the interface are
ubiquitous in natural and industrial settings (Levenspiel 1999; Bratsun & De Wit 2004;
Gibson, Rosen & Stucker 2010; Ukrainsky & Ramon 2018; De Wit 2020). The presence of
a heat source/sink along the interface could be due to a chemical reaction (Levenspiel
1999) or an irradiating beam along the liquid–liquid interface (Gibson et al. 2010).
The chemical reactions cause a local change in the properties of the fluids such as
density, viscosity, surface tension and elasticity, along with the temperature, due to the
change in chemical composition and heat released/absorbed, which leads to an interplay
between the reactions, hydrodynamics and heat transfer. Recent studies (De Wit, Eckert
& Kalliadasis 2012; Eckert et al. 2012; De Wit 2016) on reactive systems show that this
interplay then leads to various hydrodynamic instabilities such as Rayleigh–Taylor, viscous
fingering, double-diffusive, and solutal or thermal Marangoni instabilities. Thus the
resulting patterns in a reactive system are much more complex than in the corresponding
non-reactive systems (De Wit 2020). Due to the immense importance of manipulating
the rate of chemical reactions in industrial settings, understanding the dynamics of such
reactive systems is essential.

Most of the previous studies, interestingly, assume reactive systems in the absence of an
imposed shear and temperature fields (Bratsun & De Wit 2004; De Wit 2020). Thus any
hydrodynamic flow or temperature field emerging in such systems will be a consequence
of the chemical reactions alone. Bratsun & De Wit (2004) considered an imposed shear
and analysed reactive systems under restrictive assumptions, such as infinite liquid–liquid
interfacial tension equivalent to an interface non-deformability, or flow in a Hele-Shaw

cell that assumes no inertia. However, in many industrially and naturally important reactive
systems, hydrodynamic flows generated by the imposed shear and temperature field coexist
with a chemical reaction.

To understand such systems, a realistic model is necessary. For example, in batch
and continuous stirred tank reactors, the shear force is employed to induce mixing to
provide more contact area between the reacting chemical species (Levenspiel 1999). In
tubular flow reactors, an axial pressure gradient causes the imposed shear flow (Levenspiel
1999). The present study attempts to fill this physically significant gap by considering a
viscosity-stratified two-layer Couette flow with a heat source/sink along the interface.

Yih (1967) predicted the emergence of shear-wave instability in a two-layer
Couette–Poiseuille flow as a result of the viscosity stratification. For the existence of
the shear-wave instability, finite inertia and a deformable liquid–liquid interface are
necessary. However, previous studies (Bratsun & De Wit 2004; De Wit 2020) concerning
chemo-hydrodynamic instabilities assumed a non-deformable interface or the absence of
the inertia, thereby missing the main ingredients for the shear-wave instability.

Wei (2006) analysed the stability of a two-layer Couette flow under an imposed
temperature gradient across the bounding walls with the linear dependence of the
interfacial tension on the temperature. He assumed that one of the layers is in the thin-film
limit to proceed with the asymptotic analysis and governing equation derivation. The
thin-film equations showed the presence of a non-local term which played an important
role in determining the competition between the inertial and thermocapillary forces.
His study showed an interesting interplay between the shear-wave and thermocapillary
instabilities. However, the thin-film assumption (Wei 2006) restricted the applicability
of his study to the long-wave instabilities only, whereas finite-wave and short-wave
instabilities remain to be investigated in a physically relevant system. Thermocapillary
instabilities with heat generation along the non-deformable liquid–liquid interface in

934 A43-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Dynamics of a two-layer flow

Fluid 2

Fluid 1

y = R, T = T0

y = (H + h)R, T = Ti

V

y

x

Heat source/sink Q

y = 0, T = T0

Figure 1. Schematic of the flow geometry in dimensional coordinates. The wall at y = R is moving with speed

V in the direction shown by the horizontal arrow. In the base state, the fluid–fluid interface located at y = HR,

where the heat generation or absorption of intensity Q takes place, separates the two liquids; y = HR + hR is

the location of the interface in the perturbed state, where hR is the small displacement of the interface. Both

bounding walls are held at the same dimensional temperature T0.

a stationary two-layer system was theoretically studied by Gilev, Nepomnyashchy
& Simanovskii (1990) and Nepomnyashchy & Simanovskii (2004). Their analysis
demonstrated the presence of an oscillatory instability.

In the present paper, we consider a viscosity-stratified two-layer Couette flow with a
heat source/sink along the interface, as shown schematically in figure 1. The liquid–liquid

interface has a finite interfacial tension, which depends linearly on the temperature. The
bounding walls are maintained at the same constant temperature, such that temperature
gradients in the fluid layers may develop only due to the presence of the heat source/sink

along the interface, unlike the case where an imposed temperature gradient was present

only between the bounding walls (Wei 2006). At the same time, the presence of a
deformable interface along with a finite inertia leads to the emergence of the shear-wave
instability. Thus the present study aims to investigate various instabilities arising as a

result of an interplay between the inertial, viscous and thermocapillary stresses, and
their impact on the stability of the system. It must be noted that, as shown in § 4, the
stability characteristics of the system are not just a trivial superposition of shear-wave and
thermocapillary instabilities but give rise to entirely new instabilities.

The rest of the paper is arranged as follows. The base-state variables and governing
equations for the perturbations are derived in § 2. The numerical method used here
is discussed in § 3. The long-wave instability, the new instabilities and the associated
critical parameters for streamwise perturbations are presented in § 4.1.1. The results for
the finite-wave instability and the emerging neutral stability curves are presented in § 4.1.4.
Instabilities of spanwise perturbations are studied in § 4.2. The physical mechanisms for
the instabilities revealed in the paper are discussed in § 5. The salient conclusions of the
paper are summarised in § 6.

2. Problem formulation

The system under consideration consists of two immiscible, incompressible Newtonian
fluids confined between two horizontal planar walls, separated by the distance R, as shown
in figure 1. It is further assumed that the fluids extend infinitely in the lateral direction
(along the z-axis). The two fluids, marked as 1 and 2, have different viscosities µ1 and µ2,
respectively, but equal thermal conductivity κ , heat capacity cp, and density ρ.

The Cartesian reference frame chosen here is such that its reference point is located
on the lower substrate, the liquids flow in the x, z-plane, and the y-axis is normal to the
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interface between the two layers at its undisturbed position located at y = HR. The upper
wall moves in its plane with a dimensional steady velocity, V , whereas the lower wall is
stationary. The lengths in the present problem are scaled by the channel spacing, R. The
components of the velocity field are scaled by the speed of the wall, V , and the time t is
scaled by R/V . In the dimensionless coordinates, fluids 1 and 2 are confined to the domains
[0, H] and [H, 1], respectively, in the base state.

Due to the heat/source sink along the interface, a temperature gradient will develop
across the fluid layers. To assign a definite sign to the Marangoni number and intensity of
heat source/sink along the interface, we normalise the temperature with β1R, where β1 is
the temperature gradient in fluid 1 in the base state. Both of the walls are held at the same
dimensional temperature T = T0. At the interface, heat generation or absorption takes
place at a dimensionless rate Q, which may be either positive or negative, respectively,
depending on whether a heat source/sink exists due to internal volumetric heat generation
(Oron & Peles 1998), or irradiation (Oron 2000), as in the case of the photopolymerisation
techniques used in additive manufacturing (Gibson et al. 2010).

The liquid–liquid interfacial tension, σ , is assumed to be linearly temperature-dependent:

σ = σ0 − γ T, (2.1)

where T is the local interfacial temperature, γ = −dσ/dT > 0 and σ0 is the reference
interfacial tension of the fluid at an arbitrary reference temperature Tr. In what follows, all
temperatures represent gauge temperatures with respect to Tr. This feature results in the
emergence of Marangoni stresses at the interface, whenever a temperature variation along
the interface exists, which may lead to thermocapillary instability.

We denote the velocity fields within the two fluids by v(i) = (v
(i)
x , v

(i)
y ), where i = 1, 2

represent fluids 1 and 2, respectively. The dimensionless continuity equation is

∇ · v(i) = 0, (2.2a)

where the gradient operator is ∇ = ex∂x + ey∂y, with ex and ey denoting the unit vectors
in the x- and y-directions, respectively. The dimensionless Navier–Stokes equations for the

fluids with µ1V/R as the pressure scale are

Re [∂tv
(i) + (v(i)

· ∇)v(i)] = −∇p(i) + µ(i) ∇2v(i), (2.2b)

in which Re ≡ ρVR/µ1 is the Reynolds number and ∇2 ≡ ∂2
x + ∂2

y is the Laplacian

operator. The dimensionless viscosities are µ(1) = 1 and µ(2) = µr for fluids 1 and 2,
respectively, where

µr =
µ2

µ1
. (2.2c)

Thus the dimensionless energy equations are

Pe [∂tT
(i) + (v(i)

· ∇)T(i)] = ∇2T(i), (2.2d)

where Pe = Re Pr is the Péclet number and Pr = µ1cp/κ is the Prandtl number based on
the properties of fluid 1. Here the Prandtl number expresses the ratio of the kinematic
viscosity (the momentum diffusivity) to the thermal diffusivity of liquid 1, whereas the
Péclet number, Pe ≡ ρcpVR/κ , relates the rate of thermal convection to that of thermal
diffusion in fluid 1.
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Dynamics of a two-layer flow

The governing equations (2.2) are subjected to the following boundary conditions.
Assuming no-slip, no-penetration and a constant specified temperature at the bounding
walls yields

v(1)
x = 0, v(1)

y = 0, v(1)
z = 0, T(1) = T0, at y = 0, (2.3a)

v(2)
x = 1, v(2)

y = 0, v(2)
z = 0, T(2) = T0, at y = 1, (2.3b)

where T0 is the dimensionless wall temperature.
The deformable fluid–fluid interface is assumed to be located at y = 1 + h(x, t), where

h(x, t) is the infinitesimal dimensionless displacement of the interface from its undisturbed
position, y = 1. The boundary conditions at the interface are the kinematic boundary
condition, and continuity of the tangential and normal components of the velocities and
stresses, as well as continuity of the temperature and heat flux (Wei 2005, 2006), as
follows:

∂h

∂t
+ vx

∂h

∂x
= vy, (2.3c)

v(1) − v(2) = 0, (2.3d)

t · τ (1)
· n − t · τ (2)

· n = −Ma ∇T · t, (2.3e)

−p(1) + n · τ (1)
· n − (−p(2) + n · τ (2)

· n) = −Ca−1 (∇ · n), (2.3f )

T(1) − T(2) = 0, (2.3g)

∇T(1)
· n − ∇T(2)

· n = QTi, (2.3h)

where

Ma =
γβ1HR

µ1V
, Ca =

µ1V

σ0
, Q =

qR

κ
. (2.4a–c)

Here, τ ( j) is the stress tensor in layer j, Ma, Ca and Q are the Marangoni number, the

capillary number and the dimensionless heat source/sink intensity along the interface,

respectively. The parameters q and β1 = dT̄1/dy are the dimensional heat source/sink
intensity along the interface, and the base-state temperature gradient in fluid 1,
respectively, with an overbar here and below denoting a base-state quantity. The vectors
t and n represent the unit tangent and normal vectors to the free surface, respectively.
The heat flux due to the interfacial heat source or sink is assumed to depend linearly

on the temperature. To support this assumption, we note that the heat released/absorbed
during a chemical reaction is proportional to the reaction rate and the enthalpy of the
reaction, both of which are temperature-dependent (Levenspiel 1999). Therefore, to a first
approximation, the heat released due to a chemical reaction is linear in the temperature
with other parameters collectively represented here by the parameter q. It is noted that
for an exothermic reaction Q > 0, since heat is generated along the interface. The heat
released at the interface increases the interfacial temperature, Ti, raising it above the
temperature of the bounding walls, T0. Thus the temperature gradient β1 in fluid 1 will be
positive, which implies Ma > 0. Conversely, for an endothermic reaction, heat is absorbed
along the interface, thus Q < 0, and the interface will be at a temperature lower than that of

the bounding walls so that β1 < 0 and Ma < 0. The linearised expressions for the normal
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n and tangential vector t at the free surface, in the perturbed state, are

n = −
∂h

∂x
ex + ey, t = ex +

∂h

∂x
ey. (2.5a,b)

The Marangoni number Ma can be rewritten as

Ma =
γβ1H

µ1V/R
, (2.6)

so that the term in the denominator, µ1V/R, denotes the viscous stress, whereas the term in
the numerator, γβ1H, expresses the thermocapillary stress acting at the interface. Thus Ma

is a measure of the relative strength of the thermocapillary stresses compared to the viscous
stresses. The dimensionless strength of the heat source/sink intensity at the interface, Q, is

the ratio of the rate of heat generated/absorbed at the interface per unit area of the interface,

q, to the rate of heat κ/R conducted to (from) the interface from (to) the bounding walls.
The capillary number Ca can be rearranged to yield Ca = (µ1V/R)/(σ0/R), thus it can be
interpreted as the ratio of viscous stresses (µ1V/R) to interfacial-tension stresses (σ0/R).

2.1. Base state

Assuming a steady, fully developed flow, the base-state equations are

d2v̄
(i)
x

dy2
= 0,

d2T̄(i)

dy2
= 0, (2.7a)

subjected to the following boundary conditions. At the lower wall (y = 0),

v̄(1)
x = 0. (2.7b)

At the fluid–fluid interface (y = H),

v̄(1)
x = v(2)

x , (2.7c)

dv̄
(1)
x

dy
= µr

dv̄
(2)
x

dy
. (2.7d)

At the upper wall (y = 1),

v̄(2)
x = 1. (2.7e)

The solution of the above system of equations and boundary conditions (2.7) is

v̄(1)
x =

µr

1 + H(µr − 1)
y, v̄(2)

x =
H(µr − 1)

1 + H(µr − 1)
+

1

1 + H(µr − 1)
y, (2.8a,b)

where an overbar indicates a base-state quantity. The base-state temperature gradients in
the fluids are

dT̄(1)

dy
= 1,

dT̄(2)

dy
=

H

H − 1
, (2.9a,b)

β1 =
qT0(1 − H)

κ + (H − 1)HqR
. (2.10)

The subsequent linear stability analysis is performed with respect to the base-state given
by (2.8a,b) and (2.9a,b).

Note that in the case of no heat generation or absorption at the interface, q = 0, the
temperature gradient β1 is zero, therefore both Q and Ma vanish and the problem reduces
to a purely isothermal one.
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Dynamics of a two-layer flow

2.2. Linearised perturbation equations

For the purpose of the linear stability analysis, dynamic fields such as velocities,
temperatures and pressures are represented by superposition of the base-state and the
perturbations, as f (x, t) = f̄ (x, t) + f ′(x, t). Here, f (x, t) is a dynamic field and a prime
denotes an infinitesimal perturbation. In the linearised governing equations, the normal
modes take the form

f ′(x, t) = f̃ ( y) ei(kx+mz−ωt), (2.11)

where k and m are the streamwise and spanwise (real) wavenumbers, and f̃ ( y) is the
eigenfunction of f ′(x, t). The above normal modes are then substituted into (2.2) and (2.3).
The parameter ω = ωr + iωi is the complex frequency. Therefore, the flow is considered
to be temporally unstable if at least one eigenvalue satisfies the condition ωi > 0.

After substitution of the normal modes, the linearised governing equations become

ikṽ(i)
x + Dṽ(i)

y + imṽ(i)
z = 0, (2.12a)

Re [−iωṽ(i)
x + ikv̄(i)

x ṽ(i)
x + ṽ(i)

y Dv̄(i)
x ] = −ikp̃(i) + µ(i)(D2 − k2 − m2)ṽ(i)

x , (2.12b)

Re [−iωṽ(i)
y + ikv̄(i)

x ṽ(i)
y ] = −Dp̃(i) + µ(i)(D2 − k2 − m2)ṽ(i)

y , (2.12c)

Re [−iωṽ(i)
z + ikv̄(i)

x ṽ(i)
z ] = −imp̃(i) + µ(i)(D2 − k2 − m2)ṽ(i)

z , (2.12d)

Re Pr[−iωT̃(i) + DT̄(i) ṽ(i)
y ] = (D2 − k2 − m2)T̃(i), (2.12e)

where D = d/dy. Equations (2.12) are subject to the following boundary conditions. At
y = 0 and y = 1, the assumption of no-slip, no-penetration and constant temperature at
the walls yields

ṽ(1)
x = 0, ṽ(1)

y = 0, ṽ(1)
z = 0, T̃(1) = 0, at y = 0, (2.13a)

ṽ(2)
x = 0, ṽ(2)

y = 0, ṽ(2)
z = 0, T̃(2) = 0, at y = 1. (2.13b)

At y = H, oscillations of the fluid–fluid interface will be induced due to the perturbations.
Thus the infinitesimal displacement of the interface will matter. These boundary
conditions, after substitution of the normal modes, become

i(kv̄(1)
x − ω)h̃ = ṽ(1)

y , (2.13c)

ṽ(1)
y = ṽ(2)

y , (2.13d)

ṽ(1)
x + Dv̄x

(1) h̃ = ṽ(2)
x + Dv̄x

(2) h̃, (2.13e)

Dṽ(1)
x + ikṽ(1)

y = −ik Ma (T̃(1) + DT̄(1) h̃) + µr(Dṽ(2)
x + ikṽ(2)

y ), (2.13f )
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Dṽ(1)
z + imṽ(1)

y = −im Ma (T̃(1) + DT̄(1) h̃) + µr(Dṽ(2)
z + imṽ(2)

y ), (2.13g)

−p̃(1) + 2Dv(1)
y = −p̃(2) + 2µrDv(2)

y − Ca−1k2h̃, (2.13h)

T̃(1) + DT̄(1) h̃ = T̃(2) + DT̄(2) h̃, (2.13i)

DT̃(1) = DT̃(2) + Q(T̃(1) + DT̄(1) h̃), (2.13j)

where all quantities are evaluated at y = H.

3. Numerical method

To carry out the linear stability analysis of the problem (2.12)–(2.13), the pseudospectral
method is employed, in which the eigenfunctions corresponding to each dynamic field
are expanded into series of the Chebyshev polynomials. The Chebyshev polynomials
are defined over [−1, 1] while the domains of fluid 1 and fluid 2 are [0, H] and [H, 1],
respectively. Thus, for discretisation, we use the substitutions

y →
H

2
(1 + y), for fluid 1, (3.1)

y →
1

2
(1 + H + (H − 1)y), for fluid 2, (3.2)

mapping the domains for fluid 1 and fluid 2 onto [−1, 1] and [1, −1], respectively. The
eigenfunctions are further expanded in terms of the transformed coordinate as

f̃ ( y) =

m=N
∑

m=0

am Cm( y), (3.3)

where Cm( y) are Chebyshev polynomials of degree m and N is the highest degree of the
polynomial in the series expansion or, equivalently, the number of collocation points. The
coefficients of the series am are the unknowns to be solved for.

The generalised eigenvalue problem is constructed in the form

Ae + cBe = 0, (3.4)

where A and B are matrices obtained from the discretisation procedure and e is the vector
containing the coefficients of all series expansions.

Further details of the discretisation of the governing equations and boundary conditions,
and the construction of the matrices A and B, are presented in the standard procedure
described by Trefethen (2000) and Schmid & Henningson (2001). Application of
the pseudospectral method for similar problems can be found in Patne, Agnon &
Oron (2020, 2021). We use the polyeig MATLAB routine to solve the generalised
eigenvalue problem given by (3.4). To filter out the spurious modes from the genuine,
numerically-computed spectrum of the problem, the latter is determined for N and N + 2
collocation points, and the eigenvalues are compared with an a priori specified tolerance,
e.g. 10−4. The genuine eigenvalues are verified by increasing the number of collocation
points by 25 and monitoring the variation of the obtained eigenvalues. Whenever the
eigenvalue does not change up to a prescribed precision, e.g. to the sixth significant digit,
the same number of collocation points is used to determine the critical parameters of the
system. In the present work, N = 50 is found to be sufficient to achieve convergence and to
determine the leading, most unstable eigenvalue within the investigated parameter range.
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Dynamics of a two-layer flow

10–2 10–1 100 101

k

–4

–3

–2

–1

0

1

2

ci

(×10–4)

Present numerical approach

Shankar & Kumar (2004)

Figure 2. Variation in the growth rate ci with wavenumber k for Re = 1, H = 0.4, µr = 0.5, Pe = 0, Ma = 0,

Q = 0 and Ca = 100 predicted by the present numerical approach and Shankar & Kumar (2004). The figure

illustrates excellent agreement between the results of the numerical computation and digitally extracted data

points from figure 3(a) of Shankar & Kumar (2004), thereby validating the former.

The numerical method employed here to solve the eigenvalue problem is validated in
figure 2 by comparing the growth rate predicted by the present numerical approach and
the data points from Shankar & Kumar (2004).

In the limit of small Péclet number, i.e. Pe ≡ Re Pr = 0 and m = 0, the energy equations

for the fluids can be solved analytically to obtain

T̃(1) = 2m1 sinh(ky), (3.5a)

T̃(2) = −2m2 ek sinh(k − ky), (3.5b)

where mi are the integration constants, and boundary conditions (2.13a) and (2.13b) have
been used. The Orr–Sommerfeld equations for the fluids are numerically integrated by
taking an initial guess value for c to obtain the eigenfunctions for velocities:

ṽ(1)
x = m3v

(1)
x1 + m4v

(1)
x2 , (3.5c)

ṽ(2)
x = m5v

(2)
x1 + m6v

(2)
x2 , (3.5d)

where v
(1)
x1 , v

(1)
x2 , v

(2)
x1 and v

(2)
x2 are the integrated velocity eigenfunctions.

The eigenfunctions (3.5) are then substituted in the interface boundary conditions (2.13).
Thus we have six integration constants and six linear algebraic equations. In matrix form,
the resulting eigenvalue problem becomes

Mα = 0, (3.6)

where M is a 6 × 6 matrix containing the coefficients of the integration constants in (3.5),
and α is a vector containing the six integration constants mi. The eigenvalue c is then
obtained by solving for the value of c at which the determinant of the matrix M vanishes,
thereby determining the system stability. Next, the Newton–Raphson algorithm is utilised
to obtain the initial guess for the next iteration. The obtained eigenvalues in each iteration
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Dimensional parameter Range Dimensionless parameter Range

R 10−6–10−2 m Re 10−5–102

ρ 103 kg m−3 Ca 10−3–101

σ0 10−3–10−1 N m−1 |Ma| 0–102

γ 10−5–10−3 N (m K)−1 |Q| 0–102

κ 10−2–102 J (m s K)−1 Pr 10−1–103

µ 10−3–102 Pa s — —

V 10−4–10−2 m s−1 — —

Table 1. The magnitude of dimensional and dimensionless parameter ranges for the relevant processes

considered in the present study (Li, Xu & Kumacheva 2000; Schatz & Neitzel 2001; Ukrainsky & Ramon

2018).

are compared with an a priori specified tolerance, e.g. 10−6. Typically, an eigenvalue
converges within 10 iterations.

4. Results and discussion

Before proceeding with the presentation of the results, typical ranges of the dimensional
and dimensionless parameters are presented in table 1. Note that Q and Ma can assume
positive or negative signs depending on whether a heat source or sink is present along
the interface. These parameter ranges will be used here to study the various modes of
instability. For the ease of presentation and discussion, the results have been divided into
two sections, dealing separately with the streamwise (m = 0) and spanwise (k = 0) modes
of instability.

4.1. Streamwise perturbation

The presence of a heat source along the interface, Q > 0, leads to an increase in the
interfacial temperature relative to the bounding walls. This results in a positive temperature
gradient in fluid 1, β1 > 0, corresponding to Ma > 0. The growth-rate curves ci(k) for the

case of a heat source along the interface are shown in figures 3(a) and 3(b). A similar
argument for the case of a heat sink along the interface leads to the conclusion that Ma < 0
and Q < 0. The corresponding growth-rate curves for the case of a heat sink along the
interface are shown in figures 3(c) and 3(d).

In figure 3, the curves for Ma = 0, Q = 0 correspond to the pure shear-wave instability
first revealed by Yih (1967) in the absence of the heat source/sink at the interface. The
growth-rate curves illustrate the stabilising (destabilising) effect of the heat source (sink)
along the interface on the pure shear-wave instability.

One might expect that a heat source that generates energy at the interface would lead
to an enhancement of the shear-wave instability by providing energy to the perturbations
with the opposite expectation for the heat sink. However, as discussed in § 5, the heat
sink sets up a favourable arrangement for the thermocapillary instability by lowering the
temperature of the interface with respect to the bounding walls. On the other hand, the
heat source increases the temperature of the interface, thereby promoting an unfavourable
set-up for the thermocapillary instability. This leads to the stabilisation or destabilisation
of the pure shear-wave instability shown in figure 3, which demonstrates two types of
instability modes, namely, the long-wave (k < 0.1) and the finite-wave (k > 0.1). For the
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Dynamics of a two-layer flow
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ci = 0 line

(a) (b)

(c) (d )

Figure 3. Variation in the growth rate ci with the disturbance wavenumber k at Re = 10, H = 0.4, µr = 0.5,

Pe = 0, Q = 2 and Ca = 0.1 for the streamwise perturbations. Panels (a) and (b) are for the case of a heat

source along the interface, i.e. Q > 0 and Ma > 0, illustrating the stabilising effect of a heat source along

the interface on the pure shear-wave instability corresponding to Q = Ma = 0. Panels (c) and (d) are for the

heat sink along the interface, i.e. Q < 0 and Ma < 0, illustrating the destabilising effect of a heat sink along

the interface on the pure shear-wave instability corresponding to Q = Ma = 0. (a,c) The entire wavenumber

domain. (b,d) The blowup of the low-wavenumber domain. The flow is unstable for ci > 0.

convenience of the presentation, we separate the results into two subsections; the first

analyses the long-wave mode, whereas the second deals with the finite-wave mode.

4.1.1. Long-wave instability

The long-wave streamwise instability is amenable to an asymptotic analysis. Before
proceeding with the analysis, we substitute ω = kc and write the system of two
Orr–Sommerfeld equations obtained for the two fluids in the form

ik Re (v̄(i)
x − c)(D2 − k2)ṽ(i)

y = µ(i)(D2 − k2)2ṽ(i)
y , (4.1)

where c = cr + ici is the complex phase speed. The energy equations remain unchanged.

Next, the velocity and temperature fields, and the complex phase speed c, are expanded as
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series in terms of a small wavenumber k, as

ṽ(i)
y = v

(i)
y0 + kv

(i)
y1 + k2v

(i)
y2 + · · · , (4.2)

c = c0 + kc1 + k2c2 + · · · , (4.3)

T̃(i) =
1

k
T

(i)
0 + T

(i)
1 + kT

(i)
2 + · · · . (4.4)

These expansions are then substituted into the Orr–Sommerfeld equation (4.1), the energy
equation (2.12e), and the boundary conditions (2.13).

At O(1), the governing equations read

D4v
(i)
y0 = 0, D2T

(i)
0 = 0. (4.5a,b)

It must be noted that the corresponding expansions in powers of k for ṽ
(i)
x can be obtained

via that for ṽ
(i)
y if needed, from the continuity equations, whereas the expansion for p̃(i)

can be obtained from the x-component of the momentum equation.
Using the obtained expansions yields

c0 =
µrH[1 + H(µr − 1)(2 − 2H + 2H2 + H3(µr − 1))]

(µr − 1)[1 + H(µr − 1)][1 + H(µr − 1)(4 − 6H + 4H2 + H3µr − H3)]
. (4.6)

The O(1) eigenvalue, c0, i.e. the wave celerity, is independent of Q, representing the

intensity of the heat source/sink, or Ma, reflecting the relative importance of surface

tension variation compared with shear stresses. It depends on the thickness ratio H and

the viscosity ratio µr. For H = 0.4 and µr = 0.5, (4.6) yields c0 = 0.31447, in agreement

with Shankar & Kumar (2004), serving as validation of our analysis at this point.
At O(k), the governing equations are

µ(i) D4v
(i)
y1 + i Re (c0 − v̄(i)

x ) D2v
(i)
y0 = 0, (4.7)

D2T
(i)
1 + i Pe (c0 − v̄(i)

x )T
(i)
0 − Pe DT̄(i) v

(i)
y0 = 0. (4.8)

Solving (4.8) in the same way as for O(1) above, yields

c1 = i

(

f1(H, µr) Ma

Q + f3(H)
+ f2(H, µr) Re

)

. (4.9)

Since c1 is purely imaginary, it represents the growth rate of perturbations with respect to
the disturbance wavenumber and the rest of the parameters.

Combining (4.6) and (4.9), the eigenvalue c, at O(k), is

c = c0(H, µr) + ik

(

f1(H, µr) Ma

Q + f3(H)
+ f2(H, µr) Re

)

, (4.10)

where

f1 =
g4

g5
, f2 =

g1g2

g3
, f3 =

1

H(H − 1)
, (4.11a–c)
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Dynamics of a two-layer flow

and

g1 = −(H − 1)2H2(µr − 1)[−1 + (−6H2 + 8H3 + 3H4(µr − 1) − 4µr)(µr − 1)],

g2 = 2(H − 1)5(2H − 5H2 + H3)µr + 8(H − 1)2H2(−1 + 2H)(1 − H + H2)µ2
r

− 2(H − 1)H5(−2 + 3H + H2)µ3
r + H8µ4

r − (H − 1)8,

g3 = 60H(H − 1)[1 + H(µr − 1)]2[1 + H(µr − 1)(4 − 6H + 4H2 + H3(µr − 1))]3,

g4 = (H − 1)H2(2H − 1)[−1 + 2H + H2(µr − 1)],

g5 = 2 + 2H(µr − 1)[4 − 6H + 4H2 + H3(µr − 1)].

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(4.12)

Interestingly, f1(H, µr), representing the coefficient of Ma, and thus representative of the

thermocapillary stresses along the interface, is a function of the viscosity ratio µr and
the thickness ratio H. The former suggests a coupling between the thermocapillary and
viscous stresses at the interface, which, as discussed below, strongly affects the stability
of the system. The function f2 is associated with the case of a pure viscous-stratification
instability and, similar to f1, depends on the viscosity and thickness ratios. It follows from
(4.10) and (4.11a–c) that the long-wave mode is independent of Pe and Ca, thus the results
presented for the long-wave mode are valid for arbitrary Pe and Ca; henceforth their values
will not be specified when the long-wave mode is concerned.

The variation in the functions f1(H, µr), f2(H, µr) and f3(H) with parameters H and µr

is shown in figure 4. It is interesting to note that both f1 and f2 vanish at H = 0.5 for any
µr. In the context of the instability threshold of the base state, this means that the state
of the system for which H = 0.5 is neutrally stable in terms of the long-wave instability.
Figure 4(a) presents the variation in f1 and f2 with H for µr = 0.5. Note f1 has two zeros
in the relevant domain of 0 < H < 1. Thus, for these two values of H, the thermocapillary
stresses do not affect the stability of the system. It is seen that f2 > 0 for H < 0.5, whereas
for H > 0.5, f2 is negative. These domains correspond, respectively, to the unstable and
stable configurations for the shear-wave instability, first shown by Yih (1967). Also, f1 is
positive except for a short interval in H. In particular, f1 < 0 for 0.5 < H < 0.6, where
f2 < 0. Thus, as will be seen below, even if the inertial terms (i.e. the terms with Re) are
stabilising, and the shear-wave instability does not set in, the thermocapillary terms can
induce instability via heat generation at the interface. Figure 4(b) presents the variation
of the function f3, which is always negative and independent of µr. Figure 4(c) shows
the variations in f1 and f2 with µr when the value of H is fixed to a sample value of
H = 0.4, which will be used hereafter. Figure 4(d) presents the variation of f1 and f2 with
H, for µr = 1.5. Note the change in sign of f2 as compared to figure 4(a). The sign of
f2 is associated with the stability properties of the isothermal Couette flow in a two-layer
system. Thus the effect of inertia exerted on the flow considered in this paper will be

destabilising for a pair (H, µr) with H < 1/2, 0 < µr < 1 or H > 1/2, µr > 1; otherwise,
it is stabilising.

In the absence of the heat source/sink along the interface, the temperature gradient in
the fluids will vanish, in which case Ma = 0, Q = 0, removing the thermocapillary effect
in (4.10) and retaining only the shear-wave instability. For H = 0.4 and µr = 0.5, the
shear-wave mode has

c = 0.31447 + 1.2 × 10−4ik Re, (4.13)

in agreement with the results of Shankar & Kumar (2004), thus validating the results
of our asymptotic analysis. The validity of the long-wave asymptotic analysis is further
demonstrated in figure 5, through a comparison with the numerical results. At low k, both
approaches are in agreement, as expected from the long-wave expansion. At a finite k, there

934 A43-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



R. Patne, G.Z. Ramon, Y. Agnon and A. Oron

(b)(a)

(c) (d )

10–2 10–1 100

H

10–1 100 101

µr
10–2 10–1 100

H

H

0

0.02

0.04

0.06

f1

f1 f1

–2

–1

0

1

2

f2

f2

10–2 10–1 100
–120

–100

–80

–60

–40

–20

0

f3

–0.02

0

0.02

0.04

0.06

0.08

–0.5

0

0.5

1.0

1.5

2.0

2.5

f2

0

0.02

0.04

0.06

–2

–1

0

1

2

(×10–4)(×10–4)

(×10–4)(×10–4)(×10–3)(×10–3)

f1
Reference line for f1
f2
Reference line for f2

f1
Reference line for f1
f2
Reference line for f2

f1
Reference line for f1
f2
Reference line for f2

Figure 4. Variation in the functions f1(H, µr), f2(H, µr) and f3(H) with the relative position of the

liquid–liquid interface H and the viscosity ratio µr. (a) Functions f1 and f2 for µr = 0.5. (b) Function f3 for

arbitrary µr. (c) Functions f1 and f2 for H = 0.4. (d) Functions f1 and f2 for µr = 1.5. The thin horizontal lines

mark the zero values for f1 and f2.

exists an additional mode of instability that is not captured by the long-wave asymptotic
analysis, which we refer to hereafter as a ‘finite-wave instability’.

4.1.2. Heat source along the interface

It follows from (4.10) that the Prandtl and capillary numbers do not affect the long-wave

mode at first order in k. For a heat source, representing an exothermic reaction along
the interface, Q > 0, Ma > 0. In this case, as noted above, the thermocapillary stresses
stabilise the shear-wave instability. Thus, at a fixed value of the other parameters, an
increase in Ma leads, in general, to the suppression of the shear-wave instability and the
formation of stable and unstable domains in the parameter space. These domains are shown
in figure 6 for typical values of Q, µr and Re.

The two values of µr are selected such that fluid 1 has either higher (µr < 1) or lower
(µr > 1) viscosity than fluid 2. Solving the neutral stability equation (ci = 0) based on
(4.10) in terms of Ma yields the critical value

Mac = −
[Q + f3(H)] f2(H, µr) Re

f1(H, µr)
, (4.14)

which shows that a variation in Re will have a simple multiplicative effect on the critical
value of Ma, while preserving the qualitative features of the marginal stability curves.
In the present analysis, Re > 1 has been chosen deliberately to provide clarity in the
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Dynamics of a two-layer flow

10–2 10–1 100 101

k
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Numerics; Ma = Q = 0

Asymptotics; Ma = Q = 0

Numerics; Ma = Q = 0.5

Asymptotics; Ma = Q = 0.5

(×10–3)

Figure 5. Variation in the growth rate ci with wavenumber k for Re = 10, H = 0.4, µr = 0.5, Pe = 0 and

Ca−1 = 0 in the case of a heat source along the interface for the streamwise perturbations. The figure

illustrates the excellent agreement between the results of the numerical computation and those of the long-wave

asymptotic analysis, given by (4.10) at low k.

subsequent figures. As for Q, the two chosen values are such that for one of them Q < −f3
for all H ∈ [0, 1], while for the other value, Q > −f3 for a range of H indicated in the
corresponding figures.

Figure 6(a) illustrates the stabilising effect imparted by the presence of the heat source
on the shear-wave instability emerging when H < 0.6. For H > 0.6, the shear-wave mode
is stable, thus thermocapillary stresses, stabilising in this case, do not have any qualitative
effect. Interestingly, at H = 0.5, the coefficient of Ma, f1, vanishes when µr = 0.5, so that
thermocapillary stresses do not have any effect on the instability. Under such conditions,
the asymptotic expression (4.10) reduces to

c = 0.41414 + 2.85994 × 10−6ik Re, (4.15)

in which the Marangoni term is absent. For 0.5 < H < 0.6, both f1 and f2 are negative.
In fact, the function f2 is expected to be negative, in agreement with previous work (Yih
1967; Charru & Hinch 2000; Shankar & Kumar 2004), since H > 0.5 and µr > 0.5 is a
stable combination for the shear-wave instability. Since, in the current case, f1, f2, Q + f3
are all negative, the critical value of the Marangoni number Mac, as given by (4.14),
is positive and represents a threshold of instability. The emergence of this instability
in the interval 0.5 < H < 0.6 is a consequence of the interaction between the viscosity
stratification, represented by f2(H, µr), and the thermocapillary stresses represented by
Ma and f1(H, µr). This unexpected instability differs from its separate components, i.e.
the shear-wave and thermocapillary instabilities, and will be referred to hereafter as the
‘interaction’ instability. For the interaction instability induced in the region 0.5 < H <

0.6, an increase in the Marangoni number leads to destabilisation via an increase in the
growth rate ci in (4.10), since f1 < 0 and Q + f3 < 0.

Before proceeding further, we refer once again to figure 4(b), which shows that f3 < 0
in H ∈ [0, 1], whereas, as mentioned above, figure 4(a) shows that for µr = 0.5, f1 > 0
outside H ∈ [0.5, 0.6]. Therefore, in the case of a heat source at the interface, Ma > 0 and
Q > 0, the thermocapillary term in (4.10) is negative for Q < −f3 and f1 > 0, therefore
diminishing the growth rate ci and exerting a stabilising effect on the system.

Consider now a possible parameter range for which in some domain of H ∈ (0, 1), Q +

f3 > 0 and f1 > 0. In this case, the thermocapillary Ma term in (4.10) has a positive sign,
leading to the destabilisation of the system by increasing the growth rate ci, as presented
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Figure 6. Variation of the critical Marangoni number Mac with the position of the liquid–liquid interface,

H, at Re = 10 for the streamwise perturbations due to interfacial heat source Q. At H = 0.5, f1 = 0, so

thermocapillarity does not affect the stability. (a) Q = 0.1, µr = 0.5; (b) Q = 6, µr = 0.5; (c) Q = 0.1,

µr = 1.5; (d) Q = 6, µr = 1.5. (a,c) Stabilisation introduced by thermocapillarity due to a heat source

along the interface. (b,d) Explosive and interaction instabilities introduced by the heat source along the

interface. (a) For 0.5 < H < 0.6, thermocapillarity causes the emergence of the interaction instability. (b) The

interaction between the viscous stratification and thermocapillarity leads to the emergence of a stable patch in

0.5 < H < 0.6 and of the explosive instability for 0.21 � H � 0.5. (d) The interaction between the viscous

stratification and thermocapillarity leads to the emergence of a stable patch in 0.2 < H < 0.5 and the explosive

instability in 0.5 < H � 0.78.

in figure 6(b). Since f3 < 0 and f3 depends on H, to satisfy the condition Q > −f3, H

must exceed a certain value which, in the case of Q = 6, is H ≈ 0.21. We note that with
Q = 6, the equation Q + f3(H) = 0 has one more root, namely, H ≈ 0.78. For 0.5 < H �
0.6, f1 < 0 while Q + f3 > 0, thus the thermocapillary Ma term assumes a negative sign,
whereas the inertial contribution is also negative since f2 < 0 for H > 0.5, and the base
flow is stable.

To analyse the map of stability–instability domains, we begin with the interval H �
0.21, where f1 > 0, f2 > 0 and Q + f3 < 0. This demonstrates that for positive values of
the Marangoni number Ma, the growth rate ci changes its sign. Since in the isothermal
system, for which Ma = 0, the growth rate is ci > 0, a finite value of Ma is needed to

stabilise the system. Hence the neutral curve Ma = Mac in this domain is the stabilisation

threshold, and the system is unstable for Ma < Mac, as shown in figure 6(b).
In the domain defined by 0.21 � H < 0.5, the functions f1, f2 and Q + f3 are all positive,

therefore the system is unconditionally unstable. This instability takes place for any
wavenumber k, and we refer to this instability, in what follows, as an ‘explosive’ instability.
The result obtained for the emergence of the explosive instability is based on the long-wave
expansion, to first order in k. Our numerical solution of the full governing equations,
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Dynamics of a two-layer flow

(2.12) and (2.13), shows the emergence of instability for any value of k in the domain
0.21 � H < 0.5, confirming the existence of the explosive instability. Furthermore, even a
finite, however small, value of Ca is incapable of suppressing this instability. As explained
in § 5, the explosive instability is believed to be a consequence of the energy build-up at
the interface.

Next, in the interval 0.5 < H < 0.6, f1 and f2 are both negative, whereas Q + f3 > 0,
therefore this domain is an unconditionally stable region of the system. In the interval
0.6 < H < 0.78, Q + f3 and f1 > 0 are still positive, however, the inertial f2 term takes

negative values. In this case, the thermocapillary Ma term in (4.10) is positive and
destabilising. To overcome the stabilising effect of the inertial terms, a finite value of
Ma becomes necessary, which leads to the emergence of a small stable area between
0.6 < H < 0.78 for Ma < Mac. In the domain 0.78 < H < 1, f1 > 0, Q + f3(H) < 0 and
f2 < 0, and therefore for any Ma > 0, the growth rate ci is negative, and the domain is that
of unconditional stability.

For µr > 1, the regions of stability are shown in figures 6(c) and 6(d). As shown in
figure 6(c), in the interval 0.45 < H < 0.5, both f1 < 0 and f2 < 0, and also Q + f3 < 0
with Q = 0.1, which leads to the ‘interaction’ instability of the system, marked as the
unstable region in figure 6(c). In the interval H < 0.45, f1 > 0, f2 < 0 and Q + f3 < 0

with Q = 0.1, therefore there is a stabilising effect on the system originating from
both the inertial and thermocapillary contributions. For H > 0.5, both functions f1 and
f2 are positive and Q + f3 < 0 for Q = 0.1, thus the thermocapillary term exerts a
stabilising effect on the flow, whereas the inertial effect is destabilising. As a result of
this competition, a critical value of the Marangoni number exists as the threshold of
stabilisation, as seen in figure 6(c).

As shown in figure 4(d), in the interval 0.1 < H < 0.21, f1 is positive, whereas both
f2 and Q + f3 are negative, therefore both the inertial and thermocapillary terms of (4.10)
have a stabilising impact, resulting in a stable system. As mentioned above, H = 0.21 is
a root of the equation Q + f3 = 0 with Q = 6. Hence, in the interval 0.21 < H < 0.45,
f1 > 0, f2 < 0 and Q + f3 > 0, the thermocapillary effect competes with inertia, and a

threshold of instability emerges. In the small interval 0.45 < H < 0.5, the function f1
is negative along with f2, thus with Q + f3 > 0 for Q = 6, the system is stable due to
both the inertial and thermocapillary contributions. Further, for 0.5 < H < 0.78 (recall
that H ≈ 0.78 is the second root of the equation Q + f3 = 0 with Q = 6), the functions
f1, f2 and Q + f3 are all positive, in which case both the inertial and thermocapillary
contributions are destabilising and the explosive instability emerges. Finally, in the
interval 0.78 < H < 1, both functions f1 and f2 are positive, whereas Q + f3 < 0, hence
thermocapillarity stabilises the inertial effect once the Marangoni number is sufficiently
large.The results discussed in this paragraph are summarised in figure 6(d).

The variation of the critical Marangoni number, Mac, with µr, is presented in figure 7
for two values of H. Recall that for H = 0.4, the layer of fluid 1 is thinner than that
of fluid 2, while for H = 0.7 it is thicker. Thermocapillarity is always stabilising for
H = 0.4, irrespective of the value of µr, as shown in figure 7(a). The isothermal system
is unstable since f2 > 0, therefore a finite value of Ma is necessary to stabilise the
system. However, figure 7(b) shows that for H = 0.7 and µr < 0.18, the ‘interaction’
instability mode emerges due to strongly destabilising thermocapillary stresses, whereas
in the same domain, the shear stresses due to viscosity stratification are stabilising. For
0.18 < µr < 1 and H = 0.7, both thermocapillarity and viscous stratification stabilise the
system, resulting in the emergence of an unconditionally stable zone. When µr > 1, the
shear stress exerts a destabilising effect, but thermocapillarity is still stabilising, so that
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Figure 7. Variation of the critical Marangoni number Mac with the viscosity variation µr at Re = 10 and

Q = 0.1 for the streamwise perturbations due to a heat source along the interface. (a) For fixed H = 0.4, the

system is unstable due to viscosity stratification. The presence of thermocapillary stresses may stabilise the

system for Ma > Mac. (b) For fixed H = 0.7, the interaction mode of instability exists for µr < 0.18, such

that thermocapillary stresses lead to system destabilisation. For µr > 1, the isothermal system is unstable and

thermocapillarity has a stabilising effect. Recall that the function f3(H) is independent of µr, thus in the case

of Q < −f3 for all H, the stability properties of the system will be the same as shown here.

the competition between these two yields the existence of zones of stability and instability
as displayed in figure 7(b). In the case of Q > −f3(H) for some H, the system exhibits
explosive instability irrespective of the value of µr, similar to what is shown in figure 6.
This is not presented here.

4.1.3. Heat sink along the interface

In the case of a heat sink at the interface, heat is absorbed (Q < 0), and a negative
temperature gradient in fluid 1 is established, such that Ma < 0. A typical map of
the variation in Mac with H, for this case, is shown in figure 8. Thermocapillarity is
destabilising and promotes the emergence of instability even in the shear-wave stable

region. When µr = 0.5, f1 changes the sign at H = 0.5 and 0.6; see figure 4, where,
as a consequence of a competing interaction between the thermocapillary stresses and
those due to the viscosity stratification, the flow becomes stable for 0.5 < H < 0.6 as
presented in figure 8(a). In the shear-wave stable zone H > 0.6, thermocapillarity leads to
an unstable flow. As also shown in figure 8(a), a change in the value of Q does not cause
any qualitative change to the stability map.

For µr = 1.5, f1 does not change its sign as H is varied; see figure 8, such
that, as shown in figure 8(b), destabilisation is driven by both thermocapillarity and
viscosity stratification, for H > 0.5. Meanwhile, when H < 0.5, the viscosity stratification
is stabilising, whereas thermocapillarity exerts a destabilising influence, and their
competition results in the emergence of the critical Marangoni number Mac, which
separates between the stable and unstable zones, as shown in figure 8(b). Again, variation
in Q does not qualitatively change the structure of the stability map.

Figure 9 illustrates an interplay between the stresses arising from the viscosity
stratification and the thermocapillary stresses, as µr is varied. Figure 9(a) shows that
for H = 0.4, the shear-wave instability emerges when µr < 1. Since thermocapillary
stresses also contribute to instability within the same domain, this parameter range
is unconditionally unstable. On the other hand, when µr > 1, while the viscosity
stratification is stabilising, thermocapillarity continues to destabilise, as for µr < 1, so
that there exists a stability threshold, for which Ma = Mac. This threshold extends up
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Dynamics of a two-layer flow
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Figure 8. Variation in the critical Marangoni number Mac with the location of the interface H at Re = 10

for the streamwise perturbations due to a heat sink along the interface. (a) µr = 0.5. For H < 0.5, both

the shear-wave mode and thermocapillarity destabilise, thus there is an unstable zone. For 0.5 < H < 0.6,

the competition between the viscosity stratification and thermocapillarity leads to the stabilisation due to

thermocapillarity whereas the shear-wave mode is stable, hence the emergence of a stable zone. For H > 0.6,

the shear-wave mode is stable but thermocapillarity destabilises the flow for Ma with a sufficiently large

absolute value. (b) µr = 1.5. Thermocapillarity destabilises the flow in H < 0.5, where the shear-wave mode

is stable. For H > 0.5, both the shear-wave and thermocapillarity are destabilising, thus the emergence of an

unconditionally unstable region.

to µr > 2.25, where the destabilising influence of thermocapillarity is undermined via
a competition between the viscous stratification and thermocapillarity, resulting in a
change in the sign – from negative to positive – of f1, which represents the coefficient
of Ma in (4.10). This results in a rapid increase of the absolute value of the (negative)
Marangoni number required to overcome the effect of viscous stratification and destabilise
the system, eventually leading to a purely stable zone, as seen in figure 9(a). A similar
explanation may be given for the emergence of the stable and unstable zones shown for
H = 0.7 in figure 9(b); however, here the mutual locations of the stable and unstable
regions interchange. Similar to figure 9(a), the stabilising impact of viscous stratification
overcomes the destabilising impact of thermocapillarity in the range µr < 0.18, as f1
changes sign from negative to positive, which gives rise to a stable zone, indicating a
stabilising effect arising due to the interaction between the viscosity stratification and
thermocapillary stresses. In both cases, an increasing Q leads to an increasing stability
domain of the system in the range of µr where the critical threshold exists, whereas it does
affect the unconditionally stable and unstable domains.

4.1.4. Finite-wave instability (k > 0.1)

The finite-wave instability is not readily amenable to an asymptotic analysis similar to
the long-wave instability. Therefore, in what follows, the presented results were obtained
by using the pseudo-spectral method described briefly in § 3. For a purely shear-wave

mode, an increase in the interfacial tension has a stabilising effect, therefore a decrease in
Ca = µ1V/σ0 has a strong stabilising effect on the finite-wave instability, as demonstrated
in figure 10. For a low-viscosity fluid such as water, σ0 ∼ O(10−3 − 10−1) N m−1,
V ∼ O(10−4 − 10−2) m s−1 and µ ∼ O(10−4 − 10−2) Pa s, thus Ca ∈ O(10−7, 10−2).
Figure 10 shows that for these values of Ca, the base flow is stable for k > 0.1, i.e.
the finite-wave instability does not emerge, indicating that the finite-wave instability
may not be relevant for low-viscosity fluids. However, for high-viscosity fluids with
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Figure 9. Variation in the critical Marangoni number Mac with the viscosity ratio µr at Re = 10 for the

streamwise perturbations due to a heat sink along the interface. (a) H = 0.4. The shear-wave mode is

unstable for µr < 1. The emergence of the unstable zone for µr > 1 is a consequence of the destabilising

thermocapillarity due to the heat sink along the interface. (b) H = 0.7. Here, the stability map is a reflection

of the map in panel (a) with respect to µr = 1. An increase in Q does not introduce qualitative changes and

slightly stabilises the flow where the instability is conditional.
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Ca = 100
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Ca = 1

Ca = 0.01

(×10–3)

Figure 10. Variation in the growth rate ci with wavenumber k at Re = 10, H = 0.4, µr = 0.5, Pe = 0, Q = 0

and Ma = 0 for a purely streamwise shear-wave instability at various Ca. The figure illustrates the stabilising

effect of a decrease in the capillary number Ca on the emergence of the finite-wave instability. Note that the

growth rate ci tends to ci = 0 as k → ∞.

the interfacial tension σ0 ∼ O(10−3 − 10−1) N m−1, V ∼ O(10−4 − 10−2) m s−1 and

µ ∼ O(10−1 − 103) Pa s, which yields Ca ∈ O(10−3, 102). Figure 10 suggests that for this

range of values of Ca, the finite-wave instability persists and therefore warrants further
analysis. Note that in the case of Ca → ∞, the growth rate ci tends to zero.

4.1.5. Heat source along the interface

The neutral stability curves in the k–Ma space for a heat source at the interface are
shown in figure 11. In line with the stabilising role of the interfacial tension, illustrated
in figure 10, figure 11(a) shows that the instability is confined to the low-k domain as Ca

decreases. In the present case, the shear-wave mode is unstable and is stabilised by the
Marangoni effect. With a decrease in the capillary number, the instability domain shrinks.
For all these cases, the system is unstable with respect to the finite-wave modes, with
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Dynamics of a two-layer flow

Ca →∞

10–2 10–1 100 101

10–2 10–1 100 10–2 10–1 100101

10–2

10–1

100

101

Ma

10–2

10–1

100

101

102

Ma

Ca = 20
Ca = 10
Ca = 1
Ca = 0.1

Unstable

Stable

10–3 10–2 10–1 100

k

0

0.1

0.2

0.3

0.4

0.5

Pr = 7
Pr = 25
Pr = 50
Pr = 75
Pr = 100

Unstable

Stable

0

0.1

0.2

0.3

0.4

0.5
H = 0.1
H = 0.3
H = 0.4

Unstable

Stable

k

µr = 0.1

µr= 0.5
Stable

Unstable

(b)(a)

(c) (d )

Figure 11. Neutral stability curves in the k–Ma space for Re = 10 and Q = 1 for the streamwise perturbations

due to a heat source along the interface. (a) H = 0.4, µr = 0.5 and Pr = 7. A stabilising effect of the interfacial

tension on the finite-wave instability. (b) Ca = 10, µr = 0.5 and Pr = 7. The variation of the instability regions

due to varying H. (c) Ca = 10, H = 0.4 and Pr = 7. A lower Marangoni number is needed to stabilise by

thermocapillary stresses the system with a higher value of µr . (d) Ca = 10, H = 0.4 and µr = 0.5. An increase

in Pr requires a higher value of Ma to stabilise the system by thermocapillary stresses. The figure illustrates

the requirement of a higher Ma to suppress the finite-wave mode compared to the long-wave mode.

the critical wavenumber decreasing as Ca is decreased. Note that the long-wave mode is
also unstable. The value of the critical Marangoni number needed for stabilisation of the
finite-wavelength shear-wave mode decreases with a decrease in Ca. Figure 11(b) shows
a similar effect of shear-wave finite-wavelength instability stabilised by thermocapillarity,
but this time the critical value of Ma increases with an increase in H while, conversely,
the critical wavenumber k decreases. On physical grounds, the obstacle for stabilisation
at a higher H can be related to an increasing resistance to development of Marangoni
convection in a thicker layer of a higher viscosity liquid, namely fluid 1, since in the case at
hand µr < 1. A decrease in viscosity of fluid 1, expressed by an increase in µr, necessitates
a higher Ma to stabilise the system. It is emphasised that a decrease in the viscosity leads
to reduced viscous dissipation in fluid 1, which hinders the Marangoni convection, as will
be explained on physical grounds in § 5. Thus a decrease in the viscosity of fluid 1 with
H = 0.4, in the present case, exerts a stabilising effect, manifested through an increased
critical Marangoni number, but at the same time, it causes widening of the range of linearly
unstable modes, as illustrated in figure 11(c).

For highly viscous fluids (e.g. silicon oils), with low thermal diffusivity, the Prandtl
number Pr may become as high as 1000. Thus we also consider the effect of the variation
in Pr on the emerging instabilities of the system. As follows from (4.10), Pr does not
affect the long-wave mode of instability. However, figure 11(d) illustrates that an increase
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Figure 12. Variation of the growth rate ci with wavenumber k at Re = 10, H = 0.4, µr = 0.5, Pr = 7, Q = 5

and Ma = 1, illustrating the features of the streamwise explosive instability for various Ca. A decrease in Ca,

i.e. an increase in the interfacial tension, stabilises only disturbances in the intermediate k region, whereas the

low- and moderate-wavenumber modes still remain unstable and finite-wave instabilities exhibit remarkably

high growth rates.

in Pr destabilises the finite-wavelength mode of instability. This feature stems from the
fact that an increase in Pr implies either a lower thermal diffusivity or a higher kinematic
viscosity of the fluid. A lower thermal diffusivity helps Marangoni convection while a
higher viscosity impedes it. Thus an increase in Pr promotes competition between thermal
and viscous effects. Figure 11(d) shows that in this competition, the thermal effects
dominate over the viscous ones, thereby leading to the system destabilisation that manifests
in increasing Ma to stabilise the flow, especially in the range of finite-wavelength modes.
The range of unstable modes remains unaffected by variation of the Prandtl number Pr.
By symmetry arguments, qualitatively similar neutral stability curves will be present also
for H > 0.5 and µr > 1.

For Q > −f3, the thermocapillary stresses exert a destabilising influence, leading
to the explosive instability for the long-wave mode as discussed in § 4.1.1. The
explosive instability also affects the moderate-wavenumber region, as shown in figure 12.
Furthermore, even an increase in the interfacial tension does not suppress the explosive
instability. Although a sufficiently low Ca stabilises the intermediate range of k, it
fails to stabilise low- and moderate-wavenumber modes of instability. In addition, the
results presented in figure 12 reveal that the growth rate ci of the moderate-wavenumber
disturbances is significantly higher than that for the long-wave ones. Thus an experiment
performed to detect the explosive instability might observe the explosive instability
corresponding to high-wavenumber disturbances. It must be noted that the instability
at arbitrarily high wavenumbers in figure 12 could be avoided by considering the
mass transfer effects associated with the chemical reactions or thermal-conductivity

stratification, or relaxing some of the assumptions made in the present study.

4.1.6. Heat sink along the interface

The neutral stability curves for the case of a heat sink along the interface are presented in
figure 13. Since in this case, thermocapillary stresses are destabilising, we consider here
a stable arrangement for the shear-wave instability. Through symmetry considerations, the
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Dynamics of a two-layer flow
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Figure 13. Neutral stability curves in the k–Ma space at Re = 10, κr = 1, Ca = 10 and Q = −1 for the

streamwise perturbations due to a heat sink along the interface. (a) µr = 0.5 and Pr = 7. An increase in H leads

to an increase in |Ma| required for a flow destabilisation. (b) H = 0.7 and Pr = 7. A system with a higher µr is

easier to destabilise by thermocapillary stresses. (c) H = 0.7 and µr = 0.5. With an increase in Pr, the system

is destabilised by the thermocapillarity in the domain of finite-wavelength modes. The figure illustrates the

presence of unstable finite-wave modes, though excited for higher values of Ma than the long-wave instability.

results presented in figure 13 for H > 0.5 and µr < 1 are qualitatively similar to those for
H < 0.5 and µr > 1. In the case of H > 0.5, the layer of fluid 2 is thinner than that of
fluid 1, thus the bounding wall of fluid 2 at y = 1 is closer to the interface than the other
wall at y = 0. Figure 13(a) shows that an increase in H results in a lower absolute value
of the critical Marangoni number |Ma| necessary to destabilise the interface. An increase
in H brings the interface closer to the upper bounding wall, which in turn reduces the
heat losses by conduction and therefore leads to a decrease in the value of |Ma| needed to
destabilise the interface.

A decrease in µr is equivalent to an increase in µ2, so in this case, an increased viscosity
of a thinner fluid layer, i.e. fluid 2, will lead to an increase in the viscous resistance to the
Marangoni convection, resulting in reduced heat transfer between the bounding wall at
y = 1 and the interface, therefore an increase in the critical value for Ma is necessary to
destabilise the interface. This is illustrated by the neutral stability curves in figure 13(b).
The effect of variation in Pr on the neutral stability curves is shown in figure 13(c). An
increase in the Prandtl number results in increasing magnitude of Ma to destabilise the
flow.
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Figure 14. Neutral stability curves in the k–Ma space at Re = 10, Pr = 7, H = 0.7, Ca = 100 and µr = 0.5

in the case of a heat sink along the interface. The figure shows that with an increase in the heat sink intensity

Q along the interface, a higher absolute value |Ma| is necessary for destabilisation of the system.

As explained in the case of a heat source along the interface, an increase in Pr suggests
the existence of a ‘hurdle’ in the thermal energy exchange between the bounding wall at
y = 1 and the interface, leading to an increased |Ma| required to destabilise the interface.
In the case of a heat sink along the interface, the interface does not exhibit the explosive
instability. Thus, with a variation in Q, the neutral stability curves exhibit a smooth
variation as shown in figure 14. With a stronger heat sink at the interface, the system
becomes more stable. As a final note, in all cases presented in figures 13 and 14, the
instability is long-wave.

4.2. Spanwise perturbations

4.2.1. Long-wave instability

Similar to the streamwise long-wave mode, the spanwise long-wave mode can also be
captured by the asymptotic analysis. We substitute k = 0 in (2.12) and (2.13), from which
two Orr–Sommerfeld equations are obtained for the two fluids in the form

− im Re c′(D2 − m2)ṽ(i)
y = µ(i)(D2 − m2)2ṽ(i)

y , (4.16)

where we have substituted ω = mc′ with c′ = c′
r + ic′

i as the complex phase speed of the
spanwise perturbations such that c′

i > 0 implies an unstable mode. Next, the velocity and

temperature fields, and the complex phase speed c′, are expanded as series in terms of a
small spanwise wavenumber m, as

ṽ(i)
y = v

(i)
y0 + mv

(i)
y1 + m2v

(i)
y2 + · · · , (4.17)

c′ = c′
0 + mc′

1 + m2c′
2 + · · · , (4.18)

T̃(i) =
1

m
T

(i)
0 + T

(i)
1 + mT

(i)
2 + · · · . (4.19)

These expansions are then substituted into the Orr–Sommerfeld equation (4.16), the
modified energy equation (2.12e), and the boundary conditions (2.13).
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Dynamics of a two-layer flow

At O(1), the governing equations read

D4v
(i)
y0 = 0, D2T

(i)
0 = 0. (4.20a,b)

It must be noted that the corresponding expansions in powers of m for ṽ
(i)
z can be obtained

via that for ṽ
(i)
y if needed, from the continuity equations, whereas the expansion for p̃(i)

can be obtained from the z-component of the momentum equation.
Using the obtained expansions yields

c′
0 = 0. (4.21)

The O(1) eigenvalue c′
0 vanishes, thus the spanwise long-wave mode turns out to be a

stationary mode, unlike the streamwise perturbations for which c0 /= 0 (see (4.6)).
At O(m), the governing equations are

µ(i) D4v
(i)
y1 + i Re c′

0 D2v
(i)
y0 = 0, (4.22)

D2T
(i)
1 + i Pe c′

0T
(i)
0 − Pe DT̄(i) v

(i)
y0 = 0. (4.23)

Solving (4.23) leads to

c′
1 = i

F(H, µr) Ma

1 + QH(H − 1)
. (4.24)

Similar to the streamwise perturbations, O(m) correction c′
1 is purely imaginary, thereby

affirming the stationary nature of the spanwise long-wave mode.
Combining (4.21) and (4.24), the eigenvalue c′, at O(m), is

c′ = im
F(H, µr) Ma

1 + QH(H − 1)
, (4.25)

where

F = −
(1 − 2H)2(1 − H)H2

2 + 2H(4 − 9H + 6H2)(µr − 1)
. (4.26)

Comparing the above equations with asymptotic (4.10) for the streamwise perturbations,
one can immediately realise that the term related to the inertial stresses represented by Re

is absent. Thus the spanwise long-wave mode is a pure outcome of the thermocapillary
stresses.

4.2.2. Heat source along the interface

The function F is negative for arbitrary H and µr Also, Q > 0 and Ma > 0 for a

heat source. Thus the only way the thermocapillarity can lead to an instability is
through the factor 1 + QH(H − 1) in the denominator by assuming a negative sign.
However, this is possible only if Q > 1/H(1 − H). Therefore, the criterion for unstable

spanwise perturbations to exist is Q > 1/H(1 − H). From the discussion regarding
the explosion instability due to the streamwise perturbations, for the existence of the
explosion instability, Q > f3 but f3 = 1/H(1 − H). Thus the instability exhibited by the
spanwise perturbations for Q > 1/H(1 − H) is, in fact, the explosion instability. The
range of H for the spanwise explosion instability is shown in figure 15. To conclude, the
explosion instability will be triggered simultaneously for both the streamwise and spanwise
perturbations.
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Figure 15. Variation of the factor 1 + QH(H − 1) in (4.25) with H. The figure illustrates regions in which

QH(H − 1) + 1 < 0, where the spanwise perturbations can exhibit explosion instability since F is negative for

an arbitrary H and µr.

4.2.3. Heat sink along the interface

For the heat sink along the interface, the flow is unconditionally unstable, which can be

seen as follows. The functions F and Ma satisfy F < 0 and Ma < 0, while 1 + QH(H −

1) > 0 since Q < 0 and (H − 1) < 0 for arbitrary H and µr, which results in c′ > 0,

thus the result. For the spanwise long-wave mode, the inertial term function f2 satisfies

f2 > 0 for H < 0.5 and µr < 1, or H > 0.5 and µr > 1, and otherwise is negative.

Due to the inertial term, therefore, the streamwise perturbations may possess higher

growth rate if f2 > 0, which implies dominant streamwise perturbations as illustrated in

figure 16(a). However, if f2 < 0, then a minimum Ma will be necessary to destabilise

the streamwise perturbations, in which case the spanwise perturbations will dominate as
shown in figure 16(b). To conclude, the streamwise perturbations will dominate if H < 0.5
and µr < 1, or H > 0.5 and µr > 1, otherwise the spanwise perturbations will dominate
for a heat sink along the interface.

Lastly, the growth rates of the three-dimensional modes, i.e. modes with k /= 0, m /= 0,
are shown in figure 17, which illustrates that the three-dimensional modes exhibit growth
rates lower than that of the dominant mode but greater than that of the subdominant mode.
In conclusion, the three-dimensional modes may not be observed experimentally, and thus
are not studied here in detail.

5. Physical mechanisms

In this section, we discuss the physical mechanisms that trigger the instabilities explored in
the previous sections, which are driven by combined shear and Marangoni stresses exerted
on the liquid–liquid interface. These stresses depend strongly on the thickness ratio of
the fluid layers, the viscosity ratio of the fluids, the temperature gradients developing
within the fluid layers, and – the main unique feature of the current problem – the
strength of the heat source/sink along the interface. The physical mechanism behind the
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Figure 16. Comparison of the growth rates of the streamwise (ci) and spanwise (c′
i) perturbations at Re = 10,

µr = 0.5, Pr = 0, Q = −2, Ma = −10 and Ca = 0.1 for a heat sink along the interface. (a) H = 0.4. The

inertial stresses are destabilising, i.e. f2 > 0, thus the streamwise perturbations exhibit higher growth rate than

the spanwise perturbations. (b) H = 0.8. Here, the inertial stresses are stabilising, i.e. f2 < 0, thus the spanwise

perturbations exhibit higher growth rate than the streamwise perturbations.
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′

Figure 17. Two-dimensional modes, i.e. modes with k /= 0, m = 0 and k = 0, m /= 0, and three-dimensional

modes, i.e. modes with k /= 0, m /= 0 at Re = 100, H = 0.2, T = 10, Pr = 0, Q = −2, µr = 0.5 and Ma = −10

for a heat sink along the interface. The figure illustrates that the growth rates of the three-dimensional modes

are confined between those of the streamwise and spanwise modes.

Marangoni instability in a liquid layer with a free surface, subjected to a negative vertical
temperature gradient, is well understood. Thermal perturbations at the free surface may
lead to the emergence of a ‘hot spot’ that, due to the stresses arising from the variation

in the temperature-dependent surface tension, causes liquid parcels at the surface to flow
away from the hot spot. At the same time, to maintain local mass conservation, a vertical
flow develops towards the free surface. Therefore, the convective heat flux generated by
the upflow warms the hot spot even more, making the liquid layer unstable provided
that dissipative effects, i.e. viscosity and thermal diffusivity are not sufficiently strong
to dissipate the energy of the driving mechanism.
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Downflow

Fluid 2

y = R, T = T0

y = 0, T = T0

y = HR, T = Ti

Fluid 1

Upflow

Figure 18. Schematic of the evolution of the hot spot at the interface marked by the red opaque circle. The

flow away from the hot spot along the interface is generated by thermocapillarity. To fill in the so-formed mass

deficiency, an upflow in fluid 1 and a downflow in fluid 2 emerge. The combination of these flows leads to the

stabilising or destabilising effects of the thermocapillary stresses discussed in § 4.

The mechanism for the shear-wave instability arising due to viscosity stratification
was explained by Yih (1967), Hinch (1984), Smith (1990) and Charru & Hinch (2000).
The mechanism proposed by Hinch (1984) for the short-wave instability present in a
semi-infinite two-layer flow, is that it is driven by vorticity generated at the interface
due to viscosity stratification. For the long-wave instability, the explanation suggested by
Charru & Hinch (2000) was that, due to the viscosity stratification, perturbations in the
longitudinal velocity component develop, which then lead to the emergence of pressure
perturbations. It must be noted that, as follows from (4.10), the shear-wave component
of the long-wave instability, i.e. the term containing the Reynolds number Re, remains
unaffected by the presence of the Marangoni stresses. Thus the destabilisation mechanism
proposed by Charru & Hinch (2000) for the long-wave instability is also applicable here.

For the two-layer flow considered here, the mechanism for the Marangoni instability is
as follows. Consider a hot spot emerging at the interface due to thermal fluctuations, shown
by a red opaque circle in figure 18. This temperature fluctuation results in a corresponding
decrease in the local interfacial tension, thereby driving a flow along the interface away
from the hot spot. Again, by virtue of the mass balance, there will be a combined upflow
from fluid 1 and a downflow from fluid 2 toward the hot spot. These flows will then lead
to a decrease or increase in the hot spot temperature depending on whether a heat source
or a heat sink is present along the interface. Thus both layers will affect the increase or
decrease of the perturbation energy at the interface.

5.1. Heat source along the interface

When there is a heat source along the interface, its temperature is higher than that of the
bounding walls. Hence a positive temperature gradient is established in fluid 1, whereas
in fluid 2 it is negative. This implies that the upflow in fluid 1 and the downflow in
fluid 2 created by thermocapillarity, as shown in figure 18, bring a cooler liquid to the
interface, thereby decreasing the temperature of the hot spot. Therefore, the impact of
the thermocapillarity in this configuration is stabilising. This stabilisation then weakens
the streamwise velocity perturbations via reduction of the thermocapillary stress in the
tangential stress balance equation (2.13 f ) and/or the convective terms in the energy
equation, which culminates in the possible stabilisation of the base flow discussed in the
present paper.

5.2. Heat sink along the interface

Next, we consider a heat sink along the interface, in which case the interface is at a
lower temperature than the bounding walls. Consequently, there is a negative temperature
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Dynamics of a two-layer flow

gradient in fluid 1 and a positive temperature gradient in fluid 2. When a hot spot emerges
due to temperature fluctuations at the interface, the upflow in fluid 1 and the downflow in
fluid 2, driven by the thermocapillary stresses, as seen in figure 18, supply a hotter liquid to
the interface. This leads to a further heating of the hot spot at the interface and an ensuing
destabilisation of the base flow.

5.3. Explosive instability

As discussed above, in the case of a heat source along the interface, thermocapillarity is
stabilising. However, as suggested by (4.10), in the case of Q > −f3, the thermocapillary
stresses cause a destabilising impact to the interface, which results in a new instability

referred to here as the ‘explosive instability’. The emergence of this instability can be
explained by the following arguments.

The heat generated along the interface diffuses through the fluids to the bounding walls,
and the conducting efficiency of the fluids depends on the parameter Q = qR/κ , where q

is the dimensional intensity of heat generation per unit area of the interface. Thus Q can be
understood as the ratio of the intensity of the heat generation to the rate of heat conducted
away from the interface. A low value of Q, such that Q < −f3 for a given H, implies that
heat generated along the interface is being efficiently conducted away from the interface
to the bounding walls. Thus, in this regime, there is no energy build-up occurring at the
interface. On the other hand, a high value of Q, i.e. Q > −f3 for a given H, implies a
relatively poor heat conduction from the interface, which leads to a build-up of energy
at the interface, eventually overwhelming the cooling effect imparted by the upflow and
downflow from the fluids’ bulk to the hot spot. The increasing temperature perturbations
then aggravate the velocity perturbations via the thermocapillary stress in the tangential
stress balance equation (2.13 f ) and/or the heat advection, which eventually culminates in
the explosive instability.

5.4. Interaction instability

The type of interaction between the thermocapillary and viscous stresses at the interface
depends on the sign of the function f1, one of the factors appearing in the coefficient
of Ma in (4.10). A change of its sign reverses the effect of the thermocapillary stress,
which may result in the destabilisation or stabilisation of the base-flow state of the system.
The destabilising effect leads to an entirely new mode of instability, referred to as the

‘interaction mode’ of instability in the present paper. The effect of the emerging interaction
mode on the instability zones for various parameter regimes is illustrated in figures 6(a),
6(b) and 7(b), where unexpected regions of instability appear. The interaction instability
mode seems to arise from a rather intricate interaction between the thermocapillary,
inertial and viscous stresses at the interface. Hence a straightforward intuitive explanation

similar to that for the explosive instability is difficult to supply.

6. Conclusions

Motivated by the effect of heat transfer due to chemical reactions along the interface
between two immiscible liquids, we have investigated the linear stability of a two-layer
Couette flow with a heat source/sink along the interface. The aim of this investigation has
been to identify various types of instability resulting from the heat released or absorbed
along the liquid–liquid interface. A linear stability analysis has been conducted, employing
asymptotic and numerical methods, with the latter using the pseudo-spectral method.
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The analysis reveals the strong stabilising or destabilising effect of the heat source or
sink, respectively, due to the existence of the Marangoni stresses acting at the interface.
We have analysed the effects of Marangoni and inertial stresses on the streamwise and

spanwise perturbations. The physical arguments show that the heat source or sink provides
an unfavourable or favourable arrangement, respectively, for the Marangoni instability to
set in. Further, the analysis unveils two new classes of instabilities, which we have termed
the ‘explosive’ and ‘interaction’ instabilities. The explosive instability exists only in the
case of the heat source along the interface and occurs due to the energy build-up there.
Meanwhile, the interaction mode of instability is present for both cases (heat source or
sink) and appears to be the result of coupling between the thermocapillary and viscous
stresses. The explosive instability can be exhibited by both the streamwise and spanwise
perturbations, while the interaction instability is exclusive to the streamwise perturbations.
The present paper unveils long-wave (kc ∼ 0) and finite-wave (finite kc) instabilities. An
asymptotic analysis carried out for the long-wave instability reveals an intricate interplay
between the viscosity stratification and thermocapillary stresses.

To further understand the role of chemical reactions along the liquid–liquid interface
in triggering instabilities, the actual formation and depletion of chemical species at the
interface, and ensuing diffusion, must also be considered. In addition, the present paper
considers only viscosity stratification, whereas a realistic two-layer system should consist
of liquids of different densities and thermal conductivities. Thus, future extensions of
the present work would be to consider stratification arising due to the differing physical
properties of the liquids and mass transfer resulting from chemical reactions.
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