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Cluster distribution kinetics is adopted to explore the kinetics of polymer crystallization. Population

balance equations based on crystal size distribution and concentration of amorphous polymer

segments are solved numerically and the related dynamic moment equations are also solved. The

model accounts for heterogeneous or homogeneous nucleation and crystal growth. Homogeneous

nucleation rates follow the classical surface-energy nucleation theory. Different mass dependences

of growth and dissociation rate coefficients are proposed to investigate the fundamental features of

nucleation and crystal growth. A comparison of moment solutions with numerical solutions

examines the validity of the model. The proposed distribution kinetics model provides a different

interpretation of the familiar Avrami equation. © 2005 American Institute of Physics.
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I. INTRODUCTION

Since the discovery of crystallization of thin lamellar

polymer crystals in solution,
1

the study of polymer crystalli-

zation has received considerable attention. Polymer crystal-

lization controls the macroscopic structure of the material,

and thereby determines the properties of final polymer

products.
2,3

The morphology of polymer crystals is different

from that of crystals consisting of simple molecules, mainly

due to the difference between the chain connectivity in poly-

mers and the assemblies of simple molecules.
4

This not only

affects the equilibrium crystal structures but also the kinetics

of crystal growth. When the system is cooled from the equi-

librium melting temperature Tm to a lower crystallization

temperature, the polymer crystals can form two-dimensional

s2Dd lamellar structures in both melt and solution
5

via the

stages: nucleation, lamellae growth, and spherulite aggrega-

tive growth.
6

The formation of three-dimensional crystal

structure from a disordered state begins with nucleation and

involves the creation of a stable nucleus from the disordered

polymer melt or solution.
7

Depending on whether any second

phase, such as a foreign particle or surface from another

polymer, is present in the system, the nucleation is classified

as homogenous nucleation sprimary nucleationd or heteroge-

neous nucleation ssecondary nucleationd.8 In primary nucle-

ation, creation of the stable nucleus by intermolecular forces

orders the chains in a parallel array. As the temperature goes

below the melting temperature Tm, the molecules tend to

move toward their lowest energy conformation, a stiffer

chain segment, and this will favor the formation of ordered

chains and thus nuclei. Facilitating the formation of stable

nuclei, secondary nucleation is also involved at the begin-

ning of crystallization through heterogeneous nucleation

agents, such as dust particles. Following nucleation, crystals

grow by the deposition of chain segments on the nucleus

surface. This growth is controlled by a small diffusion coef-

ficient at low temperature and by thermal redispersion of

chains at the crystal/melt interface at high temperature.
9

Thus

crystallization can occur only in a range of temperatures be-

tween the glass transition temperature Tg and the melting

point Tm, which is always higher than Tg.

As a consequence of their long-chain nature, subsequent

entanglements, and particular crystal structure, polymers

crystallized in the bulk state are never totally crystalline and

a fraction of the polymer is amorphous. Polymers fail to

achieve complete crystallinity because polymer chains can-

not completely disentangle and align properly during a finite

period of cooling. Lamellar structures can be formed, but a

single polymer chain may pass through several lamellae with

the result that some segments of the polymer chain are crys-

tallized into the lamellae and some parts of the polymer

chain are in the amorphous state between adjacent lamellae.

A well-known description of crystallization kinetics is

the heuristic Avrami phase transition theory. Based on work

of Avrami,
10

who adapted the formulations intended for met-

allurgy to the needs of polymer crystallization, the original

derivations were simplified by Evans
11

and rearranged for

polymer crystallization by Meares
12

and Hay.
13

For the bulk

crystallization of polymers, the crystallization kinetics can be

represented as

1 − X = e−Vt, s1.1d

where X is the degree of crystallization and Vt is the volume

of crystallization material, which should be determined by

considering the following two cases: sad the nuclei are pre-

determined, that is, they all develop at once on cooling the

polymer, and sbd the crystals nucleate sporadically. For a

spherical crystal in case sad,
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dVt = 4pr2Ldr , s1.2d

where r represents the radius of the spherical crystal at time

t and L is the number of nuclei. Assuming the radius grows

linearly with time, r=kt, upon integration of Eq. s1.2d and

substitution into Eq. s1.1d, one obtains

1 − X = e−Kt3, s1.3d

where K= s4/3dpk3L is the growth rate. For sporadic nucle-

ation, case sbd, the above argument is followed, but the num-

ber of spherical nuclei is allowed to increase linearly with

time at rate u. Then nucleation from time ti to time t will

create a volume increase of

dVt = s4/3dpk3st − tid
3udti. s1.4d

Upon integration of Eq. s1.4d between ti=0 and t, and sub-

stitution into Eq. s1.1d, one obtains

1 − X = e−Kt4, s1.5d

where K= s1/3dpk3u. The equations can be generalized by

replacing the power of t with the Avrami exponent n,

1 − X = e−Ktn. s1.6d

Thus, according to these arguments, the Avrami exponent n

depends not only on the structure of the crystal but also on

the nature of nucleation.
14

Though numerous models of crystal growth kinetics

have been developed,
15

the Avrami equation with its basis in

rather empirical ideas is still applied to polymer crystalliza-

tion. Our aim is to investigate if the Avrami equation can be

established by a more fundamental approach to crystalliza-

tion that incorporates homogeneous and heterogeneous

nucleation, uneven growth of crystals into a particle size dis-

tribution, and final Ostwald ripening of the crystal size dis-

tribution. The distribution kinetics model
16,17

of nucleation,

growth, and aggregation results in an S-shape curve of crys-

tallinity versus time. Considering the deposition of polymer

chain on a crystal surface is similar to monomer attachment

on a cluster, we adapt this kinetics model to explore polymer

crystallization. An advantage of this model is the representa-

tion by rate coefficients of the microscopic polymer crystal-

lization kinetics, making the model straightforward to under-

stand, yet based on modern molecular concepts. To examine

the validity of this model, we will compare the results with

the Avrami equation
18

and also relate the parameters of the

two models.

II. DISTRIBUTION KINETICS
OF POLYMER CRYSTALLIZATION

Homogenous nucleation can occur when the solution is

supersaturated and thus metastable. Because of the great in-

crease of the colliding probability among solute molecules in

supersaturated solution, density fluctuations increase in in-

tensity and frequency allowing nuclei to form sporadically.

Classical homogeneous nucleation in the capillarity

approximation
19

is based on the sum of surface energy and

formation free energy for a spherical cluster of radius r,

Wsrd = 4pr2s − s4/3dpr3sr/xmdkBT ln S . s2.1d

Here, s is the crystal interfacial energy and DG=−kBT ln S is

the chemical potential difference between the two phases

sthe polymer solution or melt and crystal phased in terms of

supersaturation S. The typical structure of polymer crystal is

thin lamellae and because of the equal probability of depo-

sition in the two lateral directions, an equilateral lamellar

structure is proposed. The total energy of such a 2D lamellar

crystal is presented as

Wsad = 4aLs − a2Lsr/xmdkBT ln S , s2.2d

where a is the lateral length and L is the thickness of the

lamellae. Obviously, the energy Wsad of a crystal increases

with a and then decreases from the maximum value W* at

the critical lamellar length,

a* = 2sxm/srkBT ln Sd . s2.3d

Thus the maximum energy of the crystal, by replacing S with

ms0d /m
`

s0d
according to the definition of supersaturation, is

represented as

W* = 4xmLs2/frkBT ln sms0d/m`
s0ddg . s2.4d

Here the local-equilibrium concentration is m
eq

s0d
and the solu-

bility of a flat surface is m
`

s0d
. The expression for the nucle-

ation rate
20

is derived from the flux over the energy barrier at

the critical nucleus size,

I = kn exps− W*/kBTd s2.5d

with prefactor

kn = sms0dd2s2sxm/pd1/2r−1 s2.6d

written in terms of monomer concentration ms0d and crystal

density r.

For a crystal with curved surface, the local-equilibrium

interfacial concentration at the crystal surface m
eq

s0d
is related

to the solubility of a flat surface m
`

s0d
by the Gibbs–Thomson

equation,

meq
s0d = m`

s0d expsVd , s2.7d

where V=2sxm /rrkBT in terms of monomer molecular mass

xm, surface energy s, radius of curvature r, Boltzmann con-

stant kB, and absolute temperature T. For a 2D crystal

lamella, however, the growth front is a flat surface and the

radius of curvature r is infinite. Thus, consistent with Eq.

s2.7d, the difference between local-equilibrium concentration

m
eq

s0d
and the solubility of a flat surface m

`

s0d
is negligible

because V vanishes as r approaches infinity.

The crystal mass distribution is defined so that csx , tddx

represents the molar concentration of crystals having values

of mass x in the range of x to x+dx at time t. Integral forms

of the rate expressions in the population balance equation

lead to moment calculations of the crystals and monomers.

The general moments are defined as integrals of the crystal

distribution over x,

064901-2 Yang, McCoy, and Madras J. Chem. Phys. 122, 064901 ~2005!
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csndstd = E
0

`

csx,tdxndx . s2.8d

The zeroth moment sn=0d is the total number sor concentra-

tiond of crystals; the first moment stands for the mass con-

centration of the crystals. The average crystal mass is the

ratio of first moment over zeroth moment, cavgstd
=cs1dstd /cs0dstd. The monomers are assumed monodisperse

with moments msndstd=xm
n ms0dstd.

Similar to cluster growth in the distribution kinetics

model,
20

crystallization is the gradual building up of mono-

mer on the nucleus surface in a melt or solution. A general

representation of chain deposition on the crystal surface is

Csxd + Msxmd⇋
kd

kg

Csx + xmd . s2.9d

The rate coefficients kg and kd are for growth and dissocia-

tion, respectively. Different from general cluster distribution

theory, crystal breakage and aggregation are usually not con-

sidered in polymer crystallization.

The population balance equations
21

that govern the dis-

tributions of crystals and monomer are

]csx,td/]t = − kdcsx,td + kdE
x

`

csx8,tddfx − sx8 − xmdgdx8

− kgcsx,tdE
0

`

ms0ddsx8 − xmddx8

+ kgms0dE
0

x

csx8,tddsx − xmddx8 + Idsx − x*d

s2.10d

and

]msx,td/]t = − kgms0dE
0

`

csx8,tddx8 + kdE
x

`

csx8,td

3dsx − xmddx8 − Idsx − x*dx*/xm, s2.11d

where the homogeneous nucleation rate for crystals of criti-

cal nucleus mass x* is I dsx−x*d. The distribution of the

crystals changes according to Eq. s2.10d, which becomes,

when the integrations over the Dirac distributions are per-

formed, the finite-difference differential equation,

]csx,td/]t = − kdcsx,td + kdcsx + xmd − kgcsxdms0d

+ kgcsx − xmdms0d + I dsx − x*d . s2.10ad

A. Moment methods

The general moment equations are determined by apply-

ing the operation e0
`f gxndx to Eqs. s2.10d and s2.11d, which

yields

dcsnd/dt = − skd + kgms0ddcsnd + o
j=0

n

s j
nd

3csjdxm
n−jfs− 1dn−jkd + kgms0dg + Ix*n s2.12d

and

dms0d/dt = skd − kgms0ddcs0d − Ix*/xm. s2.13d

For n=0 and 1 the first two moment equations for crystals

are

dcs0d/dt = I , s2.14d

dcs1d/dt = − xmskd − kgms0ddcs0d + Ix*. s2.15d

Multiplying dms0d /dt by xm gives monomer mass, and then

Eqs. s2.13d and s2.15d satisfy the mass balance, xmdms0d /dt

=−dcs1d /dt. As time approaches infinity, the nucleation rate

will vanish as the supersaturation approaches unity, and a

thermodynamic equilibrium condition will finally be

achieved. At equilibrium or steady state the derivative with

respect to time equals zero, and by Eq. s2.13d or s2.15d, the

total concentration of polymer chains in solution becomes

meq
s0d = kd/kg. s2.16d

We define the dimensionless quantities,

S = ms0d/meq
s0d, Csnd = csnd/meq

s0dxm
n , u = tkgmeq

s0d,

s2.17d
J = I/smeq

s0dd2kg.

The moment equations can be written in dimensionless form,

dS/du = s1 − SdCs0d − sx*/xmdJ , s2.18d

dCs0d/du = J , s2.19d

dCs1d/du = − s1 − SdCs0d + sx*/xmdJ . s2.20d

Microscopic reversibility provides the thermodynamic equi-

librium, Seq=1, in Eq. s2.18d, as dS /du=0 and J=0 at the

end of crystallization. For homogeneous nucleation, the ini-

tial conditions are Ssu=0d=S0, Cs0dsu=0d=0, Cs1dsu=0d=0,

meaning that no preexisting nuclei are involved. The source

term J represents the nucleation rate of crystals of mass x*.

The mass of a critical nucleus relative to the monomer

mass depends solely on the interfacial energy and the

supersaturation,
20

x * /xm = sv/ln Sdd, s2.21d

where d represents the dimension of the crystal structure and

v presents the ratio of interfacial energy to thermal energy,

written as

v = s4pr/3xmd1/32sxm/rkBT s2.22d

for 3D spherical structures and

v = 2ssxmL/rd1/2/kBT s2.23d

for 2D lamellar systems. The critical nucleus mass increases

with time as supersaturation S decreases. The scaled mass

balance equation in a closed system follows from Eqs. s2.18d
and s2.20d,

Cs1dsud + Ssud = C0
s1d + S0, s2.24d

where C
0

s1d
is the initial mass of crystals in polymer solution

or melt, representing heterogeneous nucleation nuclei or

seeds. For homogeneous nucleation, C
0

s1d
=0. Based on Eq.

064901-3 Distribution kinetics of polymer crystallization J. Chem. Phys. 122, 064901 ~2005!
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s2.5d, the homogeneous nucleation rate is written in dimen-

sionless form as

J = aS2 expf− sd − 1d−1vd/sln Sdd−1g s2.25d

with a= s2sxm /pd1/2 /rkg. By Eq. s2.21d, the number of

monomers included in the critical nucleus, x* /xm, is written

in terms of supersaturation S, for the specific lamellar struc-

ture,

x*/xm = v2/sln Sd2. s2.26d

The substitution of the scaled nucleation rate yields the fully

dimensionless equations for 2D lamellae system,

dS/du = s1 − SdCs0d − av2S2 exps− v2/ln Sd/sln Sd2,

s2.27d

dCs0d/du = aS2 exps− v2/ln Sd , s2.28d

and

dCs1d/du = − s1 − SdCs0d + av2S2 exps− v2/ln Sd/sln Sd2.

s2.29d

For 3D spherical crystal growth, however, the difference

between the local-equilibrium interfacial concentration at the

curved crystal surface, m
eq

s0d
, and the solubility of a flat sur-

face, m
`

s0d
, cannot be neglected. The Gibbs–Thomson factor

V in Eq. s2.7d is written in term of crystal size x /xm,

V = v/sx/xmd1/d, s2.30d

where d is the dimension of the crystal structure and v is the

interfacial energy. Instead of being scaled by m
eq

s0d
as in 2D

systems, the dimensionless quantities are redefined as

S = ms0d/m`
s0d, Csnd = csnd/sm`

s0d
xm

n d, u = tkgm`
s0d,

s2.31d
J = I/sm`

s0dd2kg.

Equation s2.13d–s2.15d are moment equations, so the single

crystal size x /xm is approximated by average size of crystal

Cavg. Thus Eqs. s2.13d–s2.15d are scaled in the form

dS/du = s− S + eVadCs0d − av3S2

3expf− v3/2sln Sd2g/sln Sd3, s2.32d

dCs0d/du = aS2 expf− v3/2sln Sd2g , s2.33d

and

dCs1d/du = − s− S + eVadCs0d + av3S2

3expf− v3/2sln Sd2g/sln Sd3, s2.34d

where Va=v / sCavgd1/3 represents the average Gibbs–

Thomson effect.

The crystallinity is defined as the ratio of the mass crys-

tallized at time t divided by the total mass crystallized,

X = sCs1d − C0
s1dd/sCeq

s1d − C0
s1dd . s2.35d

The ordinary differential moment equations are readily

solved by standard software.

B. Numerical methods

The growth and dissociation rate coefficients are as-

sumed constant in the above moment method, but more gen-

erally, the rate coefficients are power law expressions for the

mass dependence.
20

For crystal growth, the rate coefficient

may be written as

kgsxd = kgxl, s2.36d

where kg is a prefactor whose units are determined by the

power l. The dissociation rate is determined by applying

microscopic reversibility for the growth process,

kdsxd = meq
s0dkgsxd . s2.37d

The exponent l equal to 0, 1 /3, and 2/3 represents surface-

independent, diffusion-controlled, and surface-controlled

deposition rates, respectively.
20

We define dimensionless quantities
21

consistent with

Eq. s2.17d,

j = x/xm, u = tkgm`
s0d

xm
l , S = ms0d/m`

s0d,

s2.38d
C = cxm/m`

s0d, Csnd = csnd/m`
s0d

xm
n , J = I/kgm`

s0d
xm

l ,

and note that j is the number of monomers in a crystal. The

time u, crystal size distribution Csj ,ud, and monomer con-

centration Ssud are scaled by the equilibrium monomer con-

centration m
`

s0d
. Substitution of Eq. s2.38d into Eqs. s2.10d

and s2.11d yields population balance equations in dimension-

less form,

dSsud/du = f− Ssud + eVagCsld + Jj* s2.39d

and

]Csj,ud/]u = Ssudf− jlCsj,ud + sj − 1dlCsj − 1,udg

− expfVsjdgjlCsj,ud + expfVsj + 1dg

3sj + 1dlCsj + 1,ud − Jdsj − j*d , s2.40d

where Vsjd is related to the crystal dimension d,
20

Vsjd = v/j1/d. s2.41d

Since Eq. s2.39d is a moment equation, Va is related to the

average number of monomers in the crystal Cavg,

Va = v/sCavgd1/d. s2.42d

We note that moment equations cannot be derived because of

j in the exponential term. Thus, moment methods are not

applicable for l.0 and numerical schemes have to be em-

ployed to solve the equations.

C. Heterogeneous nucleation

To promote nucleation in supersaturated liquid or glass,

small impurity ssecond phased particles are often introduced

deliberately. These impurity particles, acting as nucleation

seeds, grow by depositing monomer on their surface. The

activation energy for homogeneous nucleation presents a sig-

nificant barrier for stable nuclei to be formed, whereas het-

erogeneous nucleation is limited only by monomer diffusion

to the solid surfaces. For these ideal conditions, homoge-

neous nucleation would be negligible and heterogeneous

064901-4 Yang, McCoy, and Madras J. Chem. Phys. 122, 064901 ~2005!
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nucleation dominant, the case we now consider. For hetero-

geneous nucleation, we set I=0, thus the growth rate of the

number of crystals, dCs0d /du, equals zero, and the population

balance equations reduce to a single ordinary differential

equation. For the case of V=0 sflat surfaced,

dS/du = s1 − SdC0
s0d, s2.43d

where C
0

s0d
is the number of nucleation agents. The exact

solution, given the initial condition Ssu=0d=S0, is written as

S = 1 + sS0 − 1dexps− C0
s0dud . s2.44d

Consistent with the crystallinity definition, Eq. s2.35d, and

mass conservation, Eq. s2.24d, the crystallinity for heteroge-

neous nucleation is expressed in terms of supersaturation S

and scaled time u,

X = fS0 − Ssudg/sS0 − Seqd . s2.45d

Substitution of Eq. s2.44d into Eq. s2.45d results directly in

the crystallinity versus time evolution equation,

X = 1 − exps− C0
s0dud , s2.46d

which is the Avrami equation with growth rate K=c
0

s0d
kg and

Avrami exponent n=1.

III. RESULTS AND DISCUSSION

The flat growth surface of lamellar crystal simplifies

polymer nucleation and growth into readily solved moment

equations by reducing the Gibbs–Thomson effects. These

moment differential equations, Eqs. s2.27d–s2.29d, are solved

by NDSOLVE in Mathematica® for various values of the pa-

rameters. The parameter v represents the ratio of interfacial

energy to thermal energy sEq. s2.22dd and, based on pub-

lished values for the interfacial energy,
22

is chosen to span

two orders of magnitude, 0.1–10. The nucleation rate prefac-

tor a, chosen to span widely from 0.0001 to 100, depends on

the combination of the liquid-solid interfacial energy s,

monomer molecular mass xm, solid phase density r, and

growth rate coefficient kg. For homogeneous nucleation, the

initial source term C
0

s0d
is set to zero. An initial condition of

S0=50 is chosen to minimize the effects of denucleation in

the computation.

Figure 1 presents the time dependence of the key vari-

ables in polymer crystallization, as computed via distribution

kinetics. The time evolutions of supersaturation S fFig. 1sadg,
number of crystals Cs0d fFig. 1sbdg, the average number of

crystallized monomers Cavg fFig. 1scdg, and the degree of

crystallinity X fFig. 1sddg are shown at various values of a
for the 2D system. A typical S-shape curve of polymer crys-

tallization is confirmed in Fig. 1sad. As the prefactor a in-

creases, the overall crystallization rate increases, which is

shown by the time needed to reach the steady state. A large a
also leads to a large number of crystals at equilibrium fFig.

1sbdg. The average number of monomers in the crystal at

equilibrium Cavg decreases as a rises fFig. 1scdg, since large

a means a greater nucleation rate and results in a larger

number of crystals at equilibrium. The prefactor a also has a

negative influence on the induction time of crystallization

because a large initial nucleation rate will shorten the induc-

tion time. The crystallinity time dependence fFig. 1sddg is a

mirror image of the supersaturation time evolution fFig.

TABLE I. Effect of a on Avrami exponent n for l=0, v=5, S0=50, and

C
0

s0d
=0.

a n s2Dd n s3Dd

10−4 2.20 1.00

10−2 2.17 1.23

10−1 2.10 1.46

100 1.44 1.00

102 1.00 1.00

FIG. 1. Time evolution of S, Cs0d, Cavg, and X as a varies among 10−1, 10−2,

10−3, and 10−4 with v=5, l=0.
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1sadg. Following a S-shape curve, as observed in experi-

ments, the crystallinity evolves to unity as supersaturation

decreases to the equilibrium state.

Because the plotted experimental data and simulations

are not strictly straight lines, a defined method is needed to

determine the slopes. The straight part of most plots begins

at X=0.1 and ends at X=0.9, and includes the most signifi-

cant range of data. We therefore used points corresponding to

this interval in the measurement of slopes reported in

Tables I–III.

The effects of a on the Avrami exponent are compared

for 2D and 3D systems in Fig. 2. The interfacial energy v is

set to 5, a surface-independent growth and dissociation rates

is proposed sl=0d, and the prefactor a is chosen to span

widely from 10−4 to 102. According to Eq. s1.6d, the Avrami

exponent n is the slope of the double logarithm plot of

−lns1−Xd versus scaled time u. Figure 2 presents the Avrami

plots for 2D and 3D systems as a varies from 0.0001 to 100.

In contrast to the Avrami equation, these plots are not strictly

straight lines, but curve slightly up at the beginning of crys-

tallization and down at the final stage of crystallization.

Curving up at the beginning is caused by the induction time,

and the final curving down shows the approach to saturation.

Hay
13

reported that the Avrami equation provided a poor

approximation at the final stage of crystallization because

experimental data deviated from the straight line by curving

down. We conclude that the distribution kinetics model, by

accurately predicting this behavior, more realistically repre-

sents the curve.

In the 2D system, an apparent slope difference of the

Avrami plots is observed. The slope value for each plot is

measured and tabulated in Table I. We note the slope in-

creases from 1.00 at a=102 to 2.20 at a=10−4. However,

when a is less than 10−4, the lines move horizontally right

and the slope variation is too small to be measured. All plots

collapse into one straight line when a is greater than 102. In

3D a smaller slope difference is observed fFig. 2sbdg. The

slope increases as a varies from 10−4 to 0.1, and drops down

to 1.00 as a increases to 1. When a is greater than unity or

less than 10−4, no measurable slope change. All the plots

with a greater than 1.0 collapse into one straight line and all

the plots with a less than 10−4 are only transposed horizon-

tally.

The ratio of interfacial to thermal energy, v influences

nucleation and growth. By moment computations, the effects

of v are investigated for the 2D and 3D systems sFig. 3d.
Figure 4 shows results of numerical computations for v

equal to 4, 5, and 6. The dotted lines represent 2D while the

solid lines represent the 3D solution. The slopes for Figs. 3

TABLE II. Effect of v on Avrami exponent n for a=0.1, l=0, S0=50, and

C
0

s0d
=0.

v n s2Dd n s3Dd

0.1 1.97 1.9

4.0 1.80 1.48

5.0 1.77 1.46

6.0 1.76 1.35

7.0 1.75 1.12

10 1.75 ¯

TABLE III. Effect of l on Avrami exponent n for a=0.1, v=5, S0=50,

C
0

s0d
=0.0001, and C

0

s1d
=0.

l n s2Dd n s3Dd

0 1.70 1.44

1/3 2.00 1.64

2/3 3.09 2.57

0.93 5.27 4.29

0.98 5.32 4.50

FIG. 2. The effects of a on sad 2D and sbd 3D crystallinity plots with v

=5, l=0, S0=50, and C
0

s0d
=0.

FIG. 3. The effects of v on sad 2D and sbd 3D crystallinity plots by a

moment solution with a=0.1, l=0, S0=50, and C
0

s0d
=0.
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and 4 are reported in Table II. The slope variation as v

changes is quite small in both 2D and 3D, and a larger slope

is observed in the 2D case. According to Eq. s2.26d, a small

value of v leads to a small critical size of crystal at constant

supersaturation, and finally leads to a large nucleation rate.

Increasing v delays nucleation and the decrease of super-

saturation. Figure 3sad presents the double logarithm plots as

v varies among 0.1, 4, 7, and 10 for the 2D system. Different

slopes, ranging from 1.75 at v=10 to 1.97 at v=0.1, are

observed sTable IId. Similar to the effect of the nucleation

prefactor a, the influence of interfacial energy is notable

only if v is small. The slope difference disappears when v is

large, e.g., the slope at v=7 is almost same as at v=10. A

reasonable explanation is that the crystal growth becomes the

dominant term if v is large, since the nucleation term expo-

nentially decreases with v2 as shown in Eq. s2.25d. In the 3D

system, a more noticeable slope variation is observed at dif-

ferent v. The slope varies from 1.90 to 1.12 as v changes

from 0.1 to 7. The explanation for the greater influence of v

in the 3D system, according to Eq. s2.25d, is that the nucle-

ation rate is a function of v3 in 3D and of v2 in 2D. Com-

paring the numerical and the moment results sFigs. 3 and 4,

respectivelyd reveals that the numerical result of crystallinity

reaches an asymptotic value at large time while the moment

result continues to increase. This is the influence of denucle-

ation, which is ignored in the moment computations.

Different values of a and v have the expected effects as

shown in Fig. 5, larger values of a shift the curves to smaller

times, whereas larger values of v give smaller times. These

findings for 2D are similar to 3D results. Figure 6 shows that

the effect of increasing the initial supersaturation is to shift

the Avrami curves to smaller times. Changing S0 has little

influence on the slope, which increases from 1.69 to 1.78

when S0 increases from 5 to 100.

The exponent of growth and dissociation rates l is 0,

1 /3, and 2/3, for surface-independent, diffusion-controlled,

and surface-controlled deposition rate, respectively sFig. 7d.
To explore more thoroughly the effect of l, we included l

=0.93 and 0.98 in Table III. A possible explanation for the

larger l s.2/3d is the increasing mass dependence of depo-

sition rate caused by shear force during fluid movement or

by microscopic structural changes.
23

Equations s2.39d and

s2.40d were solved at the different values of l by a numerical

procedure described previously.
20

According to Eqs. s2.39d
and s2.42d, a nonzero initial condition of C

0

s0d
should be cho-

sen to avoid singularities near t=0 in the numerical compu-

tation. In our simulation, S0=50, C
0

s0d
=0.0001, and C

0

s1d
=0

are the initial conditions. Figures 7sad and 7sbd present the

effects of l on 2D and 3D systems, respectively. Different

FIG. 4. The comparison of crystallinity plots by numerical solution for 2D

sdotted lined and 3D ssolid lined with l=0, a=0.1, and S0=50.

FIG. 5. The effects of different values of a and v on 2D crystallinity with

l=0, S0=50, and C
0

s0d
=0; I—a=100, v=0.001; II—a=0.001, v=0.001;

III—a=100, v=10; IV—a=0.001, v=10.

FIG. 6. The effect of initial supersaturation S0 on 2D crystallinity with a

=0.1, v=5, l=0, and C
0

s0d
=0.

FIG. 7. The effects of l with a=0.1, v=5, S0=50, C
0

s0d
=0.01, and C

0

s1d
=1

for sad 2D and sbd 3D.
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slopes are confirmed as l varies in both 2D and 3D cases, as

shown in Table III. The range of slope values is consistent

with reported experimental measurements
24

for the Avrami

exponent n in Eq. s1.6d, 1ønø4. Avrami exponents greater

than 4 are occasionally reported; for example, slopes of up to

5.0 for syndiotactic polystyrene crystallization were found

by Yoshioka and Tashiro,
23

who suggested conelike spheru-

lite growth as a potential explanation for the large value of n.

The influence of geometry dimension is also confirmed

by comparing the slopes for 2D and 3D systems. Smaller

slopes are found in the 3D system, as shown by Tables I–III.

The parametric effects are also different for 2D and 3D sys-

tems. We note that v has less effect on the Avrami exponent

in the 2D system, whereas a has a larger effect. Compared

with the effects of the other parameters, l has a substantial

influence on the Avrami exponent.

A comparison of moment methods and numerical meth-

ods is made for the 2D system to investigate the effects of

denucleation sFig. 8d. Figure 8sad presents the comparison of

moment and numerical solutions as a varies. Figure 8sbd
shows the comparison of these two solutions, both for flat

growth surfaces, at different v. The dotted line presents the

moment simulation and the solid line is the numerical solu-

tion. Although the two solutions are consistent at the begin-

ning of crystallization, an increasing discrepancy is observed

near the end of crystallization, where crystallinity X is about

0.99. This discrepancy caused by the increasing effect of

denucleation that can only be computed numerically. De-

nucleation, the reverse process of nucleation, results from the

stability shift of formed crystals from stable to unstable. The

reduction of supersaturation during crystallization, according

to Eq. s2.26d, increases the nucleus critical size. As the su-

persaturation decreases, nuclei smaller than the critical size

become unstable and dissolve instantaneously,
20

while nuclei

larger than the critical size keep growing. At the beginning of

crystallization when the supersaturation is large, the denucle-

ation rate, compared with nucleation rate, is too small to

have a noticeable effect on the time evolution of degree of

crystallinity.
20

As the crystal keeps growing, however, more

and more nuclei become unstable and tend to dissolve be-

cause of the increasing critical size of nucleus. At the end of

crystallization, the effect of denucleation, compared with the

nucleation rate, can become substantial, and is manifested as

Ostwald ripening.

The validity of the distribution kinetics model is also

examined by comparison with experimental data sFig. 9d.
The points are experimental data

25
for nylon-6 based on real

time t smind at T=188, 190, and 192 °C. The initial super-

saturation S0 has not been reported for the experiments and is

assumed to be 50 in the computations. To compare with the

model based on dimensionless time u= tkgm
eq

s0d
, a transposi-

tion of the simulation results is applied. According to the

definition of dimensionless time, Eq. s2.17d, a distance of

lnskgm
eq

s0dd units is transposed horizontally to the left to con-

vert the simulation results into plots based on real time

tsmind. A zero horizontal distance is transposed to fit the

experimental data at T=188 °C, thus kgm
eq

s0d
=1.00 min−1.

Similarly, the values of kgm
eq

s0d
at T=190 and 192 °C are

readily determined by the measurements of the horizontal

transposition distance to be 0.80 and 0.68 min−1, respec-

tively. The experimental measurements at T=190 and

192 °C are horizontal transpositions of the simulation results

at T=188 °C, and there is no slope variation. This is consis-

tent with the understanding that kgm
eq

s0d
depends on tempera-

ture.

Figure 10 presents an Avrami plot for experimental poly-

propylene sPPd data at 110 °C.
7

The scattered points are the

measurements, the solid line is a fit of the distribution kinet-

ics model, and the dashed line is the Avrami equation with

n=3.0.
7

Figure 10sad shows the evolution of crystallinity X

versus real time. The Avrami equation with n=3.0 fits the

data fairly well except where the data curve down and devi-

ate from the Avrami equation at the end of crystallization

fFig. 10sbdg. The solid line is our model prediction for l

=2/3, a=0.1, and v=5. The predicted slope is 3.09, as re-

ported in Table III, and is close to the value 3.0 reported

by Ryan.
7

The scaling factor for time is kgm
`

s0d
xm

l =6.76

FIG. 8. The comparison of moment method sdashed lined with numerical

method ssolid lined for: sad a equal to 0.1, 0.01, and 0.001 with v=5, l

=0, S0=50, and C
0

s0d
=0; sbd v equal to 4, 5, and 6 with a=0.1, l=0, S0

=50, and C
0

s0d
=0.

FIG. 9. The comparison of experimental data of nylon-6 and moment solu-

tion: sjd, T=188 °C; smd, T=190 °C; sPd, T=192 °C.
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310−3 min−1. It is interesting that the curving down at the

end of crystallization is predicted in the crystal size distribu-

tion model and fits the experimental data quite well. The

Avrami equation, by contrast, provides a constant slope, and

thus fits only the intermediate data.

We also compared the Avrami exponent determined in

our theory with published experimental measurements. Ac-

cording to Tables I–III, for lø2/3, the model shows a range

of 1–5 for the Avrami exponent, consistent with most pub-

lished values.
26–28

For heterogeneous nucleation, the distribution kinetics

directly results in an Avrami equation with growth rate K

=c
0

s0d
kg and Avrami exponent n=1, as suggested in Eq.

s2.46d. The double logarithm plots are made to investigate

the effect of C
0

s0d
. It is confirmed that the crystallization rate

increases with the number of nucleation agents, as shown in

Fig. 11. The Avrami exponent, which is the slope of the

double logarithm plot, always equals unity for l=0. It is

possible, however, that homogeneous and heterogeneous

nucleation occur simultaneously, yielding n.1.

The effect of l on the Avrami exponent is also investi-

gated for heterogeneous nucleation, as shown in Fig. 12. It is

observed that the overall crystallization rate increases as l.

The equilibrium crystallinity is reached at u=10, 100, and

1000 at l=2/3, 1 /3, and 0, respectively. The Avrami expo-

nent n also increases with l, predicting values 1.76 at l

=2/3, 1.31 at l=1/3, and 1.00 at l=0. Compared with n for

homogeneous nucleation in Table III, the n values for het-

erogeneous nucleation are small. This is explained by the

additional kinetics contribution caused by the increase of the

number of nuclei in homogeneous nucleation, which does

not arise in heterogeneous nucleation because the number of

nuclei is constant. We also note that the slope variation is

smaller than in homogeneous nucleation, because the addi-

tional kinetics contribution in homogeneous nucleation in-

creases as l.

IV. CONCLUSION

Nucleation and crystal growth are essential phenomena

in quantitatively describing the evolution of a crystallizing

polymer solution or melt. A kinetics model based on cluster

distribution dynamics incorporates these processes and real-

istically represents the time evolution of crystallinity. The

model includes rate coefficients for crystal growth kg and

crystal dissociation kd. Based on widely accepted notions, a

2D lamellar structure for the polymer crystal nucleus is pro-

posed, and thus the Gibbs–Thomson effect is excluded for

the 2D lamellar structure system. A 3D spherical structure is

also investigated to demonstrate the influence of Gibbs–

Thomson effects. Population balance equations based on

crystal and amorphous polymer segments lead to the dy-

namic moment equations for the molar concentrations for

mass independent monomer deposition rate coefficients. Nu-

merical solution is required if the deposition rate is diffusion

or surface controlled and the rate coefficients are conse-

quently size-dependent power expressions.

Although it is widely agreed that the Gibbs–Thomson

effect is critical for understanding nucleation and crystal

growth, less acknowledged is that the Gibbs–Thomson ef-

fects can be neglected for the flat growth surface of a specific

lamellar structure. Our proposal is that the combined pro-

cesses of nucleation and crystal growth can be described by

moment equations developed from distribution kinetics, i.e.,

population dynamics theory. The validity of moment meth-

ods is examined by comparison with the numerical methods.

FIG. 10. The fit of the model to experimental data of polypropylene sRef.

7d; the solid line is a fit of the model and the dashed line is the Avrami

equation with n=3.0.

FIG. 11. The Avrami plot as C
0

s0d
varies from 0.01 to 0.03 in steps of 0.01 for

heterogeneous nucleation with l=0 and S0=50.

FIG. 12. The effect of l for heterogeneous nucleation at C
0

s0d
=0.01, C0

avg

=75, S0=50, and v=5.

064901-9 Distribution kinetics of polymer crystallization J. Chem. Phys. 122, 064901 ~2005!

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

137.112.220.85 On: Sun, 14 Dec 2014 21:59:01



Consistency is confirmed between these two methods except

for the discrepancy at the end of crystallization caused by

denucleation.

Another goal of our current work has been to reconcile

distribution kinetics and the empirical Avrami equation by

examining the detailed, fundamental features of nucleation

mechanism and crystal growth. The comparison with general

experimental observations suggests that distribution kinetics

is a more realistic approximation at the end of crystallization

than the Avrami transition theory. The investigation of model

parameters offers a quantitative way to determine Avrami

parameters, which can only be determined empirically by

Avrami transition theory.
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