
Mathematical Programming

https://doi.org/10.1007/s10107-023-01959-z

FULL LENGTH PAPER

Series A

Diverse collections in matroids and graphs

Fedor V. Fomin1 · Petr A. Golovach1 · Fahad Panolan2 ·

Geevarghese Philip3,4 · Saket Saurabh1,5

Received: 15 January 2022 / Accepted: 17 March 2023

© The Author(s) 2023

Abstract

We investigate the parameterized complexity of finding diverse sets of solutions to

three fundamental combinatorial problems. The input to the Weighted Diverse

Bases problem consists of a matroid M , a weight function ω : E(M) → N, and

integers k ≥ 1, d ≥ 1. The task is to decide if there is a collection of k bases

B1, . . . , Bk of M such that the weight of the symmetric difference of any pair of these

bases is at least d. The input to the Weighted Diverse Common Independent

Sets problem consists of two matroids M1, M2 defined on the same ground set E , a

weight function ω : E → N, and integers k ≥ 1, d ≥ 1. The task is to decide if there

is a collection of k common independent sets I1, . . . , Ik of M1 and M2 such that the

weight of the symmetric difference of any pair of these sets is at least d. The input

to the Diverse Perfect Matchings problem consists of a graph G and integers

k ≥ 1, d ≥ 1. The task is to decide if G contains k perfect matchings M1, . . . , Mk such

that the symmetric difference of any two of these matchings is at least d. We show that

none of these problems can be solved in polynomial time unless P = NP. We derive

fixed-parameter tractable (FPT) algorithms for all three problems with (k, d) as the

parameter, and present a poly(k, d)-sized kernel for Weighted Diverse Bases.

Keywords Matroids · Graphs · Diversity of solutions · Parameterized complexity

Mathematics Subject Classification 68Q27 · 05B35 · 05C70 · 05C85 · 68Q25 ·

68W40

An extended abstract of this work was published in the proceedings of STACS 2021 [13]. F. Fomin and P.

Golovach were supported by the Research Council of Norway via the project BWCA (Grant No. 314528).

F. Panolan was supported by Seed grant, IIT Hyderabad (SG/IITH/F224/2020-21/SG-79). S. Saurabh was

supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research

and innovation programme (Grant No. 819416), and Swarnajayanti Fellowship Grant

DST/SJF/MSA-01/2017-18.

B Petr A. Golovach

Petr.Golovach@uib.no

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-01959-z&domain=pdf
http://orcid.org/0000-0002-2619-2990


F. V. Fomin et al.

1 Introduction

In this work we study the parameterized complexity of finding diverse collections

of solutions to three basic algorithmic problems. Two of these problems arise in the

theory of matroids. The third problem belongs to the domain of graph theory, and its

restriction to bipartite graphs can be rephrased as a question about matroids. Each of

these is a fundamental algorithmic problem in its respective domain.

Diverse FPT Algorithms. Nearly every existing approach to solving algorithmic prob-

lems focuses on finding one solution of good quality for a given input. For algorithmic

problems which are—eventually—motivated by problems from the real world, find-

ing “one good solution” may not be of much use for practitioners of the real-world

discipline from which the problem was originally drawn. This is primarily because the

process of abstracting out a “nice” algorithmic problem from a “messy” real-world

problem invariably involves throwing out a lot of “side information” which is very

relevant to the real-world problem, but is inconvenient, difficult, or even impossible to

model mathematically. The other extreme of enumerating all (or even all minimal or

maximal) solutions to an input instance is also usually not a viable solution. A third

approach is to look for a few solutions of good quality which are “far away” from

one another according to an appropriate notion of distance. The intuition is that given

such a collection of “diverse” solutions, an end-user can choose one of the solutions

by factoring in the “side information” which is absent from the algorithmic model.

These and other considerations led Fellows to propose the Diverse X Paradigm

[11]. Here “X” is a placeholder for an optimization problem, and the goal is to study

the fixed-parameter tractability of finding a diverse collection of good-quality solutions

for X . Recall that the Hamming distance of two sets is the size of their symmetric

difference. A natural measure of diversity for problems whose solutions are subsets

of some kind is the minimum Hamming distance of any pair of solutions. In this work

we study the parameterized complexity of finding diverse collections of solutions for

three fundamental problems with this diversity measure and its weighted variant.

Our problems. Let M be a matroid on ground set E(M) and with rank function rank().

The departure point of our work is the classical theorem of Edmonds from 1965 [8]

about matroid partition. This theorem states that a matroid M has k pairwise disjoint

bases if and only if, for every subset X of E(M),

k · rank(X) + |E(M) − X | ≥ k · rank(M).

An important algorithmic consequence of this result is that given access to an indepen-

dence oracle for a matroid M , one can find a maximum number of pairwise disjoint

bases of M in polynomial time (see, e.g., [23, Theorem 42.5]). This in turn implies,

for instance, that the maximum number of pairwise edge-disjoint spanning trees of a

connected graph can be found in polynomial time.

We take a fresh look at this fundamental result of Edmonds: what happens if we

don’t insist that the bases be pairwise disjoint, and instead allow them to have some

pairwise intersection? We work in the weighted setting where each element e of the

ground set E(M) has a positive integral weight ω(e) associated with it, and the weight
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of a subset X of E(M) is the sum of the weights of the elements in X . The relaxed

version of the pairwise disjoint bases problem is then: Given an independence oracle

for a matroid M and integers k, d as input, find if M has k bases B1, . . . , Bk such that

for every pair of bases Bi , B j ; i �= j the weight ω(Bi △ B j ) of their symmetric

difference is at least d. We call this the Weighted Diverse Bases problem:

Input: A matroid M , a weight function ω : E(M) → N, and integers

k ≥ 1 and d ≥ 1.

Task: Decide whether there are bases B1, . . . , Bk of M such that

ω(Bi △ B j ) ≥ d holds for all distinct i, j ∈ {1, . . . , k}.

Weighted Diverse Bases

Due to the expressive power of matroids Weighted Diverse Bases captures many

interesting computational problems. We list a few examples; in each case the weight

function assigns positive integral weights, k ≥ 1 and d ≥ 1 are integers, and we say

that a collection of objects is diverse if the weight of the symmetric difference of each

pair of objects in the collection is at least d. When M is a graphic matroid Weighted

Diverse Bases corresponds to finding diverse spanning trees in an edge-weighted

graph. When M is a vector matroid then this is the problem of finding diverse column

(or row) bases of a matrix with column (or row) weights. And when M is a transversal

matroid on a weighted ground set then this problem corresponds to finding diverse

systems of distinct representatives.

Another celebrated result of Edmonds is the Matroid Intersection Theorem [9]

which states that if M1, M2 are matroids on a common ground set E and with rank

functions rank1, rank2, respectively, then the size of a largest subset of E which is

independent in both M1 and M2 (a common independent set) is given by

min
T ⊆E

(rank1(T ) + rank2(E − T )).

Edmonds showed that given access to independence oracles for M1 and M2, a

maximum-size common independent set of M1 and M2 can be found in polynomial

time [9]. This is called the Matroid Intersection problem. Frank [15] found a

polynomial-time algorithm for the more general Weighted Matroid Intersection

problem where the input has an additional weight function ω : E → N and the goal is

to find a common independent set of the maximum weight. The second problem that

we address in this work is a “diverse” take on Weighted Matroid Intersection

where we replace the maximality requirement on individual sets with a lower bound on

the weight of their symmetric difference. Given M1, M2, ω as above and integers k, d,

we ask if there are k common independent sets whose pairwise symmetric differences

have weight at least d each; this is the Weighted Diverse Common Independent

Sets problem.
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Input: Matroids M1 and M2 with a common ground set E , a weight

function ω : E → N, and integers k ≥ 1 and d ≥ 1.

Task: Decide whether there are sets I1, . . . , Ik ⊆ E such that Ii is

independent in both M1 and M2 for every i ∈ {1, . . . , k} and

ω(Ii △ I j ) ≥ d for all distinct i, j ∈ {1, . . . , k}.

Weighted Diverse Common Independent Sets

Weighted Diverse Common Independent Sets also captures many interesting

algorithmic problems. In particular, the very basic problem of factorizing the common

ground set of two matroids introduced by Harvey, Király, and Lau [19] is a special

case of our problem. The task of the factorizing problem is, given two matroids M1

and M2 with a common ground set E , to decide whether E can be partitioned into

common bases of M1 and M2. This is equivalent to Weighted Diverse Com-

mon Independent Sets with unit weights, where k = |E |/r and d = 2r for

r = rank(M1) = rank(M2). Also the generalization of the factorization problem,

where the task is to find a packing of k disjoint common bases (see [4] and the refrences

therein), is a special case of Weighted Diverse Common Independent Sets.

Furthermore, we can give a few examples of more specific problems (see [23, Sec-

tion 41.1a]). We use “diverse” here in the sense defined in the statement of the problem.

Given a bipartite graph G with edge weights, Weighted Diverse Common Inde-

pendent Sets can be used to ask if there is a diverse collection of k matchings in

G. A partial orientation of an undirected graph G is a directed graph obtained by (i)

assigning directions to some subset of edges of G and (ii) deleting the remaining edges.

Given an undirected graph G = (V , E) with edge weights and a function ι : V → N,

we say that a partial orientation O of G respects ι if the in-degree of every vertex v in

O is at most ι(v). We can use Weighted Diverse Common Independent Sets

to ask if there is a diverse collection of k partial orientations of G, all of which respect

ι. For a third example, let G = (V , E) be an undirected graph with edge weights, in

which each edge is assigned a—not necessarily distinct—color. A colorful forest in

G is any subgraph of G which is a forest in which no two edges have the same color.

We can use Weighted Diverse Common Independent Sets to ask if there is a

diverse collection of k colorful forests in G.

Finding whether a bipartite graph has a perfect matching or not is a well-known

application of Matroid Intersection ( [23, Section 41.1a]). The third problem that

we study in this work is a diverse version of the former problem, extended to general

graphs. Note that there is no known interpretation of the problem of finding perfect

matchings in (general) undirected graphs in terms of Matroid Intersection.

Input: An undirected graph G on n vertices, and integers k ≥ 1 and

d ≥ 1.

Task: Decide whether there are perfect matchings M1, . . . , Mk of G

such that Mi △ M j ≥ d for all distinct i, j ∈ {1, . . . , k}.

Diverse Perfect Matchings

Our results. We assume throughout that matroids in the input are given in terms of an

independence oracle. Recall that with this assumption, we can find one basis of the
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largest weight and one common independent set (of two matroids) of the largest weight,

both in polynomial time. In contrast, we show that the diverse versions Weighted

Diverse Bases and Weighted Diverse Common Independent Sets are both

NP-hard, even when the weights are expressed in unary.1

Theorem 1 Both Weighted Diverse Bases and Weighted Diverse Common

Independent Sets are strongly NP-complete, even for the uniform matroids U 3
n .

We observe that the hardness of Weighted Diverse Common Independent

Sets also follows from the results of Bérczi and Schwarcz [3] about intractability of

finding a packing of common bases in matroids even for unit weights. Furthermore,

very recently it was shown by Bérczi, Csáji, and Király [4] that it is already NP-hard

to find two disjoint common bases of two matroids, when one of the matroids is a

partition matroid while the other one is a graphic matroid. Thus, Weighted Diverse

Common Independent Sets is already NP-hard for unit weights and k = 2 when

restricted the aforementioned matroids.

Given the hardness results, we analyze the parameterized complexity of Weighted

Diverse Bases and Weighted Diverse Common Independent Sets with

d, k as the parameters. Our first result is that Weighted Diverse Bases is fixed-

parameter tractable (FPT) under this parameterization:

Theorem 2 Weighted Diverse Bases can be solved in 2O(dk2(log k+log d)) ·

|E(M)|O(1) time.

We have a stronger result if the input matroid is given as a representation over a finite

field (and not just as a “black box” independence oracle): in this case we show that

Weighted Diverse Bases admits a polynomial kernel with this parameterization.

Theorem 3 Given a representation of the matroid M over a finite field GF(q) as input,

we can compute a kernel of Weighted Diverse Bases of size O(k6d4 log q).

We then show that our second matroid-related diverse problem is also FPT under

the same parameterization.

Theorem 4 Weighted Diverse Common Independent Sets can be solved in

2O(k3d2 log(kd)) · |E |O(1) time.

We now turn to the problem of finding diverse perfect matchings. Diverse Perfect

Matchings is known to be NP-hard already when k = 2 and G is a 3-regular graph

[12, 20]. Since all perfect matchings of a graph have the same size the symmetric

difference of two distinct perfect matchings is at least 2. Setting d = 1 (or d = 2) in

Diverse Perfect Matchings is thus equivalent to asking whether G has at least k

distinct perfect matchings. Since a bipartite graph on n vertices has at most n
2
! perfect

matchings and since log( n
2
!) = O(n log n) we get—using binary search—that there

is a polynomial-time Turing reduction from the problem of counting the number of

perfect matchings in a bipartite graph to Diverse Perfect Matchings instances

with d = 1. Since the former problem is #P-complete [25] we get

1 See Theorem 7 for an alternative hardness result for Weighted Diverse Bases.
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Theorem 5 Diverse Perfect Matchings with d = 1 cannot be solved in time

polynomial in n = |V (G)| even when graph G is bipartite, unless P = NP.

Thus we get that Diverse Perfect Matchings is unlikely to have a polynomial-

time algorithm even if one of the two numbers k, d is a small constant. We show that

the problem does have a (randomized) polynomial-time algorithm when both these

parameters are bounded; Diverse Perfect Matchings is (randomized) FPT with

k and d as parameters:

Theorem 6 There is an algorithm that given an instance of Diverse Perfect

Matchings, runs in time 22O(kd)
nO(1) and outputs the following: If the input is a

No-instance then the algorithm outputs No. Otherwise the algorithm outputs Yes

with probability at least 1 − 1
e
.

Note that Theorem 6 implies, in particular, that Diverse Perfect Matchings

can be solved in (randomized) polynomial time when kd ≤ c1 +
log log n

c2
holds for

some constants c1, c2 which depend on the constant hidden by the O() notation.

Our methods. We prove the NP-hardness results (Theorem 1) by reduction from the

3- Partition problem. To show that Weighted Diverse Bases is FPT (Theorem 2)

we observe first that if the input matroid M contains a set of size �(kd) which is both

independent and co-independent in M then the input is a Yes instance of Weighted

Diverse Bases (Lemma 1). We can check for the existence of such a set in time

polynomial in |E(M)|, so we assume without loss of generality that no such set exists.

We then show that starting with an arbitrary basis of M and repeatedly applying

the greedy algorithm (Proposition 2) poly(k, d)-many times we can find, in time

polynomial in (|E(M)| + k + d), (i) a subset S∗ ⊆ E(M) of size poly(k, d) and (ii)

a matroid M̃ on the ground set S∗ such that (M̃, ω, k, d) is equivalent to the input

instance (M, ω, k, d) (Lemma 2). We also show how to compute a useful partition

of E(M̃) = S∗ which speeds up the subsequent FPT-time search for a diverse set of

bases in M̃ . The kernelization result for Weighted Diverse Bases (Theorem 3)

follows directly from Lemma 2. This “compression lemma” is thus the main technical

component of our algorithms for Weighted Diverse Bases.

To show that Weighted Diverse Common Independent Sets is FPT (The-

orem 4) we observe first that if the two input matroids M1, M2 have a common

independent set of size �(kd) then the input is a Yes instance of Weighted Diverse

Common Independent Sets (Lemma 3). So we assume that this is not the case,

and then show (Lemma 4) that we can construct, in f (k, d) time, a collection F of

common independent sets of M1 and M2 of size g(k, d) such that if the input is a

Yes-instance then it has a solution I1, . . . , Ik with Ii ∈ F for i ∈ {1, . . . , k}. The

FPT algorithm for Weighted Diverse Common Independent Sets follows by a

simple search in the collection F .

Our algorithm for Diverse Perfect Matchings is based on two procedures.

P1 Given an undirected graph G on n vertices, perfect matchings M1, . . . , Mr of

G, and a non-negative integer s as input, this procedure (Lemma 6) runs in time

2O(rs)nO(1) and outputs a perfect matching M of G such that |M △ Mi | ≥ 2 s
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holds for all i ∈ {1, . . . , r} (if such a matching exists), with probability at least
2
3

e−rs .

P2 Given an undirected graph G on n vertices, a perfect matching M of G, and non-

negative integers r , d, s, this procedure(Lemma 7) runs in time 2O(r2s)nO(1), and

outputs r perfect matchings M⋆
1 , . . . , M⋆

r of G such that |M △ M⋆
i | ≤ s holds for

all i ∈ {1, . . . , r} and |M⋆
i △ M⋆

j | ≥ d holds for all distinct i, j ∈ [r ] (if such

matchings exist), with probability at least e−rs . If no such perfect matchings exist,

then the algorithm outputs No.

Let (G, k, d) be the input instance of Diverse Perfect Matchings. We use

procedure P1 to greedily compute a collection of matchings which are “far apart”: We

start with an arbitrary perfect matching M1. In step i , we have a collection of perfect

matchings M1, . . . , Mi−1 such that |M j △ M j ′ | ≥ 2k−i d holds for any two distinct

j, j ′ ∈ {1, . . . , i − 1}. We now run procedure P1 with r = i − 1 and s = 2k−i d

to find—if it exists—a matching Mi such that |Mi △ M j | ≥ 2k−i+1d holds for all

j ∈ {1, . . . , i}. By exhaustively applying P1 we get a collection of perfect matchings

M1, . . . , Mq such that

(a) for any two distinct integers i, j ∈ {1, . . . , q}, |Mi △ M j | ≥ 2k−q+1d, and

(b) for any other perfect matching M /∈ {M1, . . . , Mq} and for any i ∈ {1, . . . , q},

|M △ Mi | ≤ 2k−qd.

Thus, if k ≤ q, then clearly {M1, . . . , Mk} is a solution. Otherwise, let M =

{M⋆
1 , . . . , M⋆

k } be a hypothetical solution. Then for each M⋆
i there is a unique matching

M j in {M1, . . . , Mq} such that |M j △ M⋆
i | < 2(k−q)d holds (Proposition 14). For each

i ∈ {1, . . . , q} we guess the number ri of perfect matchings from M that are close

to Mi , and use procedure P2 to compute a set of ri diverse perfect matchings that are

close to Mi . The union of all the matchings computed for all i ∈ {1, . . . , q} form a

solution.

We use algebraic methods and color coding to design procedure P1. The Tutte

matrix A of an undirected graph G over the field F2[X ] is defined as follows, where

F2 is the Galois field on {0, 1} and X = {xe : e ∈ E(G)}. The rows and columns of

A are labeled with V (G) and for each e = {u, v} ∈ E(G), A[u, v] = A[v, u] = xe.

All other entries in A are zeros. There is a bijective correspondence between the set

of monomials of det(A) and the set of perfect matchings of G. Procedure P1 extracts

the required matching from det(A) using color coding. Procedure P2 is realized using

color coding and dynamic programming.

Related work. Recall that all bases of a matroid have the same size, and that the

number of bases of a matroid on ground set E is at most 2|E |. So using the same

argument as for Theorem 5 we get that Weighted Diverse Bases generalizes—via

Turing reductions—the problem of counting the number of bases of a matroid. Each

of these reduced Weighted Diverse Bases instances will have d = 1, and a weight

function which assigns the weight 1 to each element in the ground set. Counting the

number of bases of a matroid is known to be #P-complete even for restricted classes

of matroids such as transversal [5], bircircular [17], and binary matroids [26]. Hence

we have the following alternative2 hardness result for Weighted Diverse Bases

2 Compare with Theorem 1.
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Theorem 7 Weighted Diverse Bases cannot be solved in time polynomial in

|E(M)| unless P = NP, even when d = 1 and every element of the ground set

E(M) has weight 1.

The study of the parameterized complexity of finding diverse sets of solutions is

a recent development, and only a handful of results are currently known. In the work

which introduced this notion Baste et al. [1] show that diverse variants of a large

class of graph problems which are FPT when parameterized by the treewidth of the

input graph, are also FPT when parameterized by the treewidth and the number of

solutions in the collection. In a second article [2] the authors show that for each fixed

positive integer d, two diverse variants—one with the minimum Hamming distance of

any pair of solutions, and the other with the sum of all pairwise Hamming distances

of solutions—of the d-Hitting Set problem are FPT when parameterized by the

size of the hitting set and the number of solutions. In a recent article on diverse FPT

algorithms [12] the authors show that the problem of finding two maximum-sized

matchings in an undirected graph such that their symmetric difference is at least d, is

FPT when parameterized by d. Note that our result on Diverse Perfect Matchings

generalizes this to k ≥ 2 matchings, provided the input graph has a perfect matching.

In a recent manuscript Hanaka et al. [18] propose a number of results about find-

ing diverse solutions. We briefly summarize their results which are germane to our

work. For a collection of sets X1, . . . , Xk let dsum(X1, . . . , Xk) denote the sum of

all pairwise Hamming distances of these sets and let dmin(X1, . . . , Xk) denote the

smallest Hamming distance of any pair of sets in the collection. Hanaka et al. show

that there is an algorithm which takes an independence oracle for a matroid M and

an integer k as input, runs in time polynomial in (|E(M)| + k), and finds a collec-

tion B1, B2, . . . , Bk of k bases of M which maximizes dsum(B1, B2, . . . , Bk). This

result differs from our work on Weighted Diverse Bases in two key aspects. They

deal with the unweighted (counting) case, and their diversity measure is the sum of

the pairwise symmetric differences, whereas we look at the minimum (weight of the)

symmetric difference. These two measures are, in general, not comparable.

Hanaka et al. also look at the complexity of finding k matchings M1, . . . , Mk in

a graph G where each Mi is of size t . They show that such collections of match-

ings maximizing dmin(M1, . . . , Mk) and dsum(M1, . . . , Mk) can be found in time

2O(kt log(kt)) · |V (G)|O(1). The key difference with our work is that their algorithm

looks for matchings of a specified size t whereas ours looks for perfect matchings,

of size t =
|V (G)|

2
; note that this t does not appear in the exponential part of the run-

ning time of our algorithm (Theorem 6). The manuscript [18] has a variety of other

interesting results on diverse FPT algorithms as well.

As we already mentioned above, the problem of factorizing the ground set into

common bases of two matroids or, more generally, of finding a packing of common

bases is a special case of Weighted Diverse Common Independent Sets. We

refer for the discussion of the results about these problems and their variants to [3, 4,

19, 21].

Organization of the rest of the paper. In the next section we collect together some def-

initions and preliminary results. In Sect. 3 we prove that Weighted Diverse Bases

and Weighted Diverse Common Independent Sets are strongly NP-hard. In
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Sect. 4 we derive our FPT and kernelization algorithms for Weighted Diverse

Bases, and in Sect. 5 we show that Weighted Diverse Common Independent

Sets is FPT. We derive our results for Diverse Perfect Matchings in Sect. 6. We

conclude in Sect. 7.

2 Preliminaries

For a given universal set U and a subset X ⊆ U of U , the complement of X with

respect to U is the set of all elements of U that are not in X . We use X △ Y to denote

the symmetric difference (X \ Y ) ∪ (Y \ X) of sets X and Y . We use N to denote the

set of positive integers.

Parameterized complexity. A parameterized problem � is a subset of �∗ ×N, where

� is a finite alphabet. We say that a parameterized problem � is fixed parameter

tractable (FPT), if there is an algorithm that given an instance (x, k) of � as input,

solves it in time f (k)|x |O(1), where f is an arbitrary function and |x | is the length

of x . A kernelization algorithm for a parameterized problem � is a polynomial time

algorithm (computable function) A : �∗ ×N → �∗ ×N such that (x, k) ∈ � if and

only if (x ′, k′) = A((x, k)) ∈ � and |x ′| + k′ ≤ g(k) for some computable function

g. When g is a polynomial function, we say that � admits a polynomial kernel. For a

detailed overview about parameterized complexity we refer to the monographs [6, 7,

14].

Matroids. We give a brief description of the matroid-related notions that we need. See

the book of Oxley [22] for a detailed introduction to matroids. A pair M = (E, I),

where E is a finite ground set and I is a family of subsets of the ground set, called

independent sets of M , is a matroid if it satisfies the following conditions, called

independence axioms:

(I1) ∅ ∈ I.

(I2) If A ⊆ B ⊆ E(M) and B ∈ I then A ∈ I.

(I3) If A, B ∈ I and |A| < |B|, then there is e ∈ B \ A such that A ∪ {e} ∈ I.

We use E(M) and I(M) to denote the ground set and the set of independent sets,

respectively. As is standard for matroid problems, we assume that each matroid M

that appears in the input is given by an independence oracle, that is, an oracle that in

constant (or polynomial) time replies whether a given A ⊆ E(M) is independent in

M or not. An inclusion-wise maximal independent set B is called a basis of M . We

use B(M) to denote the set of bases of M . The bases satisfy the following properties,

called basis axioms:

(B1) B(M) �= ∅.

(B2) If B1, B2 ∈ B(M), then for every x ∈ B1 \ B2, there is y ∈ B2\B1 such that

(B1\{x}) ∪ {y} ∈ B(M).

All the bases of M have the same size that is called the rank of M , denoted rank(M).

The rank of a subset A ⊆ E(M), denoted rank(A), is the maximum size of an

independent set X ⊆ A; the function rank : 2E(M) → Z is the rank function of M .
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A set A ⊆ E(M) spans an element x ∈ E(M) if rank(A ∪ {x}) = rank(A). The

closure (or span) of A is the set cl(A) = {x ∈ E(M) | A spans x}. Closures satisfy

the following properties, called closure axioms:

(CL1) For every A ⊆ E(M), A ⊆ cl(A).

(CL2) If A ⊆ B ⊆ E(M), then cl(A) ⊆ cl(B).

(CL3) For every A ⊆ E(M), cl(A) = cl(cl(A)).

(CL4) For every A ⊆ E(M) and every x ∈ E(M) and y ∈ cl(A ∪ {x})\cl(A),

x ∈ cl(A ∪ {y}).

The dual of a matroid M = (E, I), denoted M∗, is the matroid whose ground set

is E and whose set of bases is B∗ = {B | B ∈ B(M)}. That is, the bases of M∗

are exactly the complements of the bases of M , with respect to the ground set E .

A basis (independent set, rank, respectively) of M∗ is a cobasis (coindependent set,

corank, respectively) of M . We use I∗(M) to denote the set of coindependent sets

of M . Also, corank(M) denotes the corank of M and corank(A) denotes the corank

of a set A ⊆ E(M); corank(A) is the rank of set A in the dual matroid M∗, and

corank(A) = |A| − rank(M) + rank(E \ A). Given an independence oracle for M

we can construct—using the augmentation property (I3) and with an overhead which

is polynomial in |E |—a rank oracle for M , and thence corank and coindependence

oracles for M .

For e ∈ E(M), the matroid M ′ = M − e is obtained by deleting e if E(M ′) =

E(M)\{e} and I(M ′) = {X ∈ I(M) | e /∈ X}. It is said that M ′ = M/e is obtained

by contracting e if M ′ = (M∗ − e)∗. In particular, if e is not a loop (i.e., if {e} is

independent) in M , then I(M ′) = {X\{e} | e ∈ X ∈ I(M)}. Notice that deleting

an element in M corresponds to contracting it in M∗ and vice versa; more precisely:

(M − e)∗ = M∗/e. Let X ⊆ E(M). Then M − X denotes the matroid obtained

from M by the deletion of the elements of X and M/X is the matroid obtained by

consecutive contractions of the elements of X . Note that an independence oracle for M

can itself act as an independence oracle for M − X if we restrict our queries to subsets

of E(M)\X . Let rankM/X denote the rank function of the matroid M/X . Then for

any Y ⊆ (E(M)\X) we have that rankM/X (Y ) = rank(X ∪Y )− rank(X) [22, 3.1.7].

Given an independence oracle for M we can thus easily construct an independence

oracle for M/X .

Let M be a matroid and let F be a field. An n×m-matrix A over F is a representation

of M over F if there is one-to-one correspondence f between E(M) and the set of

columns of A such that for any X ⊆ E(M), X ∈ I(M) if and only if the columns

f (X) are linearly independent (as vectors of Fn); if M has such a representation, then

it is said that M has a representation over F. In other words, A is a representation of

M if M is isomorphic to the linear matroid of A, i.e., the matroid whose ground set

is the set of columns of A and a set of columns is independent if and only if these

columns are linearly independent. Observe that, given a representation A of M , we

can verify whether a set is independent by checking the linear independence of the

corresponding columns of A. Hence, we don’t need an explicit independence oracle

in this case.
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Let 1 ≤ r ≤ n be integers. We use U r
n to denote the uniform matroid of rank r ,

that is, the matroid with the ground set of size n such that the bases are all r -element

subsets of the ground set.

We use the classical results of Edmonds [9] and Frank [15] about the Weighed

Matroid Intersection problem. The task of this problem is, given two matroids

M1 and M2 with the same ground set E and a weight function ω : E → N, find a set X

of maximum weight such that X is independent in both matroids. Edmonds [9] proved

that the problem can be solved in polynomial time for the unweighted case (that is,

the task is to find a common independent set of maximum size; we refer to this variant

as Matroid Intersection) and the result was generalized for the variant with the

weights by Frank in [15].

Proposition 1 ([9, 15]) Weighted Matroid Intersection can be solved in poly-

nomial time.

We also need another classical result of Edmonds [10] that a basis of maximum

weight can be found by the greedy algorithm. Recall that, given a matroid M with a

weight function ω : E(M) → N, the greedy algorithm finds a basis B of maximum

weight as follows. Initially, B := ∅. Then at each iteration, the algorithm finds an

element of x ∈ E(M) \ B of maximum weight such that B ∪ {x} is independent and

sets B := B ∪ {x}. The algorithms stops when there is no element that can be added

to B.

Proposition 2 ([10]) The greedy algorithm finds a basis of maximum weight of a

weighted matroid in polynomial time.

We need the following observation (See [22, Lemma 2.1.10]).

Observation 1 Let X and Y be disjoint sets such that X is independent and Y is

coindependent in a matroid M. Then there is a basis B of M such that X ⊆ B and

Y ∩ B = ∅.

Observe that for any sets X and Y that are subsets of the same universe, X △ Y =

X △ Y . This implies the following.

Observation 2 For every matroid M, every weight function ω : E(M) → N, and all

integers k ≥ 1 and d ≥ 1, the instances (M, ω, k, d) and (M∗, ω, k, d) of Weighted

Diverse Bases are equivalent.

3 Hardness of WEIGHTED DIVERSE BASES and WEIGHTED DIVERSE

COMMON INDEPENDENT SETS

We show that Weighted Diverse Bases and Weighted Diverse Common

Independent Sets are NP-complete in the strong sense even for uniform matroids.

Theorem 1 Both Weighted Diverse Basesand Weighted Diverse Common

Independent Setsare strongly NP-complete, even for the uniform matroids U 3
n .
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Proof We prove the claim for Weighted Diverse Bases by a reduction from the

3- Partition problem. The input to 3- Partition consists of a positive integer b and

a multiset S = {s1, . . . , s3n} of 3n positive integers such that (i) b
4

< si < b
2

holds for

each i ∈ {1, . . . , 3n} and (ii)
∑3n

i=1 si = nb. The task is to decide whether S can be

partitioned into n multisets S1, . . . , Sn such that
∑

s∈Si
s = b holds for each Si . Note

that each multiset Si in such a partition must contain exactly three elements from S.

This problem is known to be NP-complete in the strong sense, i.e., it is NP-complete

even if the input integers are encoded in unary [16, SP15].

Let (b, S = {s1, . . . , s3n)} be an instance of 3- Partition with n ≥ 3. We set M

to be the uniform matroid U 3
3n on the ground set {1, . . . , 3n}, and define the weight

function to be ω(i) = si for i ∈ {1, . . . , 3n}. We set d = 2b. We will now show that

(b, S) is a yes-instance of 3- Partition if and only if (M, ω, n, d) is a yes-instance

of Weighted Diverse Bases.

In the forward direction, suppose that S1, . . . , Sn is a partition of S into triples

of integers such that the sum of elements of each Si is b. Let B1, . . . , Bn be the

corresponding partition of {1, . . . , 3n}, that is, Bi = {i1, i2, i3} if and only if Si =

{si1, si2 , si3} for each i ∈ {1, . . . , n}. Clearly, B1, . . . , Bn are pairwise disjoint bases

of M . Then for every distinct i, j ∈ {1, . . . , n}, ω(Bi △ B j ) = ω(Bi ) + ω(B j ) = 2b.

Therefore, (M, ω, n, d) is a yes-instance of Weighted Diverse Bases.

In the reverse direction, assume that (M, ω, n, d) is a yes-instance of Weighted

Diverse Bases. Let B1, . . . , Bn be bases of M such that ω(Bi △ B j ) ≥ d = 2b for

distinct i, j ∈ {1, . . . , n}.

We claim that B1, . . . , Bn are pairwise disjoint. For the sake of contradiction,

assume that there are distinct i, j ∈ {1, . . . , n} such that Bi ∩ B j �= ∅. Let

X1 = Bi\B j and X2 = B j\Bi . Note that |X1| ≤ 2 and |X2| ≤ 2. We have that

ω(X1) =
∑

h∈X1
ω(h) =

∑
h∈X1

sh < |X1|b/2 < b. Similarly, ω(X2) < b. There-

fore, ω(Bi △ B j ) = ω(X1) + ω(X2) < 2b; a contradiction. We conclude that the

bases B1, . . . , Bn are pairwise disjoint. This implies that B1, . . . , Bn is a partition of

{1, 2, . . . , 3n}.

Next we show that ω(Bi ) = b holds for every i ∈ {1, . . . , n}. Suppose that

there is an h ∈ {1, . . . , n} such that ω(Bh) > b. Let I = {1, . . . , 3n}\Bh and

J = {1, . . . , n}\{h}. We have that
∑

i∈I ω(i) <
∑3n

i=1 ω(i) − b = b(n − 1). Since

B1, . . . , Bh−1, Bh+1 . . . , Bn form a partition of I , we get that
∑

i∈J ω(Bi ) < b(n−1)

holds as well. Recall that n ≥ 3. Then

∑

{i, j} s.t. i, j∈J , i �= j

(ω(Bi ) + ω(B j )) ≤ (n − 2)
∑

i∈J

ω(Bi ) < b(n − 1)(n − 2).

The first inequality above comes from the fact that since |J | = n−1, for each index

i ∈ J the term ω(Bi ) appears in at most n − 2 terms of the form (ω(Bi ) + ω(B j ))

in the summation on the left hand side. Now suppose (ω(Bi ) + ω(B j )) ≥ 2b holds

for all pairs i, j ∈ J , i �= j . Then the sum on the left hand side would be at least(
|J |
2

)
· 2b = (n − 1)(n − 2)b, a contradiction. Therefore, there must exist distinct

i, j ∈ J such that ω(Bi ) + ω(B j ) < 2b holds. And this contradicts our assumption

that ω(Bi △ B j ) ≥ 2b holds for all such i, j . We conclude that ω(Bi ) ≤ b holds for
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every i ∈ {1, . . . , n}. And since
∑n

i=1 ω(Bi ) = bn, we get that ω(Bi ) = b holds for

every i ∈ {1, . . . , n}.

Finally, we consider the partition S1, . . . , Sn of S corresponding to B1, . . . , Bi , that

is, for each Bi = {i1, i2, i3}, we define Si = {si1 , si2 , si3}. Clearly, si1 + si2 + si3 =

ω(Bi ) = b. Thus we get that (b, S) is a yes-instance of 3- Partition. This concludes

the proof for Weighted Diverse Bases.

The reduction for Weighted Diverse Common Independent Sets is also from

3- Partition, and is nearly identical to the above reduction for Weighted Diverse

Bases. Given an instance (b, S = {s1, . . . , s3n)} of 3- Partition with n ≥ 3, we

set each of M1, M2 to be the uniform matroid U 3
3n on the ground set {1, . . . , 3n}, and

define the weight function to be ω(i) = si for i ∈ {1, . . . , 3n}. We set d = 2b. We will

now show that (b, S) is a yes-instance of 3- Partition if and only if (M1, M2, ω, n, d)

is a yes-instance of Weighted Diverse Common Independent Sets.

In the forward direction, suppose that S1, . . . , Sn is a partition of S into triples of

integers such that the sum of elements of each Si is b. Let I1, . . . , In be the correspond-

ing partition of {1, . . . , 3n}, that is, Ii = {i1, i2, i3} if and only if Si = {si1 , si2 , si3} for

each i ∈ {1, . . . , n}. Clearly, I1, . . . , In are pairwise disjoint common independent sets

of M1 and M2, and for every distinct i, j ∈ {1, . . . , n}, ω(Ii △ I j ) = ω(Ii )+ω(I j ) =

2b. Therefore, (M1, M2, ω, n, d) is a yes-instance of Weighted Diverse Common

Independent Sets.

In the reverse direction, assume that (M1, M2, ω, n, d) is a yes-instance of

Weighted Diverse Common Independent Sets, and let I1, . . . , In be com-

mon independent sets of M1 and M2 such that ω(Ii △ I j ) ≥ d = 2b for distinct

i, j ∈ {1, . . . , n}. Since every independent set in the matroids M1, M2 has at most

three elements, and since si < b
2

holds for each i ∈ {1, . . . , 3n}, we get that the sets

I1, . . . , In are pairwise disjoint. If two of these sets, say Ii , I j have at most two ele-

ments each then ω(Ii △ I j ) < 4 · b
2

= 2b, a contradiction. So at most one of these sets

has at most two elements; every other set in the collection has exactly three elements.

If all the sets I1, . . . , In have three elements each then they are a pairwise disjoint

collection of n bases of M1, and the argument that we used for the reverse direction in

the proof for Weighted Diverse Bases tells us that (b, S) is a yes-instance of 3-

Partition. In the remaining case there is exactly one set of size two among I1, . . . , In ;

without loss of generality, let this smaller set be I1. Then |
⋃n

i=1 Ii | = 3n − 1. Let

x = {1, 2, . . . , 3n}\
⋃n

i=1 Ii be the unique element which is not in any of these

independent sets. Then (I1 ∪ {x}), . . . , In is a pairwise disjoint collection of n bases

of M1 such that the weight of the symmetric difference of any pair of these bases is at

least d = 2b, and the argument that we used for the reverse direction in the proof for

Weighted Diverse Bases tells us that (b, S) is a yes-instance of 3- Partition. ⊓⊔

4 An FPT algorithm and kernelization for WEIGHTED DIVERSE BASES

In this section, we show that Weighted Diverse Bases is FPT when parameterized

by k and d. Moreover, if the input matroid is representable over a finite field and is

given by such a representation, then Weighted Diverse Bases admits a polynomial

kernel.
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We start with the observation that if the input matroid has a sufficiently big set that

is simultaneously independent and coindependent, then diverse bases always exist.

Lemma 1 Let M be a matroid, and let k ≥ 1 and d ≥ 1 be integers. If there is

X ⊆ E(M) of size at least k⌈ d
2
⌉ such that X is simultaneously independent and

coindependent, then (M, ω, k, d) is a yes-instance of Weighted Diverse Bases

for any weight function ω.

Proof Let X ⊆ E(M) be a set of size at least k⌈ d
2
⌉ such that X is simultaneously

independent and coindependent. Then there is a partition X1, . . . , Xk of X such that

|X i | ≥ ⌈ d
2
⌉ for every i ∈ {1, . . . , k}. Let i ∈ {1, . . . , k}. Since X is independent, X i

is independent, and since X is coindependent, then X \ X i is coindependent. Then by

Observation 1, there is a basis Bi of M such that X i ⊆ Bi and Bi ∩ (X\X i ) = ∅.

The latter property means that Bi ∩ X j = ∅ for every j ∈ {1, . . . , k} such that j �= i .

We consider the bases Bi defined in this manner for all i ∈ {1, . . . , k}. Then for every

distinct i, j ∈ {1, . . . , k}, X i ∪X j ⊆ Bi △B j . Therefore, ω(Bi △B j ) ≥ ω(X i ∪X j ) ≥

|X i ∪ X j | = |X i | + |X j | ≥ 2⌈ d
2
⌉ ≥ d for any ω : E(M) → N. Hence, (M, ω, k, d)

is a yes-instance of Weighted Diverse Bases. ⊓⊔

Our results are based on the following lemma.

Lemma 2 There is an algorithm that, given an instance (M, ω, k, d) of Weighted

Diverse Bases, runs in time polynomial in (|E(M)| + k + d) and either cor-

rectly decides that (M, ω, k, d) is a yes-instance or outputs an equivalent instance

(M̃, ω, k, d) of Weighted Diverse Bases such that E(M̃) ⊆ E(M) and |E(M̃)| ≤

2⌈ d
2
⌉2k3. In the latter case, the algorithm also computes a partition (L, L∗) of E(M̃)

with the property that for every basis B of M̃, |B ∩ L| ≤ ⌈ d
2
⌉k and |L∗\B| ≤ ⌈ d

2
⌉k,

and the algorithm outputs an independence oracle for M̃ that answers queries for M̃

in time polynomial in |E(M)|. Moreover, if M is representable over a finite field F
and is given by such a representation, then the algorithm outputs a representation of

M̃ over F.

Proof Let (M, ω, k, d) be an instance of Weighted Diverse Bases. Recall that

M is given as an independence oracle. We construct an independence oracle for the

dual matroid M∗, and then solve Matroid Intersection for M and M∗ using

Proposition 1. Let X be the set computed by the Matroid Intersection algorithm.

Then X ⊆ E(M) is a set of maximum size that is both independent and coindependent

in M . If |X | ≥ k⌈ d
2
⌉, then (M, ω, k, d) is a yes-instance of Weighted Diverse

Bases by Lemma 1; the problem is solved and we return the answer.

Assume from now on that this is not the case, and that |X | ≤ k⌈ d
2
⌉ − 1 holds.

Let B be an arbitrary basis of M , and let B = (E(M) \ B). If rank(B) ≥ k⌈ d
2
⌉

then there exists an independent set Y ⊆ B of size at least k⌈ d
2
⌉. But Y is also a

coindependent set of size at least k⌈ d
2
⌉, which contradicts our assumption. Thus we

get that rank(B) ≤ k⌈ d
2
⌉ − 1 and corank(B) ≤ k⌈ d

2
⌉ − 1 hold for any basis B of M .

Let ℓ = ⌈ d
2
⌉k2. Fix an arbitrary basis B of M . We construct sets S0, . . . , Sℓ

iteratively. We set S0 = B. For i ≥ 1 we construct Si from Si−1 as follows. If
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E(M)\Si−1 = ∅, we set X i = ∅. Otherwise we set X i to be a basis of maximum

weight in the matroid M − Si−1; we find X i using the greedy algorithm (see Propo-

sition 2). Finally, we set Si = Si−1 ∪ X i .

Let S = Sℓ and L = S\B. Since rank(B) ≤ k⌈ d
2
⌉−1, we get that every independent

set contained in the set B = (E(M) \ B) has size at most k⌈ d
2
⌉ − 1. And since L is a

disjoint union of ℓ such independent sets we get that |L| = |S\B| ≤ ℓ(k⌈ d
2
⌉ − 1) ≤

⌈ d
2
⌉2k3. We now prove the following crucial proposition.

Proposition 3 If (M, ω, k, d) is a yes-instance of Weighted Diverse Bases, then

there is a solution, that is, a family of bases B1, . . . , Bk such that ω(Bi △ B j ) ≥ d for

all distinct i, j ∈ {1, . . . , k}, with the property that Bi ⊆ S for every i ∈ {1, . . . , k}.

Proof Let (M, ω, k, d) be a yes-instance, and let the family of bases B1, . . . , Bk be a

solution which maximizes the size of the set ((
⋃k

i=1 Bi ) ∩ S) of vertices in the bases

which are also in the set S. We show that Bi ⊆ S holds for every i ∈ {1, . . . , k}. The

proof is by contradiction. Assume that there is an h ∈ {1, . . . , k} such that Bh\S �= ∅.

Recall that rank(M − B) = rank(B) ≤ k⌈ d
2
⌉ − 1. Therefore, |Bi \ B| ≤ k⌈ d

2
⌉ − 1

holds for every i ∈ {1, . . . , k}, and |∪k
i=1 (Bi\B)| ≤ k(k⌈ d

2
⌉−1) < ℓ. Let X1, . . . , Xℓ

be the independent sets used to construct the sets S1, . . . , Sℓ. Since (X j ∩ B) = ∅

holds for all j ∈ {1, . . . , ℓ} we get that (X j ∩ Bi ) = (X j ∩ (Bi \ B)) holds for all

i ∈ {1, . . . , k}, j ∈ {1, . . . , ℓ}. So the number | ∪k
i=1 (Bi \ B)| of elements from the

bases B1, . . . , Bk which could potentially be part of any of the sets X1, . . . , Xℓ is

strictly less than the number of these latter sets. Hence from the pigeonhole principle

we get that there is a t ∈ {1, . . . , ℓ} such that X t ∩ Bi = ∅ holds for all i ∈ {1, . . . , k}.

Let A = Bh ∩ St−1 and Y = Bh\St−1. We show that there is Z ⊆ X t such that

(i) B ′
h = A ∪ Z is a basis, and

(ii) ω(Z) ≥ ω(Y ).

We construct Z by greedily augmenting A with elements of X t . Let σ be the order

in which the greedy algorithm picks elements from the set E(M) \ St−1 to add them

to the set X t . Initially we set Z := ∅. Then we select the first x ∈ X t \ Z in σ such

that A ∪ Z ∪ {x} is independent, and we set Z := Z ∪ {x}. We stop when there is no

x ∈ X t \ Z such that A ∪ Z ∪{x} is independent. We prove that (i) and (ii) are fulfilled

for Z .

First we show that (i) holds. From the construction we get that X t is a basis of the

matroid M − St−1. This implies that (E(M)\St−1) ⊆ cl(X t ) holds. Now since Y =

(Bh\St−1) is a subset of (E(M)\St−1) we get that Y ⊆ cl(X t ) holds. Since (A ∪ Z) is

independent, and there is no x ∈ X t\Z such that A∪Z ∪{x} is independent, we get that

X t ⊆ cl(A ∪ Z) holds. Now by (CL2) and (CL3), Y ⊆ cl(cl(A ∪ Z)) = cl(A ∪ Z).

And by (CL1), A ⊆ cl(A ∪ Z) and we conclude that A ∪ Y ⊆ cl(A ∪ Z) holds.

But (A ∪ Y ) = Bh is a basis of M , and so [22, Proposition 1.4.9] cl(A ∪ Y ) =

E(M). Applying (CL2) and (CL3) we get that E(M) ⊆ cl(A ∪ Z) which implies that

cl(A∪ Z) = E(M). Now since A∪ Z is independent we get (see, e.g., [22, Section 1.4,

Exercise 2]) that B ′
h = A ∪ Z is a basis.

Now we show that (ii) holds. Let Z = {z1, . . . , zs}, where the elements are indexed

according to the order in which they are added to Z by the greedy augmentation
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described above. Note that ω(z1) ≥ · · · ≥ ω(zs). Since Bh and B ′
h are bases, Y =

(Bh\St−1), and Z = (B ′
h\St−1), we get that |Y | = |Z |. Observe also that Y ∩ Z = ∅.

We define (i) Z0 = ∅ and (ii) Zi = {z1, . . . , zi } for i ∈ {1, . . . , s}. We show that there

is an ordering 〈y1, . . . , ys〉 of the elements of Y such that the set A ∪ Zi−1 ∪ {yi } is

independent for every i ∈ {1, . . . , s}. We define this order inductively, starting with

ys and proceeding in decreasing order of the subscript.

We set ys to be an element y ∈ (A ∪ Y )\(A ∪ Zs−1) = (Y\Zs−1) such that

A∪ Zs−1 ∪{y} is independent. Since |A∪ Zs−1| < |A∪Y | we know from (I3) such an

element must exist. For the inductive step, assume that for some fixed i ∈ {1, . . . , s−1}

distinct elements yi+1, . . . , ys ∈ Y have been defined such that A∪Zi ∪{yi+1, . . . , ys}

is independent. Note that |A ∪ Zi ∪ {yi+1, . . . , ys}| = |A ∪ Y |. Then R = A ∪

Zi−1 ∪{yi+1, . . . , ys} is independent by (I2), and by (I3), there must exist an element

y ∈ (A ∪ Y ) \ R such that R ∪ {y} = A ∪ Zi−1 ∪ {y, yi+1, . . . , ys} is independent.

We set yi to be this element y. Observe that due to (I2), A ∪ Zi−1 ∪ {yi } is indeed

independent for every i ∈ {1, . . . , s}.

We claim that ω(yi ) ≤ ω(zi ) holds for every i ∈ {1, . . . , s}. For the sake of

contradiction, assume that this is not the case and let i ∈ {1, . . . , s} be the first index

such that ω(yi ) > ω(zi ) holds. Recall that X t is constructed by the greedy algorithm.

Denote by W ⊂ X t the set of elements that are prior zi in the ordering σ . Suppose

that yi ∈ cl(W ). By the construction of Z , W ⊆ cl(A ∪ Zi−1), because zi is the

first element in σ such that A ∪ Zi−1 ∪ {zi } is independent. By (CL2) and (CL3),

we have that yi ∈ cl(cl(A ∪ Zi−1)) = cl(A ∪ Zi−1). However, this contradicts the

property that A ∪ Zi−1 ∪ {yi } is independent. Hence, yi /∈ cl(W ). This implies that

W ∪{yi } is independent. But this means that the greedy algorithm would have yi over

zi in the construction of X t , because ω(yi ) > ω(zi ); a contradiction. This proves that

ω(yi ) ≤ ω(zi ) holds for every i ∈ {1, . . . , s}. Therefore, ω(Z) ≥ ω(Y ) and (ii) is

fulfilled. This completes the proof of the existence of a set Z ⊆ X t satisfying (i) and

(ii).

We replace the basis Bh in the solution by B ′
h = A ∪ Z = (Bh\Y ) ∪ Z . We show

that the resulting family of bases is a solution to the instance (M, ω, k, d). Clearly, it is

sufficient to show that for every i ∈ {1, . . . , k} such that i �= h, ω(B ′
h △ Bi ) ≥ d, as the

other pairs of bases are the same as before. By the choice of t ∈ {1, . . . , ℓ} we have that

X t ∩ Bi = ∅ holds for all i ∈ {1, . . . , k}. And since Z ⊆ X t we have that Z ⊆ B ′
h △ Bi

holds. Then, ω(B ′
h △ Bi ) = ω(((Bh\Y )∪ Z)△ Bi )) ≥ ω(Bh △ Bi )−ω(Y )+ω(Z) ≥

ω(Bh△Bi ) ≥ d as required. We have that the replacement of Bh by B ′
h gives a solution.

However B ′
h ⊆ St ⊆ S whereas Bh\S �= ∅, and this contradicts the assumption that

B1, . . . , Bk is a solution such that the number of vertices of the bases in S is the

maximum. This concludes the proof of the proposition. ⊓⊔

Let M̂ = M − (E(M)\S). Then E(M̂) = S and the set B is a basis of M̂ as well.

Proposition 3 immediately implies the following property.

Proposition 4 The instances (M, ω, k, d) and (M̂, ω, k, d) of Weighted Diverse

Bases are equivalent.

We now repeat the argument that preceded Proposition 3, this time with the dual

matroid M̂∗ and starting with its basis B̂ = (E(M̂)\B) = L . Recall that ℓ = ⌈ d
2
⌉k2.
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We construct sets S∗
0 , . . . , S∗

ℓ iteratively. We set S∗
0 = B̂. For i ≥ 1 we construct S∗

i

from S∗
i−1 as follows. If E(M̂)\S∗

i−1 = ∅, we set X∗
i = ∅. Otherwise we set X∗

i to be

a basis of maximum weight in the matroid M̂∗ − S∗
i−1, which we find using the greedy

algorithm. Finally, we set S∗
i = S∗

i−1 ∪ X∗
i .

Let S∗ = S∗
ℓ and L∗ = S∗\B̂ = S∗ ∩ B. Since corank(B) ≤ k⌈ d

2
⌉− 1, we get that

every coindependent set contained in the set B has size at most k⌈ d
2
⌉ − 1. And since

L∗ is a disjoint union of ℓ such coindependent sets we get that |L∗| = |S∗ ∩ B| ≤

ℓ(k⌈ d
2
⌉ − 1) ≤ ⌈ d

2
⌉2k3. Restating Proposition 3 for M̂∗, we get that if (M̂∗, ω, k, d)

is a yes-instance of Weighted Diverse Bases, then there is a solution, that is, a

family of bases B∗
1 , . . . , B∗

k of M̂∗ such that ω(B∗
i △ B∗

j ) ≥ d holds for all distinct

i, j ∈ {1, . . . , k}, with the property that B∗
i ⊆ S∗ for every i ∈ {1, . . . , k}. In terms

of M̂ , the same property can be stated as follows.

Proposition 5 If (M̂, ω, k, d) is a yes-instance of Weighted Diverse Bases, then

there is a solution, that is, a family of bases B1, . . . , Bk such that ω(Bi △ B j ) ≥ d for

all distinct i, j ∈ {1, . . . , k} with the property that Bi ⊆ S∗ for every i ∈ {1, . . . , k},

where Bi = (E(M̂) \ Bi ).

Since E(M̂) = (B ∪ B̂) and B̂ ⊆ S∗ ⊆ E(M̂) we have that E(M̂) = (B ∪ S∗).

Hence from Proposition 5 we get that if (M̂, ω, k, d) is a yes-instance, then it has a

solution B1, . . . , Bk such that (B\S∗) ⊆ Bi holds for every i ∈ {1, . . . , k}. That is,

elements from the set (B \ S∗) do not contribute to the weight ω(Bi △ B j ) for any

distinct i, j ∈ {1, . . . , k}. So a transformation that removes the subset (B \ S∗) from

the ground set of M̂ is safe, provided that (i) Bi\(B\S∗) = (Bi ∩ S∗) is a basis of

the resulting matroid for all i ∈ {1, . . . , k}, and (ii) for any basis B ′ of the resulting

matroid, B ′ ∪ (B\S∗) is a basis of M̂ .

We now show that the operation of contracting the set (B\S∗) has both these

properties. Let M̃ = M̂/(B\S∗). Then E(M̃) = (B ∪ S∗)\(B\S∗) = S∗. Let

rank(M̂), rank(M̃) be the ranks and r̂ank, r̃ank be the rank functions of the two

matroids M̂, M̃ , respectively. Recall that r̃ank(X) = r̂ank((B\S∗)∪ X)− r̂ank(B\S∗)

holds for all X ⊆ E(M̃) = S∗. Now rank(M̃) = r̃ank(S∗) = r̂ank(B ∪ S∗) −

r̂ank(B\S∗) = rank(M̂)− |B\S∗|, where the last equation holds because B is a basis

of M̂ . And for any i ∈ {1, . . . , k}, r̃ank(Bi ∩ S∗) = r̂ank((B\S∗) ∪ (Bi ∩ S∗)) −

r̂ank(B\S∗) = rank(M̂) − |B\S∗| = rank(M̃), where the second equation holds

because B, Bi are bases of M̂ and Bi ⊆ ((B\S∗) ∪ (Bi ∩ S∗)). Thus (Bi ∩ S∗) is a

basis of M̃ . Finally, let B ′ be an arbitrary basis of M̃ . Then r̃ank(B ′) = rank(M̃) =

rank(M̂) − |B\S∗|. Rearranging the expression for r̃ank(B ′) in terms of r̂ank we get:

r̂ank((B\S∗) ∪ B ′) = r̃ank(B ′) + r̂ank(B\S∗) = rank(M̂) − |B\S∗| + |B\S∗| =

rank(M̂) where the second equation holds because B is a basis of M̂ . Thus (B\S∗)∪B ′

is a basis of M̂ , and we have

Proposition 6 The instances (M, ω, k, d) and (M̃, ω, k, d) of Weighted Diverse

Bases are equivalent.

Recall the sets L = B̂ ⊆ S∗ and L∗ = (S∗\L) from the construction. (L, L∗)

is thus a partition of E(M̃) = S∗. From the construction we get L = B̂ ⊆ B and
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L∗ ⊆ B. Now since rank(B) ≤ ⌈ d
2
⌉k and corank(B) ≤ ⌈ d

2
⌉k in M , we have that for

every basis B ′ of M̃ , |B ′ ∩ L| ≤ ⌈ d
2
⌉k and |L∗\B ′| ≤ ⌈ d

2
⌉k hold.

This completes the description of the algorithm that returns the instance (M̃, ω, k, d)

and the partition (L, L∗) of E(M̃). Since |L| ≤ ⌈ d
2
⌉2k3 and |L∗| ≤ ⌈ d

2
⌉2k3, we have

that |E(M̃)| ≤ 2⌈ d
2
⌉2k3. It is straightforward to verify that given an independence

oracle for M we can construct the following in polynomial time: (i) the set E(M̃), (ii)

an independence oracle for M̃ that in time polynomial in |E(M)| answers queries for

M̃ , and (iii) the sets L and L∗. To see this, note that A ⊆ E(M̃) is independent in M̃

if and only if A′ = A ∪ (B \ S∗) is independent in M .

To show the second claim of the lemma, assume that we are given representation

A of M over a finite field F. It is well-known that M∗ also is representable over F
and, given A, the representation of M∗ over F can be computed in polynomial time

by linear algebra tools (see, e.g., [22]). Taking into account that contraction of a set is

equivalent to the deletion of the same set in the dual matroid and vice versa, we obtain

that the representation Ã of M̃ can be constructed in polynomial time from A. This

concludes the proof of the lemma. ⊓⊔

Using Lemma 2 we can prove that Weighted Diverse Bases is FPT when

parameterized by k and d.

Theorem 2 Weighted Diverse Basescan be solved in 2O(dk2(log k+log d)) ·

|E(M)|O(1) time.

Proof Let (M, ω, k, d) be an instance of Weighted Diverse Bases. We run the

algorithm from Lemma 2. If the algorithm solves the problem, then we are done.

Otherwise, the algorithm outputs an equivalent instance (M̃, ω, k, d) of Weighted

Diverse Bases such that E(M̃) ⊆ E(M) and |E(M̃)| ≤ 2⌈ d
2
⌉2k3. Moreover, the

algorithm computes the partition (L, L∗) of E(M̃) with the property that for every

basis B of M̃ , |B ∩ L| ≤ ⌈ d
2
⌉k and |L∗\B| ≤ ⌈ d

2
⌉k. Then we check all possible k-

tuples of bases by brute force and verify whether there are k bases forming a solution.

By the properties of L and L∗, M̃ has (d2k3)O(dk) distinct bases. Therefore, we check

at most (d2k3)O(dk2) k-tuples of bases. We conclude that this checking can be done

in 2O(dk2(log k+log d)) · |E(M)|O(1) time, and the claim follows. ⊓⊔

If the input matroid is given by a representation over a finite field, then Weighted

Diverse Bases admits a polynomial kernel when parameterized by k and d.

Theorem 3 Given a representation of the matroid M over a finite field GF(q)as input,

we can compute a kernel of Weighted Diverse Basesof size O(k6d4 log q).

Proof Let (M, ω, k, d) be an instance of Weighted Diverse Bases. Let also A be

its representation over GF(q). We run the algorithm from Lemma 2. If the algorithm

solves the problem and reports that (M, ω, k, d) is a yes-instance, we return a trivial

yes-instance of the problem. Otherwise, the algorithm outputs an equivalent instance

(M̃, ω, k, d) of Weighted Diverse Bases such that E(M̃) ⊆ E(M) and |E(M̃)| ≤

2⌈ d
2
⌉2k3. Moreover, the algorithm computes a representation Ã of M̃ over GF(q).

Clearly, it can be assumed that the number of rows of the matrix Ã equals rank(M̃).

Since rank(M̃) ≤ |E(M̃)|, the matrix Ã has O(k6d4) elements. Because Ã is a matrix
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over GF(q), it can be encoded by O(k6d4 log q) bits. Finally, note that the weights of

the elements can be truncated by d, that is, we can set ω(e) := min{ω(e), d} for every

e ∈ E(M̃). Then the weights can be encoded using O(d2k3 log d) bits. This concludes

the construction of our kernel. ⊓⊔

5 An FPT algorithm forWeighted Diverse Common Independent Sets

In this section we show that Weighted Diverse Common Independent Sets is

FPT when parameterized by k and d.

We use a similar win-win approach as for Weighted Diverse Bases and observe

that if the two matroids from an instance of Weighted Diverse Common Inde-

pendent Sets have a sufficiently big common independent set, then we have a

yes-instance of Weighted Diverse Common Independent Sets.

Lemma 3 Let M1 and M2 be matroids with a common ground set E, and let k ≥ 1 and

d ≥ 1 be integers. If there is an X ⊆ E of size at least k⌈ d
2
⌉ such that X is a common

independent set of M1 and M2, then (M1, M2, ω, k, d) is a yes-instance of Weighted

Diverse Common Independent Sets for any weight function ω : E → N.

Proof Let X ⊆ E be a set of size at least k⌈ d
2
⌉ such that X is a common independent set

of M1 and M2. Then there is a partition I1, . . . , Ik of X such that |Ii | ≥ ⌈ d
2
⌉ for every

i ∈ {1, . . . , k}. Clearly, I1, . . . , Ik are common independent sets of M1 and M2. Also

we have that ω(Ii △I j ) = ω(Ii )+ω(I j ) ≥ d for all distinct i, j ∈ {1, . . . , k} and every

weight function ω which assigns positive integral weights. This means that I1, . . . , Ik

is a solution for (M1, M2, ω, k, d); that is, (M1, M2, ω, k, d) is a yes-instance. ⊓⊔

Lemma 3 implies that we can assume that the maximum size of a common inde-

pendent set of the input matroids is bounded. We prove the following crucial lemma.

Lemma 4 Let (M1, M2, ω, k, d) be an instance of Weighted Diverse Common

Independent Sets such that the maximum size of a common independent set of M1

and M2 is at most s. Then there is a set F of common independent sets of M1 and

M2, of size |F | = 2O(s2 log(ks)) · d, such that if (M1, M2, ω, k, d) is a yes-instance of

Weighted Diverse Common Independent Sets then the instance has a solu-

tion I1, . . . , Ik with Ii ∈ F for i ∈ {1, . . . , k}. Moreover, F can be constructed in

2O(s2 log(ks)) · d · |E |O(1) time where E is the (common) ground set of M1 and M2.

Proof Consider (M1, M2, ω, k, d). Let E = E(M1) = E(M2). It is convenient to

assume that the weights of the elements are bounded by d. For this, we set ω(e) :=

min{d, ω(e)} for every e ∈ E . It is straightforward to see that by this operation we

obtain an equivalent instance of Weighted Diverse Common Independent Sets.

Notice that for every common independent set I of M1, M2, we now have ω(I ) ≤ ds.

For every w ∈ {0, . . . , ds}, we use a recursive branching algorithm to construct

a family Fw of size 2O(s2 log(ks)) of common independent sets of M1 and M2 with

the following properties: (i) each set in Fw has weight at least w, and (ii) if S =

{I1, . . . , Ik} is a solution to the instance (M1, M2, ω, k, d) such that ω(Ii ) = w for
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some i ∈ {1, . . . , k}, then there is an I ′
i ∈ Fw such that (S\{Ii })∪{I ′

i } is also a solution

to (M1, M2, ω, k, d).

The algorithm, denoted by A, takes as its input a common independent set X of M1

and M2, and two matroids M ′
1 and M ′

2 such that M ′
i = (Mi − W )/X for i = 1, 2 for

some subset W ⊆ E\X . For the very first call to A we set X := ∅ and M ′
i = Mi for

i = 1, 2 (thus we implicitly set W := ∅). Algorithm A outputs at most ks common

independent sets of M1 and M2 of the form X ∪Y , where Y ⊆ E ′ = E(M ′
1) = E(M ′

2)

is a common independent set of M ′
1 and M ′

2. Note that E ′ = E\(X ∪ W ). Algorithm

A performs the following steps.

Step 1. If ω(X) ≥ w, then output X and return.

Step 2. Greedily compute at most ks disjoint common independent sets Y1, . . . , Yℓ

of M ′
1 and M ′

2, each of weight at least w′ = w − ω(X), as follows.

(a) Set i = 1, Ys = {}.

(b) If |Ys| = (i − 1) = ks then set ℓ = (i − 1) and go to Step 3.

(c) Set M ′′
h = M ′

h − (
⋃

Y j ∈Ys

Y j ), for h = 1, 2.

(d) Find a common independent set Z of M ′′
1 and M ′′

2 of the maximum weight.

(e) If ω(Z) < w′, then set ℓ = (i − 1) and go to Step 3. Otherwise, set Yi =

Z , Ys = (Ys ∪ {Yi }) and i = i + 1, and go to Step 2(b).

Step 3. At this point we have Ys = {Y1, . . . , Yℓ}.

• If ℓ = 0 then return.

• If ℓ = ks then output the sets X ∪ Y1, . . . , X ∪ Yℓ and return.

• If neither of the above holds then:

• Set R =
⋃

Y j ∈Ys

Y j .

• For each nonempty common independent set Z ⊆ R of M ′
1 and M ′

2, set

W = R\Z and recursively invoke A(X ∪Z , (M ′
1−W )/Z , (M ′

2−W )/Z).

This completes the description of A. To construct Fw, we call A(∅, M1, M2). Then

the set Fw includes all the sets output by A. Note that in every recursive step we call

A(X ∪ Z , (M ′
1 −W )/Z , (M ′

2 −W )/Z) only if Z �= ∅. So the size of the first argument

(X ∪ Z) to a recursive call of A is strictly larger than the size of the first argument X

of the parent call to A. Moreover, since Z is a common independent set of M ′
1 and

M ′
2, we have that X ∪ Z is a common independent set of M1 and M2. Because the

maximum size of the common independent set of M1 and M2 is at most s, we obtain

that the depth of the recursion is bounded by s, that is, the algorithm is finite. We show

the crucial property of Fw mentioned above.

Proposition 7 If S = {I1, . . . , Ik} is a solution to the instance (M1, M2, ω, k, d)

such that ω(Ii ) = w for some i ∈ {1, . . . , k}, then there is an I ′
i ∈ Fw such that

(S\{Ii }) ∪ {I ′
i } is also a solution to (M1, M2, ω, k, d).

Proof Fix a set Ii ∈ S; ω(Ii ) = w. Recall that an arbitrary invocation of A has the

form A(X , (M1 − W )/X , (M2 − W )/X) where X is a common independent set of

M1, M2 and W ⊆ (E \ X). For the very first invocation of A these sets are X =
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∅, W = ∅, and these sets trivially satisfy the viability condition (X ∪ W ) ∩ Ii = X ;

that is: Ii contains all of X , and none of W . We show that any invocation of A whose

arguments satisfy the viability condition either outputs a set I ′
i that can be used to

replace Ii in S, or makes at least one recursive call to A such that the arguments to

this recursive call satisfy the viability condition. Since the size of the first argument

(X ∪ Z) to a recursive call of A is strictly larger than the size of the first argument X

of the parent call to A, we get that some call to A will output a set I ′
i with the desired

property.

Assume inductively that A(X , M ′
1 = (M1 − W )/X , M ′

2 = (M2 − W )/X) is an

invocation of A whose arguments satisfy the viability condition. If ω(X) ≥ w, then

X = Ii , because ω(Ii ) = w and the weights are non-negative. In this case, the

algorithm outputs X = Ii in Step 1. Clearly, we can set I ′
i = Ii , and we are done. So

let us assume that this is not the case, and that ω(X) < w. In this case X � Ii holds

and the algorithm goes to Step 2.

Let E ′ = E \ (X ∪ W ) be the common ground set of M ′
1 and M ′

2. Let Y = (Ii\X)

and w′ = ω(Y ) = w − ω(X). Then since Y is a common independent set of M ′
1

and M ′
2, the greedy computation of Step 2 produces a nonempty family Y1, . . . , Yℓ of

disjoint common independent sets of M ′
1 and M ′

2 of weight at least w′ each. Note that

X ∪ Y1, . . . , X ∪ Yℓ are common independent sets of M1 and M2. We consider two

cases depending on the value of ℓ in Step 3. Note that by the above reasoning the case

ℓ = 0 does not arise here.

Case 1. ℓ = ks. In this case the algorithm outputs the sets X ∪ Y1, . . . , X ∪ Yℓ

where (X ∩ Yi ) = ∅ holds for all i ∈ {1, . . . , ℓ}. Recall that every common

independent set of M1 and M2 has size at most s. Therefore, the set J =⋃
j∈{1,...,k}, j �=i I j has size at most (k − 1)s < ℓ. Hence, by the pigeonhole

principle, there is an h ∈ {1, . . . , ℓ} such that Yh ∩ I j = ∅ holds for all

j ∈ {1, . . . , k} ; j �= i .

Let I ′
i := X ∪ Yh . Then I ′

i is a common independent set of M1 and M2 and

ω(I ′
i ) = ω(X)+ω(Yh) ≥ ω(X)+w′ = ω(X)+ω(Ii\X) = ω(Ii ), where

the last equation follows from the fact that X ⊆ Ii holds. From this chain

of relations we also get that ω(Ii\X) ≤ ω(Yh) holds. Consider an arbitrary

index j ∈ {1, . . . , k} ; j �= i . Then ω(Ii △ I j ) = ω(I j\Ii ) + ω(Ii\I j ) ≤

ω(I j\X) + ω(Ii\I j ) = ω(I j\X) + ω(X\I j ) + ω((Ii\X)\I j ) ≤ ω(I j △

X)+ω(Ii\X) ≤ ω(I j △ X)+ω(Yh). But since I ′
i = X ∪Yh , (X ∩Yh) = ∅

and (I j ∩ Yh) = ∅ we get that ω(I j △ Ii ′) = ω(I j △ X) + ω(Yh) holds.

Thus ω(I j △ Ii ′) ≥ ω(Ii △ I j ), and so replacing Ii by I ′
i in the solution S

indeed gives us a solution to the instance (M1, M2, ω, k, d).

Case 2. 0 < ℓ < ks. In this case we set R :=
⋃ℓ

i=1 Yi . From the construction we

get that the matroids M ′
1 − R and M ′

2 − R have no common independent

set of weight at least w′. Since (I1\X)\R is such a common independent

set we have that ω((I1\X)\R) < w′, and since ω(Ii\X) = w′ we get that

Z = (Ii\X) ∩ R �= ∅. Clearly, Z is a common independent set of M ′
1

and M ′
2. Our algorithm considers all such sets. Hence there is a recursive

call A(X ′, (M ′
1 − W )/Z , (M ′

2 − W )/Z) where Z = ((Ii\X) ∩ R), X ′ =

X ∪Z , W = R\Z . By the choice of Z and W we get that (X ′∪W )∩ Ii = X ′,
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so that this recursive call satisfies the viability condition. Moreover, we

have that |X ′| > |X |. This completes the second case and the proof of the

proposition.

⊓⊔

We already observed that the algorithm A is finite. Now we evaluate its running

time and the size of Fw.

Proposition 8 The set Fw has size 2O(s2 log(ks)) and can be constructed in 2O(s2 log(ks))·

|E |O(1) time.

Proof To give an upper bound on the size of Fw, observe that in each recursive call,

the algorithm A either outputs some sets, or performs some recursive calls, or simply

returns without outputting anything. Notice that in Step 1, A can output at most one

set, and A may output ks sets in Step 3. The number of recursive calls is upper bounded

by the number of nonempty common independent sets Z ⊆ R of M ′
1 and M ′

2. Since

ℓ < ks and |Yi | ≤ s for i ∈ {1, . . . , ℓ}, |R| ≤ ks2. Because for each Z , |Z | ≤ s, the

branching factor is at most (ks2)s = 2O(s log(ks)). Since the depth of the recursion is

at most s, the search tree has 2O(s2 log(ks)) leaves. This implies that the size of Fw is

2O(s2 log(ks)).

To evaluate the running time, note that in Step 2, the algorithm greedily constructs

the sets Y1, . . . , Yℓ that are common independent sets of M ′
1 and M ′

2. By Proposition 1,

this can be done in polynomial time, because in each iteration we find a common

independent set of maximum weight. Because the search tree has 2O(s2 log(ks)) leaves,

the total running time is 2O(s2 log(ks)) · |E |O(1). ⊓⊔

We construct F =
⋃ds

w=0 Fw. By Proposition 8, |F | ≤ (ds+1) maxw∈{0,...,ds} |Fw|

= 2O(s2 log(ks))·d andF can be constructed in total 2O(s2 log(ks))·d·|E |O(1) time. Propo-

sition 7 implies that if (M1, M2, ω, k, d) is a yes-instance of Weighted Diverse

Common Independent Sets, then the instance has a solution I1, . . . , Ik with Ii ∈ F

for i ∈ {1, . . . , n}. ⊓⊔

Combining Lemma 3 and Lemma 4, we obtain the main result of the section.

Theorem 4 Weighted Diverse Common Independent Sets can be solved in

2O(k3d2 log(kd)) · |E |O(1) time.

Proof Let (M1, M2, ω, k, d) be an instance of Weighted Diverse Common Inde-

pendent Sets. First, we use Proposition 1 to solve Matroid Intersection for M1

and M2 and find a common independent set X of maximum size. If |X | ≥ k⌈ d
2
⌉, then

by Lemma 3, we conclude that (M1, M2, ω, k, d) is a yes-instance. Assume that this

is not the case. Then the maximum size of a common independent set of M1 and M2

is s < k⌈ d
2
⌉. We apply Lemma 4 and construct the set F of size 2O((kd)2 log(kd)) in

2O((kd)2 log(kd)) · |E |O(1) time. By this lemma, if (M1, M2, ω, k, d) is a yes-instance,

it has a solution I1, . . . , Ik such that Ii ∈ F for i ∈ {1, . . . , k}. Hence, to solve

the problem we go over all k-tuples of the elements of F , and for each k-tuple,

we verify whether these common independent sets of M1 and M2 give a solution.

Clearly, we have to consider 2O(k3d2 log(kd)) tuples. Hence, the total running time is

2O(k3d2 log(kd)) · |E |O(1). ⊓⊔

123



Diverse collections in matroids and graphs

6 Perfect Matchings

In this section we prove that Diverse Perfect Matchings is fixed parameter

tractable when parameterized by k and d. We need the following simple observations

later in this section.

Observation 3 The cardinality of symmetric differences of perfect matchings in a

graph obeys the triangle inequality. That is, for a graph G and perfect matchings

M1, M2, M3 in G, |M1 △ M2| + |M2 △ M3| ≥ |M1 △ M3|.

Observation 3 follows from the fact that Hamming distance is a metric and hence

obeys triangular inequality.

Observation 4 Let G be a graph and M1 and M2 be two perfect matchings in G. Then

|M1 △ M2| = 2 · |M1\M2| = 2 · |M2\M1|.

For an undirected graph G, the Tutte matrix A of G over the field F2[X ] is defined

as follows, where F2 is the Galois field on {0, 1} and X = {xe : e ∈ E(G)}. The

rows and columns of A are labeled with V (G) and for each e = {u, v} ∈ E(G),

A[u, v] = A[v, u] = xe. All other entries in the matrix are zeros. That is, for any pair

of vertices u, v ∈ V (G), if there is no edge between u and v, A[u, v] = 0. It is well

known that det(A) �= 0 if and only if G has a perfect matching. As the characterstic

of F2 is a 2, the determinant of A coincides with the permanent of A. That is,

det(A) = perm(A) =
∑

σ∈SV (G)

�v∈V (G)A[v, σ (v)]. (1)

Here, SV (G) is the set of all permutations of V (G). Let P M(G) be the set of perfect

matchings on G. Then, one can show that det(A) =
∑

M∈P M(G) �e∈M x2
e .

Let Y be a set of variables disjoint from X . For each edge e, let L(e) ⊆ Y be a

subset of variables. Let A′ be the matrix obtained from A by replacing each entry of

the form xe with xe · �y∈L(e)y. Then,

det(A′) = perm(A′) =
∑

σ∈SV (G)

�v∈V (G)A
′[v, σ (v)]

=
∑

σ∈SV (G)

�v∈V (G)

(
A[v, σ (v)] · �y∈L({v,σ (v)})y

)
, (2)

where �y∈L({v,σ (v)})y = 1 if {v, σ (v)} /∈ E(G) or L(e) = ∅.

Lemma 5 Let G be an undirected graph and let X = {xe : e ∈ E(G)} and Y =

{y1, . . . , yℓ} be two sets of variables such that X ∩ Y = ∅. For each edge e ∈ E(G),

we are also given a subset L(e) ⊆ Y . Let A
′ be the matrix defined as above. For any

perfect matching M, �e∈M x2
e �y∈L(e)y2 is a monomial in det(A′). Moreover, for any

monomial m in det(A′), M ′ = {e : xe is a variable in m} is a perfect matching in G

and for each e ∈ M ′, L(e) is a subset of variables in the monomial m.
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Proof A cycle-matching cover of G is a subset of edges F ⊆ E(G) such that V (F) =

V (G) and each connected component of G[F] is either a cycle or an edge. For each

non-zero term in the summation of (2), there is a cycle-matching cover defined as

follows. Let σ ∈ SV (G) such that �v∈V (G)A[v, σ (v)] · �y∈L({v,σ (v)})y is non-zero.

Then, �v∈V (G)A[v, σ (v)] is non-zero. As G is a simple graph, A[v, v] = 0. Therefore,

since �v∈V (G)A[v, σ (v)] �= 0, there is no 1-cycle in σ . Moreover any ℓ-cycle in σ

corresponds to a cycle in G and any 2-cycle in σ corresponds to an edge in G, where

the vertices covered in the cycle are the vertices present the cycle of the permutation.

That is, for each cycle (u1, u2, . . . , uℓ in σ , u1, u2, . . . , uℓ, u1 is a cycle in G if ℓ > 1

and u1u2 is a matching edge if ℓ = 2. Therefore, there is a cycle-matching cover

corresponding to the non-zero term �v∈V (G)A[v, σ (v)] · �y∈L({v,σ (v)})y.

Let F be a cycle-matching cover. Let {C1, . . . , Cr } be the set of cycles in G[F] and

{e1, . . . , es} be the set of the edges in F\(
⋃

i E(Ci )). Let F ′ =
⋃

i∈[r ] E(Ci ). For each

cycle C = u1, u2, . . . , uℓ, u1 in G[F], where ℓ > 2 one can define two permutations

σ1 and σ2 on V (C) as follows: (u1, u2, . . . , uℓ) and (u1, uℓ, uℓ−1, . . . , u2). That is,

�v∈V (C)A[v, σ1(v)] = �v∈V (C)A[v, σ2(v)] = �e∈E(C)

(
xe · �y∈L(e)y

)
.

This implies that there are 2r terms in (2) which are equal to
∑

e∈F\F ′(
xe · �y∈L(e)y

)2
+

∑
e∈F ′ �e∈F ′

(
xe · �y∈L(e)y

)
(which we call the terms correspond-

ing to F). In other words if F is a perfect matching then �e∈F

(
xe · �y∈L(e)y

)2
is a

unique term in (2), and if F is has cycle then the terms corresponding to F will cancel

each other, because the characteristic of the F2[X ∪ Y ] is 2. Therefore, for any perfect

matching M , �e∈M x2
e �y∈L(e)y2 is a monomial in det(A′).

As any non-zero term in (2) corresponds to a cycle-matching cover, and for any

cycle matching cover that contains at least one cycle all the terms corresponding to

it cancels each other we have the following. For any monomial m in det(A′), M ′ =

{e : xe is a variable in m} is perfect a matching in G. Also, from the construction of

A′, it follows that for each e ∈ M ′, L(e) is subset of variables in m. ⊓⊔

We use the following two known results.

Proposition 9 (Schwartz-Zippel Lemma [24, 28]) Let P(x1, . . . , xn) be a multivariate

polynomial of total degree at most d over a field F, and P is not identically zero. Let

r1, . . . , rn be the elements in F chosen uniformly at random with repetition. Then

Pr(P(r1, ..., rn) = 0) ≤ d
|F|

.

For a multivariate polynomial P and a monomial m, we let P(m) denote the coef-

ficient of m in P .

Proposition 10 ( [27]) Let P(x1, . . . , xn) be a polynomial over a field of characteristic

two, and T ⊆ [n] be a set of target indices. For a set I ⊆ [n], define P−I (x1, . . . , xn) =

P(y1, . . . , yn) where yi = 0 for i ∈ I and yi = xi otherwise. Define

Q(x1, . . . , xn) =
∑

I⊆T

P−I (x1, . . . , xn).
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Then, for any monomial m such that t := �i∈T xi divides m we have Q(m) = P(m),

and for every other monomial we have Q(m) = 0.

Lemma 6 There is an algorithm that given an undirected graph G, perfect matchings

M1, . . . , Mr , and a non-negative integer s, runs in time 2O(rs)nO(1), and outputs a

perfect matching M such that |M \ Mi | ≥ s for all i ∈ {1, . . . , r} (if such a matching

exists) with probability at least 2
3

e−rs .

Proof For each i ∈ {1, . . . , r}, we color each edge in E(G)\Mi uniformly at random

using colors {ci,1, . . . , ci,s}. Now we label each edge with a subset of the variable set

Y = {yi, j : i ∈ [r ], j ∈ [s]}. For each edge e, we label it with

L(e) = {yi, j : i ∈ [r ] and e is colored with ci, j in the random coloring for i}.

Let A be the Tutte matrix of G over the field F2[X ], where X = {xe : e ∈ E(G)}.

Let A′ be the matrix obtained from A by replacing each entry of the form xe with

xe · �y∈L(e)y.

Suppose there is a matching M such that |M\Mi | ≥ s for all i ∈ {1, . . . , r}.

Then, for each i ∈ [r ], let {ei,1, . . . , ei,s} ⊆ (M\Mi ) be an arbitrary subset. We say

that {ei,1, . . . , ei,s} is colorful if the edges in {ei,1, . . . , ei,s} gets distinct colors from

{ci,1, . . . , ci,s} in the random coloring for i . Then for each i ∈ [r ], the probability

that {ei,1, . . . , ei,s} is colorful is s!
ss ≥ e−s . For each q ∈ [r ], let Eq be the event

that {eq,1, . . . , eq,s} is colorful. As the random coloring for i ∈ [r ] is different from

the random coloring for j ∈ [r ]\{i}, the events Ei and E j are independent. That

is, E1, . . . , Er are independent events and hence Pr[
⋂r

i=1 Ei ] ≥ e−rs . Therefore,

there is a monomial m in det(A′) with probability at least e−rs such that M = {e ∈

E(G) : xe is a variable in m} and Y is a subset of variables in m.

Now, suppose there is a monomial m in det(A′) such that Y is a subset of variables

in m. Therefore, since for each i ∈ [r ] only the edges in E(G) \ Mi are colored

and {yi, j : j ∈ [s]} ⊆ Y , we have that |M \ Mi | ≥ s. Moreover, by Lemma 5,

{e ∈ E(G) : xe is a variable in m} is a perfect matching in G.

Thus, it is enough to check whether there exists a monomial m in det(A′) such that

all the variables in Y are present in m.

Proposition 11 There is an algorithm, that runs in time 2O(|Y |)nO(1) and it outputs

the following. If there is no monomial in det(A′) that contains Y , then the algorithm

outputs No. If there is a monomial in det(A′) that contains Y , then the algorithm

outputs Z ⊆ X with probability at least 2/3 such that there is a monomial m in

det(A′) with variables in m is exactly equal to Z ∪ Y .

Proof Let {e1, . . . , em} = E(G). Let P(xe1 , . . . , xem , y1,1, . . . , yr ,s) = det(A′). For

each I ⊆ Y , we define P−I (xe1 , . . . , xem , y1,1, . . . , yr ,s) = P(xe1 , . . . , xem , z1,1, . . . ,

zr ,s), where for all i ∈ [r ] and j ∈ [s], zi, j = 0 if yi, j ∈ I and zi, j = yi, j otherwise.

Let

Q = Q(xe1 , . . . , xem , y1,1, . . . , yr ,s) =
∑

I⊆Y

P−I (xe1 , . . . , xem , y1,1, . . . , yr ,s).
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By Proposition 10, the set of monomials in Q are the set of monomial is det(A′)

that contains Y . Our objective is to find out the variables in such a monomial if it exists.

Towards that we consider Q be a polynomial in a field extension F′ of F2 such that the

number of elements in the field F′ is at least t , which we fix later. From the construction

of det(A′), we know that the degree of det(A′) and Q is at most d = n + 2rs. By

Proposition 9, the existence of a required monomial can be tested in polynomial time

with failure probability at most d
t
. But, recall that we need to find out the variables in

such a monomial. Towards that we do the following. Notice that if Q is a polynomial

identically zero, then our answer is No. This can be checked using Proposition 9.

Assume that Q is not identically zero. Let Q1 = Q(0, xe2 , . . . , xem , y1,1, . . . , yr ,s).

If Q1 is not identically equal to zero, then a monomial satisfying the property men-

tioned in the proposition is present in Q1. Otherwise we know that every monomial

with the required property contains the variable xe1 . Again this can be checked using

Proposition 9. So if Q1 is not identically zero, then set Q = Q1. Next, we let

Q2 = Q(xe1 , 0, xe2 , . . . , xem , y1,1, . . . , yr ,s). Again, Q2 is not identically equal to

zero, then a monomial satisfying the property mentioned in the proposition, is present

in Q2. Otherwise we know that every monomial with the required property contains

the variable xe2 . By repeating this process at most m times, we will be able to obtain

all the variables present in the required monomial. Our algorithm will succeed if all

the m + 1 application of Proposition 9 do not fail. Thus, by union bound the fail-

ure probability of is at most (m + 1) d
t
. We set (m + 1) d

t
= 1

3
and this implies that

t = (m + 1)(n + rs). Hence the success probability of our algorithm is at least 2
3

.

Towards the running time analysis, notice that the construction of the polynomial

Q takes time 2|Y |nO(1) and each application of Proposition 9 takes time polynomial

in the size of Q. This implies that the total running time is bounded by 2O(|Y |)nO(1).⊓⊔

Now we run the algorithm in Proposition 11, and get a subset Z ⊆ {xe : e ∈ E(G)}

(if it exists) such that there is a monomial m in det(A′) and the variables in m is exactly

equal to Z ∪ Y with probability at least 2/3. As the initial random coloring of edges

succeeds with probability at least e−rs , the success probability of out algorithm is at

least 2
3

e−rs . If no such monomial exists then the algorithm outputs No. By Lemma 5,

M = {e : xe ∈ Z} is a perfect matching and it is the required output. The running

time of the algorithm follows from Proposition 11. This completes the proof of the

lemma. ⊓⊔

Lemma 7 There is an algorithm that given an undirected graph G, a perfect matching

M, and non-negative integers r , d, s, runs in time 2O(r2s)nO(1), and outputs r perfect

matchings M⋆
1 , . . . , M⋆

r such that |M△M⋆
i | ≤ s for all i ∈ {1, . . . , r}and |M⋆

i △M⋆
j | ≥

d for all distinct i, j ∈ [r ] (if such matchings exist) with probability at least e−rs . If

no such perfect matchings exist, then the algorithm outputs No.

Proof Suppose there exist perfect matchings M1, . . . , Mr such that |M △ Mi | ≤ s for

all i ∈ {1, . . . , r} and |Mi △ M j | ≥ d for all distinct i, j ∈ [r ]. Then we know that∑r
i=1 |M △ Mi | ≤ rs. Let Si = M △ Mi for all i ∈ [r ]. Notice that, as M and Mi are

perfect matchings Si forms a collection of alternating cycles (i.e., edges in the cycles

alternate between M and Mi ). Let S =
⋃r

i=1 Si .
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We do a random coloring on the edges of G using rs colors. That is, we color

each edge of G uniformly at random with a color from {1, . . . , rs}. We say that the

random coloring is good if all the edges in S gets distinct colors. The probability that

the random coloring is good is e−rs .

Now on assume that the random coloring is good. For each i ∈ [r ], let Ci be the

set of colors on the edges Si . Notice that |Ci | = |Si |.

Proposition 12 For any two distinct integers i, j ∈ [r ], |Ci △ C j | ≥ d.

Proof We know that |Mi △ M j | ≥ d. Let Ei = Mi\M j and E j = M j\Mi . Notice

that |Ei | + |E j | ≥ d and Ei ∩ E j = ∅.

Let Ei,1 = Ei ∩ M , Ei,2 = Ei\E j,1, E j,1 = E j ∩ M , and E j,2 = E j\E j,1. As

Ei,1 ⊆ M\M j and Ei,1 ⊆ M ∩ Mi , we have that Ei,1 ⊆ S j \ Si . Similarly E j,1 ⊆

Si \ S j . As Ei,2 ⊆ Mi\(M j ∪ M), we have that Ei,2 ⊆ Si\S j . Similarly, we have

E j,2 ⊆ S j\Si . That is, we prove that Ei,1 ∪ E j,2 ⊆ S j \ Si and E j,1 ∪ Ei,2 ⊆ Si \ S j .

Also, since all the edges in S gets distinct colors and the colors on the edges in Si

and S j are Ci and C j , respectively, we have that |Ci △ C j | ≥ |Ei ∪ E j | ≥ d. This

completes the proof of the proposition. ⊓⊔

Next we prove the reverse direction of the above claim.

Proposition 13 Let Q1 and Q2 be two collections of alternating cycles in G (i.e., the

edges in Qi are alternating between M and E(G) \ M for each i ∈ {1, 2}) such

that following hold: |E(Q1)| = |C1|, |E(Q2)| = |C2|, the edges in E(Q1) uses

distinct colors from C1, and the edges in E(Q2) uses distinct colors from C2. Let

P1 = E(Q1) △ M and P2 = E(Q2) △ M. Then, P1 and P2 are perfect matchings

and |P1 △ P2| ≥ d.

Proof As M is a perfect matching and Q1 is a collection of alternating cycles, we have

that P1 = E(Q1) △ M is a perfect matching. By similar arguments, we have that P2

is a perfect matching. Now we prove that E(Q1) △ E(Q2) ⊆ P1 △ P2. Consider an

edge e ∈ E(Q1) \ E(Q2). We have two cases based on whether e ∈ M or not. In the

first case, assume that e ∈ M . Since e ∈ E(Q1), e ∈ M , and P1 = E(Q1) △ M , we

have that e /∈ P1. Also since e /∈ E(Q2), e ∈ M , and P2 = E(Q2) △ M , we have that

e ∈ P2. Therefore, e ∈ P1 △ P2.

For the second case, we have that e /∈ M . Since e ∈ E(Q1), e /∈ M , and P1 =

E(Q1) △ M , we have that e ∈ P1. Also, since e /∈ E(Q2) and e /∈ M , we have that

e /∈ P2. Therefore, e ∈ P1 △ P2.

By arguments, similar to above, one can prove that an edge e′ ∈ E(Q2)\E(Q1)

also belongs to P1 △ P2. Thus, we proved that E(Q1) △ E(Q2) ⊆ P1 △ P2. Since

|E(Q1)| = |C1|, |E(Q2)| = |C2|, the edges in E(Q1) uses distinct colors from C1,

and the edges in E(Q2) uses distinct colors from C2, we have that |E(Q1)△E(Q2)| ≥

|C1 △ C2| ≥ d. Therefore, |P1 △ P2| ≥ |E(Q1) △ E(Q2)| ≥ d. ⊓⊔

Thus, to prove the lemma, it is enough to find a collection Qi of alternating cycles

such that |E(Qi )| = |Ci |, the edges in E(Qi ) uses distinct colors from Ci , for each

i ∈ [r ]. That is, our algorithm guesses C1, . . . Cr and computes Q1, . . . , Qr . The cost

of guessing C1, . . . , Cr is 2r2s . Now, given Ci , to compute Qi with desired property
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(|E(Qi )| = |Ci |, the edges in E(Qi ) are colored with distinct colors from Ci ), we

design a simple dynamic programming (DP) algorithm. We give a brief outline of

this algorithm below. For each subset L ⊆ Ci and pair of vertices u, v we have table

entries D[L, u, v] and D[L,⊥,⊥] which stores the following. If there is a collection

Q of alternating cycles and an alternating path with u and v as endpoints such that

|E(Q)| = |L| and the edges in E(Q) are colored with distinct colors from L , then

we store one such collection in D[L, u, v]. Otherwise, we store ⊥ in D[L, u, v]. If

there is a collection Q′ of alternating cycles such that |E(Q′)| = |L| and the edges

in E(Q′) are colored with distinct colors from L , then we store one such collection

in D[L,⊥,⊥]. Otherwise, we store ⊥ in D[L,⊥,⊥]. We compute the DP table

entries in the increasing order of the size of L . The base case is when L = ∅. That

is, D[∅,⊥,⊥] = ∅ and D[∅, u, v] = ⊥ for any two vertices u and v. Now, for

any ∅ �= L ⊆ Ci , and two distinct vertices u, v ∈ V (G), we compute D[L, u, v]

and D[L,⊥,⊥] as follows. If there is an edge (x, y) ∈ E(G) such that the color c

of (x, y) belongs to L , and D[L \ {c}, x, y] = Q1 �= ⊥, then we store the graph

induced on E(Q1) ∪ {(x, y)} in D[L,⊥,⊥]. Otherwise we store ⊥ in D[L,⊥,⊥].

Also, if there a vertex w adjacent to v such that the color c of (w, v) belongs to L , and

D[L \ {c}, u, w] = Q′
1 �= ⊥, then we store the graph induced on E(Q′

1)∪ {(w, v)} in

D[L, u, v]. If (u, v) ∈ E(G), the color c of (u, v) belongs to L , and D[L\{c}, u, v] =

Q′
1 �= ⊥, then we store the graph induced on E(Q′

1)∪{(u, v)} in D[L, u, v]. Otherwise

we store ⊥ in D[L, u, v]. At the end we output D[Ci ,⊥,⊥].

We now prove that the computation of D[Ci ,⊥,⊥] is correct. For this we prove

the following statements using induction on |L|.

For any L ⊆ Ci and distinct vertices u and v the following statements hold.

(i) If D[L, u, v] = Q �= ⊥, then Q is a collection of alternating cycles and an

alternating path with u and v as endpoints such that |E(Q)| = |L| and the

edges in E(Q) are colored with distinct colors from L .

(ii) If D[L, u, v] = ⊥, then there is no collection Q of alternating cycles and an

alternating path with u and v as endpoints such that |E(Q)| = |L| and the

edges in E(Q) are colored with distinct colors from L .

(iii) If D[L,⊥,⊥] = Q′ �= ⊥, then Q′ is a collection of alternating cycles such

that |E(Q′)| = |L| and the edges in E(Q′) are colored with distinct colors

from L .

(iv) If D[L,⊥,⊥] = ⊥, then there is no collection Q′ of alternating cycles such

that |E(Q′)| = |L| and the edges in E(Q′) are colored with distinct colors

from L .

The base case is when L = ∅ and the we know that D[∅,⊥,⊥] = ∅ and

D[∅, u, v] = ⊥. Clearly, the statements above are true for L = ∅. Now consider

the induction step.

Case 1: D[L, u, v] = Q. From the steps of the algorithm we know that one of the

following two statements is true:

(a) There is an edge (w, v) ∈ E(G) such that the color c of (w, v) belongs to L , and

D[L \ {c}, u, w] = Q′
1 �= ⊥ and E(Q) = E(Q′

1) ∪ {(w, v)}.
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(b) (u, v) ∈ E(G) such that the color c of (u, v) belongs to L , and D[L\{c},⊥,⊥] =

Q1 �= ⊥ and E(Q) = E(Q′
1) ∪ {(u, v)}.

If statement (a) is true, then by the induction hypothesis, we know that Q′
1 is a

collection of alternating cycles and an alternating path with u and w as endpoints such

that |E(Q′
1)| = |L| − 1 and the edges in E(Q′

1) are colored with distinct colors from

L \{c}. Then, we get that Q is a collection of alternating cycles and an alternating path

with u and v as endpoints such that |E(Q)| = |L| and the edges in E(Q) are colored

with distinct colors from L . The argument when statement (b) is true, is identical to

the above case.

Case 2: D[L, u, v] = ⊥. For the sake of contradiction, suppose there is a collection

Q of alternating cycles and an alternating path with u and v as endpoints such that

|E(Q)| = |L| and the edges in E(Q) are colored with distinct colors from L . Let

(w, v) be the edge in Q which is incident to v and let c be the color of (w, v).

Here we consider the case when u �= w, as the other case is symmetric. Note that

E(Q) \ {(w, v)} induces a graph Q′ which is a collection of alternating cycles and an

alternating path with u and w as endpoints such that |E(Q′)| = |L| − 1 and the edges

in E(Q′) are colored with distinct colors from L \ {c}. This implies that, by induction

hypothesis, D[L \ {c}, u, w] �= ⊥. Thus, from the steps of the algorithm, we get that

D[L, u, v] �= ⊥ which is a contradiction to our assumption.

Case 3: D[L,⊥,⊥] = Q′ �= ⊥. The argument for this case is similar to that of case

1.

Case 2: D[L,⊥,⊥] = ⊥. The argument for this case is similar to that of case 2.

As the number of table entries for D[., ., .] is upper bounded by 2rs+1n2, the running

time to compute Qi is 2rsnO(1). We have already mentioned that the cost of guessing

C1, . . . , Cr is 2r2s . Therefore, the total running time to compute the required r perfect

matchings is 2O(r2s)nO(1). ⊓⊔

Finally, we put together both the lemmas and prove the main theorem of the section.

Theorem 6 There is an algorithm that given an instance of Diverse Perfect

Matchings, runs in time 22O(kd)
nO(1) and outputs the following: If the input is a

No-instancethen the algorithm outputs No. Otherwise the algorithm outputs Yeswith

probability at least 1 − 1
e
.

Proof Let (G, k, d) be the input instance. Our algorithm A has two steps. In the

first step of A we compute a collection of matchings greedily such that they are far

apart using Lemma 6. Towards that first we run an algorithm to compute a maximum

matching in G and let M1 be the output. If M1 is not a perfect matching we output

No and stop. Next we iteratively apply Lemma 6 to compute a collection of perfect

matchings that are far apart. Formally, at the beginning of step i , where 1 ≤ i < k, we

have perfect matchings M1, . . . , Mi such that |M j \ M j ′ | ≥ 2k−i d for any two distinct

j, j ′ ∈ {1, . . . , i}. Now, we apply Lemma 6 with r = i and s = 2k−i−1d and it will

either output a matching Mi+1 such that |Mi+1\M j | ≥ 2k−i−1d for all j ∈ {1, . . . , i},

or not. If no such matching exists, then the first step of the algorithm A is complete. So

at the end of the first step of the algorithm A, we have perfect matchings M1, . . . , Mq ,

where q ∈ {1, . . . , k} such that

(i) for any two distinct integers i, j ∈ {1, . . . , q}, |Mi \ M j | ≥ 2k−qd, and
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(ii) if q �= k, then for any other perfect matching M /∈ {M1, . . . , Mq}, |M\M j | ≤

2k−q−1d.

If q = k, then {M1, . . . , Mk} is a solution to the instance (G, k, d), and hence our

algorithm A outputs Yes. Now on, we assume that q ∈ {1, . . . , k − 1}. Statements (i)

and (i i), and Observation 4 imply that

(i) for any two distinct integers i, j ∈ {1, . . . , q}, |Mi △ M j | ≥ 2k−q+1d, and

(iv) for any perfect matching M /∈ {M1, . . . , Mq}, |M △ M j | < 2k−qd.

Statements (i i) and (iv), and Observation 3 imply the following claim.

Proposition 14 For any perfect matching M, there exists a unique i ∈ {1, . . . , q} such

that |M △ Mi | < 2k−qd.

Let M = {M⋆
1 , . . . , M⋆

k } is a solution to the instance (G, k, d). Then, by Proposi-

tion 14, there is a partition of M into M1⊎. . .⊎Mq (with some blocks possibly being

empty) such that for each i ∈ {1, . . . , q}, and each M ∈ Mi , |M △ Mi | ≤ 2k−qd.

Thus, in the second step of our algorithm A, we guess r1 = |M1|, . . . , rq = |Mq |

and apply Lemma 7. That is, for each i ∈ {1, . . . , q} such that ri �= 0, we apply

Lemma 7 with M = Mi , r = ri , and s = 2k−qd. Then for each i ∈ 1, . . . , q , let the

output of Lemma 7 be Ni,1, . . . , Nri
. Clearly |Ni, j △ Ni, j ′ | ≥ d for any two distinct

j, j ′ ∈ {1, . . . , ri }. Observation 3 and statement (i i i) implies that for any two distinct

i, j ∈ {1, . . . , q}, the cardinality of the symmetric difference between a matching in

{Ni,1, . . . , Ni,ri
} and a matching in {N j,1,...,N j,r j

} is at least d.

If algorithm A computes a solution in any of the guesses for r1, . . . , rd , then we

output Yes. Otherwise we output No. As the number of choices for r1, . . . rk is upper

bounded by kO(k), from Lemma 6 and Lemma 7 we get that the running time of A is

22O(kd)
nO(1) and the success probability is at least 2−2ckd

for some constant c. To get

success probability 1 − 1/e, we do 22ckd
many executions of A and output Yes if we

succeed in at least one of the iterations and output No otherwise. Thus, the running

time of the overall algorithm is 22O(kd)
nO(1). ⊓⊔

7 Conclusion

In this work we take up weighted diverse variants of two classical matroid problems

and the unweighted diverse variant of a classical graph problem. We first show that the

two diverse matroid problems are NP-hard, and that the diverse graph problem cannot

be solved in polynomial time even for the smallest sensible measure of diversity. We

then show that all three problems are FPT with the combined parameter (k, d) where

k is the number of solutions and d is the diversity measure.

We conclude with a list of open questions:

• In this work we show that the unweighted, counting variant of Weighted Diverse

Bases does not have a polynomial-time algorithm unless P = NP (Theorem 7).

This is the case when all the weights are 1 and d = 1 or d = 2. Both the weighted

and unweighted variants can be solved in polynomial time when k = 1 (the greedy
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algorithm) and k = 2 ((weighted) matroid intersection). What happens for larger,

constant values of d and/or k? Till what values of d, k does the problem remain

solvable in polynomial time? These questions are interesting also for special types

of matroids. For instance, is there a polynomial-time algorithm that checks if an

input graph has three spanning trees whose edge sets have pairwise symmetric

difference at least d, or is this already NP-hard?

• A potentially easier question along the same vein would be: we know from The-

orem 7 that Weighted Diverse Bases is unlikely to have an FPT algorithm

parameterized by d alone. Is Weighted Diverse Bases FPT parameterized by

k alone?

• By the results of Bérczi, Csáji, and Király [4], we have that Weighted Diverse

Common Independent Sets is already NP-hard for unit weights and k = 2.

Thus, the problem is para-NP-hard when parameterized by k. Is Weighted

Diverse Common Independent Sets FPT when parameterized by d?
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