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Abstract We propose lacunarity as a novel recur-

rence quantification measure and illustrate its efficacy

to detect dynamical regime transitions which are exhib-

ited by many complex real-world systems. We carry out

a recurrence plot-based analysis for different paradig-

matic systems and nonlinear empirical data in order

to demonstrate the ability of our method to detect

dynamical transitions ranging across different tempo-

ral scales. It succeeds to distinguish states of varying

dynamical complexity in the presence of noise and

non-stationarity, even when the time series is of short

length. In contrast to traditional recurrence quantifiers,

no specification of minimal line lengths is required and

geometric features beyond linear structures in the recur-
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rence plot can be accounted for. This makes lacunarity

more broadly applicable as a recurrence quantification

measure. Lacunarity is usually interpreted as a measure

of heterogeneity or translational invariance of an arbi-

trary spatial pattern. In application to recurrence plots,

it quantifies the degree of heterogeneity in the tempo-

ral recurrence patterns at all relevant time scales. We

demonstrate the potential of the proposed method when

applied to empirical data, namely time series of acous-

tic pressure fluctuations from a turbulent combustor.

Recurrence lacunarity captures both the rich variability

in dynamical complexity of acoustic pressure fluctua-

tions and shifting time scales encoded in the recurrence

plots. Furthermore, it contributes to a better distinction

between stable operation and near blowout states of

combustors.

Keywords Recurrence plots · Regime shifts ·

Lacunarity · Nonlinear time series · Thermoacoustic

instability

1 Introduction

Many efforts in nonlinear time series analysis have

been dedicated to the challenge of detecting transi-

tions between different dynamical states of a system

[1–3]. A broad range of real-world systems undergo

such shifts between distinct regimes and their identi-

fication provides a better understanding of the com-

plex dynamics under study [4–7,7–11]. The universal-
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ity of transitions between different dynamical states for

a broad spectrum of different systems elucidates why

applications have been widely dispersed among many

disciplines. For instance, time series in earth sciences

usually require sophisticated approaches to determine

abrupt changes in the complex dynamics [5,12,13].

Regime shift detection has also gained popularity in

analysis of EEG data [14], neuroscientific time series

[15,16] and other medical research fields [17] where the

identification of pathological regimes is crucial. Due to

their complexity, financial and social time series offer

interesting applications as well [18–20].

Major challenges in detecting regime shifts in real-

world data are often data related, e.g. by means of

unevenly sampled [12], nonstationarity, noisy or short

time series. In convenient cases, transitions are vis-

ible to the eye but usually, the exact localization of

the occurring dynamic transition and, in particular, the

identification of precursors poses a challenge. Seg-

ments of a time series may appear qualitatively similar

at first glance but could turn out to show significantly

different dynamical features. With respect to climate

systems, multiple spatial and temporal scales can also

hamper clear distinctions between variations in com-

plexity of a time series. Even though regime transitions

occur in a broad class of systems, data related peculiar-

ities raise the need of a comprehensive box of tools

rather than a single universal method.

In contrast to linear methods such as autocorrelation

or power spectrum analysis, nonlinear techniques are

able to uncover more subtle transitions in complex time

series data. Multiple different approaches constitute the

state-of-the-arts toolbox, ranging from complex net-

works [21], entropies [2], detrended fluctuation analy-

sis [22] or symbolic dynamics [23]. Since many empir-

ical time series are univariate and no prior knowledge

is accessible about the true dimensionality of the sys-

tem, phase space reconstruction is a powerful approach

to study the system’s dynamics [2]. Approaches based

on the phase space trajectory are closely related to the

well-known Lyapunov exponents and have proven to

be effective in classifying different dynamical states

[7,20].

Another technique with relatively low numerical

effort is the analysis of nonlinear time series by recur-

rence plots (RPs) [24]. The basic idea behind this

method relates back to the perspective that dynamical

systems recur to states they have visited before [25]. As

a representation of such recurrences, the binary recur-

rence matrix Ri j of a phase space trajectory xi ∈ R
d

indicates times where the system recurs to formerly vis-

ited states by 1s and all other times by 0s. It is widely

used as a graphical tool but also allows for quantifica-

tion of various dynamical aspects of the system under

study. Since its first conception the method was suc-

cessfully extended and applied to various real-world

systems [26]. The detection of regime transitions has

become a prototypical field of application for RPs since

it enables us to analyse complex temporal patterns of

nonlinear time series in a simplified fashion [27]. The

majority of measures in recurrence quantification anal-

ysis (RQA) are based on black or white line structures

in an RP. For instance, diagonal lines resemble par-

allel segments of the phase space trajectory and thus

entail a degree of predictability. Approaches to cap-

ture more complex features in RPs beyond the reduc-

tionist approach of measuring line lengths have been

conceived [9,28], e.g. by allowing for the entirety of

possible permutations of recurrences in small subma-

trices. This leads to the observation that the variety of

distinct microstates in deterministic and stochastic sys-

tems occupies only a fraction of the possible permuta-

tions, yielding lower entropy values. Even though this

technique generally shows good robustness and does

not require specification of minimum line lengths, such

an approach is limited to the information captured by

small submatrices on a restricted local level. We pro-

pose a method where recurrences are also evaluated

regardless of their exact orientation in the recurrence

matrix, but with a surplus quantification of the scaling

from the smallest to the largest possible submatrices.

This can be achieved by not analysing the permuta-

tions of recurrences but by the statistics of their locally

determined count.

To this extent, we make use of a measure called

lacunarity [29,30]. Traditionally, it has been applied to

quantify complex spatial patterns. Perhaps, the clear-

est interpretation of lacunarity is that it quantifies the

degree of heterogeneity of the studied pattern. Often,

it is applied in the context of distinguishing fractal

patterns [31] because objects of same fractal dimen-

sionality can still exhibit different degrees of hetero-

geneity. As a rule of thumb, patterns with larger gaps

yield higher values of lacunarity. Beyond this straight-

forward interpretation, it classifies patterns with respect

to their deviation from translational invariance [31].

This highlights its applicability as a measure of het-

erogeneity. Characterizing the heterogeneity of RPs on

123



Detection of dynamical regime transitions with lacunarity as a multiscale recurrence 3957

different temporal scales using lacunarity yields mean-

ingful information about the complexity of the underly-

ing time series. Besides, heterogeneity has already been

considered as a quantifier to analyse recurrence net-

works [32]. Lacunarity has successfully been applied

to various systems ranging from characterizations of

the scaling properties of the Amazon rainforest [33]

and urban areas [34] to heterogeneous patterns in bone

structures [35] and stellar mass distributions [36]. It is

also a popular tool in Neuroscience [37]. To our best

knowledge, it has not yet been applied to RPs. Com-

bining both approaches as a powerful tool to detect

dynamical regime shifts is the main contribution of this

work. In order to demonstrate the scope of the devel-

oped methodology, we showcase applications to both

paradigmatic systems and nonlinear empirical time

series.

This work is organized as follows: in Sect. 2

we introduce our methodology by briefly summariz-

ing the RP technique and describing the computa-

tion of lacunarity by a box-counting algorithm. In

this context, we give a brief dynamical interpreta-

tion of our method. Subsequently, we study results

for synthetic data from three paradigmatic systems in

Sect. 3, namely the Logistic Map, the Roessler sys-

tem and a bistable noise-driven system. The robust-

ness of our method against noise and short time

series length is examined. Finally, we provide first

evidence that the proposed method is capable of

detecting regime transitions in complex empirical

time series. In Sect. 4, we identify known dynamical

states in time series of acoustic pressure in a turbu-

lent combustor [38] and attempt to illustrate the dis-

tinction between two dynamically similar but practi-

cally contrary regimes. We conclude our findings in

Sect. 5.

2 Methodology

First, we introduce recurrence plots in Sect. 2.1

and briefly revise traditional recurrence quantifica-

tion analysis. Afterwards, we define lacunarity and

present detailed information for its application to

RPs in Sect. 2.2. To gain a more profound under-

standing of the proposed method, we discuss its

dynamical interpretation for the phase space

trajectory.

2.1 Recurrence analysis

Many real-world systems show a tendency to recur to

states they have visited before. Such information can be

captured by a two-dimensional visualization that may

yield striking patterns which resemble the recurrences

at all time instances of the time series. By studying

regularities in such recurrence patterns, rich informa-

tion can be obtained on the dynamics of the underlying

system that go beyond the scope of linear statistical

methods of time series analysis such as autocorrelation

functions. In particular, different quantification mea-

sures of the visual representation prove powerful in

classifying differing systems, detecting nonlinear cor-

relations and identifying dynamical regime transitions.

The basic concept can be outlined by defining the recur-

rence matrix

Ri j =

{

1 if ||xi − x j || ≤ ǫ

0 if ||xi − x j || > ǫ
(1)

with a time series x at two arbitrary times i and j and

a suitable norm ‖ · ‖ . The vicinity threshold ǫ needs to

be fixed with respect to the distances of time series val-

ues such that a meaningful expression of recurrences is

obtained. A popular approach to do so is, for example,

to choose a value which entails a fixed recurrence rate

for the RP [27]. The resulting visual representation of a

recurrence matrix is a binary image of black and white

dots from which temporal patterns can be inspected.

For higher dimensional systems, recurrence analysis

needs to be based on a phase space representation of

the time series as a trajectory in d -dimensional space.

Despite the fact that the dimension of the regarded sys-

tem is often unknown, Takens’ theorem [39] ensures

that a time–delay embedding can be found that gives an

appropriate phase space reconstruction. To this extent,

an embedding delay is often specified prior to fixing

the optimal embedding dimension for the system. We

will apply the broadly used mutual information crite-

rion and the False Nearest Neighbours (FNN) method

[40,41] to estimate both parameters.

For many systems, RPs have been successfully

applied to reveal a high degree of complexity both in

terms of nonlinear dynamics and stochastic fluctuations

[27]. In the detection of regime transitions, a reliable

quantifier that yields an unambiguous distinction of

dynamical regimes is generally required. Traditional

complexity indicators such as Lyapunov Exponents

123



3958 T. Braun et al.

[42] are not always robust against noise and require

rather long time series. They are also often not able to

capture the relevant time scales of the system’s shifting

dynamics which is particularly important for systems

with multiple characteristic time scales. Yet, such infor-

mation is contained in RPs and can be uncovered using

recurrence quantification measures [43]. Most of them

are based on the statistical distribution of line structures

in RPs. For instance, diagonal lines of certain length

indicate a similar evolution of different segments of a

time series. A popular quantification of an RP based

on diagonal lines is defined as the fraction of lines

that exceed some specified minimal line length. As it

quantifies the degree of determinism in a time series,

it is referred to as DET. Vertical lines indicate that the

system is trapped in a certain phase space region for

subsequent times. White vertical gaps indicate transi-

tions between different phase space regions while black

square-like structures point at time intervals in which

the system remains confined in a small region of the

phase space. If such patterns reoccur with statistical

significance, they uncover regularities of the time series

and may yield characteristic recurrence time scales.

Line-based recurrence measures have been applied to

a diversity of complex real-world systems as complex-

ity measures to uncover transitions [27]. Yet, different

embedding parameters can yield varying results and

edge effects as well as high sampling rates might result

in spurious quantifications [44], thus requiring correc-

tions [45]. On top of that, the application of line-based

RQA measures is limited to systems that do not show

more complex recurring patterns which are referred to

as microstates of an RP [28]. Related complexity mea-

sures that go beyond this scope have shown that they

can have superior performance [9,20]. In this work,

will put forward a novel RQA measure that charac-

terizes the heterogenity of an RP and is not based on

certain microstructures.

2.2 Recurrence lacunarity

Lacunarity is often illustrated as a measure of ‘gap-

piness’ or as a property that can characterize the het-

erogeneity of a spatial pattern. It was introduced to

distinguish between different fractal patterns of equiv-

alent fractal dimensionality. However, its scope goes

beyond the distinction of fractal structures. More for-

mally, we can regard it as a measure of deviance of

a pattern from translational homogeneity [30,46]. As

lacunarity is usually derived for different spatial scales,

it is possible to identify a certain scale above which a

pattern is translational invariant and below which it is

too heterogenous to be regarded as such.

Methods to calculate lacunarity for empirical pat-

terns are often based on box-counting algorithms [47]

similar to those used in estimating fractal dimensional-

ity of a pattern. Essentially, a grid is applied to the

studied pattern and pixels in each box are counted.

The specific algorithm to compute lacunarity for RPs

is summarized in algorithmic form below. Even though

box-counting algorithms can also be modified so that an

analysis of grayscale- [48] or RGB–encoded [49] pat-

terns is possible, in application to RPs a basic algorithm

for binary patterns suffices. The quantity that enables

us to analyse scaling properties of a complex pattern is

the size of boxes on the applied grid. Given an RP as a

T × T –matrix and a fixed box size w, the mass M of

each box is obtained by counting the black pixels inside

the box. This results in a mass distribution Pw(M) for

all N boxes. From this distribution, we compute the

moments

Z (q)(w) =
∑

M

Mq Pw(M) . (2)

In the definition of lacunarity Λ, only the first and the

second moments Z (1,2) are considered:

Λ̃(w) =
Z (2)(w)

[

Z (1)(w)
]2

= 1 +
σ 2(w)

μ2(w)
(3)

with mean μ and standard deviation σ . To have a mea-

sure in [0, 1], we normalize lacunarity by also com-

puting the lacunarity Λ̃† of the complement of the set

(1s replaced by 0s and vice versa). Consequently, we

define it as

Λ(w) = 2 −

(

1

Λ̃(w)
+

1

Λ̃†(w)

)

. (4)

This refined definition of lacunarity also enhances the

detection of significant gap sizes compared to eq. (3)

and is thus prefered [35]. Various box-counting meth-

ods beyond the basic approach employed in this work

are known (e.g. gliding box-counting [50]) and gener-

alized versions exist (e.g. for multifractal data [51]).

The often used standard gliding box approach results
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in a higher number of boxes but is also known to cause

biased values due to edge effects [52]. Note that in any

case, minimum and maximum box size have to be cho-

sen based on the time series length.

Algorithm 1 Recurrence Lacunarity

1: if embedding required then

2: Choose d, τ and embedd time series

3: end if

4: Compute RP R with specified vicinity threshold ǫ

5: for box width w = 2, 3 . . . ≪ T do

6: Split (T ×T )-matrix R into N = ⌊T/w⌋×⌊T/w⌋ disjunct

boxes

7: for each box b
(i, j)
w do

8: Count recurrences: M =
∑i, j

i ′, j ′
δ(R

i ′ j ′
− 1)

9: end for

10: Compute normalized lacunarity Λ for fixed w from eq.

(2-4)

11: Apply bootstrap by randomly drawing sufficient number

of boxes b
(i, j)
w for significance testing

12: if T %w 	= 0 then

13: repeat iteration with varied grid position

14: until robustness ensured

15: end if

16: end for

In the application of lacunarity to RPs, we refer

to it as recurrence lacunarity (RL). In view of RPs,

black pixels are equivalent to recurrences of a trajec-

tory in reconstructed phase space. Thus, we are effec-

tively carrying out an analysis of local (in a tempo-

ral sense) recurrence statistics and quantification of

local variations. This is essentially implemented via

the computation of variance of recurrence points con-

tained in boxes which are located at different positions

in the RP. An extension to higher statistical moments

is also conceivable [53]. Our approach circumvents the

necessity of defining any sort of microstate and is not

restricted to the usual statistical analysis of line struc-

tures in the RP. The scaling (sucessive increasing of

time intervals) is expected to pinpoint relevant tem-

poral scales related to average recurrence times and

quasi-periodicities. This is confirmed by the displayed

recurrence lacunarity curves in Fig. 2 from which some

will be studied in more detail in Sect. 3. Figure 1 shows

examples of RPs of systems that show fundamentally

different dynamics. While a white noise process entails

an RP with randomly distributed black dots, a Logis-

tic Map in the chaotic regime (r = 3.9) still results in

some local structures such that RL is higher for almost

all w, resembling higher complexity. A Roessler sys-

tem in the periodic regime generates well pronounced

lines corresponding to deterministic periodic dynam-

ics. As expected, the characteristic width between the

lines is captured in the variation of RL as a local min-

imum (left dotted circle) since for boxes of the same

size, homogeneity is enhanced. The second visible min-

imum (right dotted circle) is located at twice the period

of the time series. Stochastic signals such as an AR(2)–

process and Multifractal Gaussian Noise (MFGN) [54]

yield a higher degree of complexity in terms of low

translational invariance of the corresponding RPs. Both

the MFGN and the bistable noise-driven system (see

sect. 3.3) time series have a visible periodic modula-

tion which is resembled by the distinct gap sizes in the

respective RPs. For the former time series, RL sharply

drops when w reaches the gap size. For the latter, the

stochastic component results in slight variations of the

gap size but still, RL captures them as a local minimum

at w ≈ 102.

2.2.1 Dynamical interpretation

As standard RQA measures are based on line struc-

tures in the RP, they have clear interpretations in terms

of the phase space trajectory and their relationships to

dynamical invariants (such as Lyapunov exponents and

Renyi entropy) are well established [27]. These ques-

tions also arise for RL. Picking a box within an RP

and deriving some related statistics can be interpreted

as sampling two segments of a phase space trajectory.

If we denote the starting point of the first trajectory

by i and the second by j , the lower left corner of the

box is located at (i, j) and its upper right corner at

(i + w, j + w). The number Mi, j of recurrences con-

tained in the box characterizes the similarity between

the two trajectory segments by means of their recur-

rences. For fixed ǫ, these are equivalent to the number

of contained phase space vectors that are nearest neigh-

bours by means of a low distance in phase space. Fig-

ure 3 illustrates the relation between box-counting of

recurrences and the phase space trajectory based on the

Roessler attractor as a paradigmatic example (see Sect.

3.2 ). RL quantifies the heterogeneity of recurrent tem-

poral patterns representing different segments of the

phase space trajectory. For increasing length of trajec-

tory segments (from right to left in Fig. 3), their recur-

rence as well as their divergence can be captured by

means of recurrence patterns encoded in the RP. Apart

from the dynamical interpretation, it is an open question
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Fig. 1 Recurrence plots for time series of different deterministic and stochastic systems

how fractality of RPs is related to self-similarity in the

underlying time series or the attractor [55]. As a gen-

eral conception, the very basic structures of RPs such

as diagonal lines, vertical lines and blocks show some

resemblance to typical 1- and 2-dimensional fractals

like the Cantor set or the Sierpinski carpet [56]. Self-

similarity by definition arises from the spatial recur-

rence of patterns [57]. Even though ideal monofractal

patterns cannot be expected to occur in a pure fashion

in RPs, some degree of self-similarity appears intuitive:

small-scale recurring patterns often constitute the cor-

relations on longer time scales which resembles what

is displayed in an RP. Self-similarity over some range

of box sizes applied to an RP could thus be interpreted

as a similar tendency to recur to formerly visited states

regardless of the respective time scale. On top of that,

it is known that geometrical quantities computed from

recurrence networks show relations to the phase space

dimension and exhibit fractal scaling properties [58].

This ultimately raises the question whether there is a

direct relation of RPs fractality to the degree of fractal-

ity of the time series and the attractor. This should be
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Fig. 2 Recurrence lacunarity curves Λ(w) in double-

logarithmic plot, corresponding to displayed RPs in Fig. 1

explored in more detail in a future study and is beyond

the scope of this work.

3 Dynamical transitions in synthetic data

We demonstrate the ability of RL to capture different

kinds of regime shifts by its application to model data

from different dynamical systems (Table 1). These sys-

tems cover some of the important aspects that need to

be accounted for if transitions in real data should be

identified. In Sect. 3.1, we study transitions between

chaotic and periodic dynamics for the Logistic Map.

In Sect. 3.2, transitions in the Roessler System as a

three-dimensional continuous system are analysed. A

bistable noise-driven stochastic process is examined

in Sect. 3.3 in order to demonstrate the ability of our

approach to uncover rather subtle transitions. Finally,

we examine an experimental dynamical systems in

Sect. 4.

RPs reveal various structures [28] on a broad range

of time scales. RL captures these by means of varia-

tions in the characteristics of the power law scaling of

RL with w. We will visualize this by showing the varia-

tion of the power law for each of the systems and refer

to it as the RL curve. Moreover, we characterize the

scaling of RL curves by computing the slope α of logΛ

against logw by linear regression. Note that if multiple

scaling regions coexist for one RP, a single slope will

yield ambiguous results and other indicators should be

chosen (e.g. the regression error).

Complexity measures indicate transitions by chang-

ing to significantly high or low values. In order to

assess significance, we apply the following bootstrap-

ping method that entails confidence intervals: we draw

a random sample (with repetitions) from all boxes

the RP was divided into and derive RL only from

this sample (see Algorithm 1). This resampling pro-

cedure is repeated N times to obtain a distribution

of RL values that jitter around the true value. The

5%/95% – quantiles characterize the width of this dis-

tribution and are used as confidence bounds. Similar

approches are usually employed with other complex-

ity measures [59–61]. In most applications, confidence

bounds should reflect significance equally sufficient

for all values obtained for the respective complexity

measure (i.e. for each configuration of the parameters

that control regime transitions). In our case, this conse-

quently raises the question whether to sample from the

global or local distribution of box counts. In the local

case, box counts for a single window are used to com-

pute confidence bounds whereas in the global case, box

counts from all windows are joined. In both cases, the

calculation of quantiles is performed such that only a

single parameter-independent value is obtained, yield-

ing horizontal lines that indicate the separation between

‘regular’ dynamics and dynamical transitions. Exten-

sive comparative analysis of the resulting confidence

bounds indicates that the latter approach yields more

convincing results for the studied systems. Bootstrap-

ping from the global box-count distribution generally

yields more narrow bounds that seem to overestimate

the true number of regime shifts. Consequently, for an

underlying series of length T , we obtain T locally boot-

strapped RL distributions of size N from which we

compute 95% – confidence bounds.

3.1 Logistic map

As a first paradigmatic example, we employ the Logis-

tic Map [62] as a system that is well-known to produce

pronounced transitions between periodic, chaotic and

laminar behaviour. The variation of the parameter r

introduces bifurcations between regimes of different

complexity as displayed in Fig. 3. While increasing

r entails a tendency of less predictability, windows of

periodic dynamics arise in between. For each parameter
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Fig. 3 Schematic illustration of the relation between box-

counting on RPs and the underlying phase space trajectory for

the Roessler attractor (a = 0.1, b = 0.1, c = 14). The full

RP is displayed on the left with two exemplary boxes (blue and

red). Above, the box counts Mw0 (i, j) of all boxes (although

not indicated) located at grid positions (i, j) are shown with the

average box count (vertical line) whereas their index is chosen

as a y-coordinate for better visibility. From left to right, boxes

of decreasing width w are zoomed in and additional boxes are

indicated. The segments of the phase space trajectory that cor-

respond to the boxes are color coded, respectively. The scatter

plots illustrate that for decreasing box widths, heterogeneity by

means of dispersion of the box counts increases. (color figure

online)

value r ∈ [3.5, 3.95] with δr = 0.00045 we generate

a time series of suitable length such that after discard-

ing transients, we have T = 1000 points in time. For

each such time series xr (t), we calculate an RP. We

choose the threshold ǫ = 0.1σts with σts being the

standard deviation of xr (t). From each RP, we com-

pute RL for a number of k = 70 different box sizes

w ∈ [2, T/4]. This results in a single RL curve like in

Fig. 2. A standard measure to detect regime transitions

for such paradigmatic systems is the largest Lyapunov

exponent λ1 [2]. We use it as a reference for our results

to evaluate the detection of transitions.

Below the bifurcation diagram in Fig. 4, RL is dis-

played using color coding. Each RL curve is plot-

ted in double-logarithmic coordinates. Periodic win-

dows are clearly detected as the corresponding RPs are

homogenuous at all time scales. Furthermore, it appears

that, e.g. around r ≈ 3.68 (red vertical line) it identifies

a transition to a regime not well captured by λ1 which

is known to arise from the intersection of the super-
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Fig. 4 Bifurcation diagram of Logistic Map and RL curves for

varying r ∈ [3.5, 3.95] with n = 2000. Dashed vertical lines

indicate chaos-chaos transitions. Each time series has T = 1000

values after discarding transients. For the RL curves, w –axis

and color coding are scaled logarithmically. The black curve

illustrates the variation of λ1

track functions [14]. At these, an unstable singularity

results in laminar behaviour, i.e. the time series becom-

ing ‘trapped’ in a certain range of values for some time

intervals. RL is able to detect such chaos–chaos transi-

tions.

In real-world data sets, several effects can impede

the detection of regime transitions. We test the robust-

ness of RL compared to DET as a standard RQA mea-

sure for two such effects, i.e. contamination with white

noise and short time series lengths. Figure 5a shows

bifurcations for varying noise strength. We plot both

DET and the slope α of the RL curve for r ∈ [3.5, 3.95].

RPs are generated as described above but for time series

that are contaminated by uncorrelated white noise of

different strength. The largest Lyapunov exponent λ1

shows that for σn = 0.0005, only few of the chaos-

periodic transitions are detected. For σn = 0.0001,

some transitions are still well depicted by both mea-

sures while others become less prominent already. We

evaluate the performance of detecting transitions for

σn = 0.0005 by calculating confidence intervals for

the noise-free case as a rather strict bound. Both mea-

sures perform with similar success. Yet we point out

that RL seems to resolve transitions close to strongly

periodic dynamics more clearly in presence of noise,

e.g. at around r ≈ 3.55 and r ≈ 3.83. Analogously

to this analysis, we plot results for different time series

lengths in Fig. 5a. As expected, it appears that the num-

ber of false detections increases for both measures for

shorter time series. However, both still succeed to pin-

point chaos–order transitions even for very short time

series with T = 100. Beyond that, the laminar param-

(a)

(b)

Fig. 5 Robustness of RL to varying noise intensity and time

series length for the logistic map

eter range is also still identified. Anyway, α indicates

more false shifts than DET which may be due to the

rather basic box-counting approach that limits the com-

putation of RL to a few boxes in case of very short time

series.

3.2 Roessler system

We further explore the ability of RL to detect regime

transitions for continuous dynamical systems with the

Roessler system as a standard example (see Table 1).

We vary c ∈ [2, 10] with n = 2000 different values.

Increasingly dominant chaotic behaviour is expected

whereas the average distance between unstable peri-

odic orbits decreases for increasing c. The nonlinearly

coupled x –component is embedded with parameters

given in Table 1. The vicinity threshold is fixed as

ǫ = 0.5σts.
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Fig. 6 DET, single scale-specific lacunarities Λ(w) and RL

curves for varying c ∈ [2, 10] with n = 2000 for the Roessler

system. 95% – confidence bounds are obtained via bootstrapping

and excursions outside the indicated horizontals are indicated.

Each time series has T = 1000 values after discarding transients.

In the lower panel, w –axis and color coding are scaled logarith-

mically. Black (cyan) curves display the first (second) Lyapunov

exponent normalized to their maximum absolute values for better

visibility

Instead of α, we analyse single scale-specific values

of Λ(w) since in general, multiple scaling regions can

be identified that are not well represented by a single

scaling exponent (see Fig. 2).

In the lower panel of Fig. 6 λ1 (black) and the second

Lyapunov exponent λ2 (white) serve as a reference and

enable us to localize periodic windows in the regarded

parameter range. The color coded RL curves display

rich information on various characteristic scales under-

lying the chaotic and periodic dynamics. Note that RL

detects bifurcations only captured by both of the dis-

played Lyapunov exponents. For instance, this can be

seen in the range c ∈ [2, 4] where RL corresponds well

to λ2 for larger box sizes whereas pronounced varia-

tions are neither captured by λ1 nor by determinism.

Above c = 5, the transitions captured by RL match

those indicated by DET. Particularly for the smaller

box sizes, a trend in overall complexity for increas-

ing c is present. We subtract this quadratic trend from

three lacunarities for fixed box sizes w in the upper

panel of Fig. 6 and compute confidence bounds via

the introduced bootstrapping procedure. Almost all of

the occurring transitions are detected as indicated by

the colored vertical lines. Interestingly, certain peri-

odic windows are most prominently captured by dis-

tinct box sizes such as at c ≈ 3.7 or c ≈ 6.4. This

is due to the fact that as soon as a box size that cor-

responds to a characteristic scale is reached, the RP

becomes more homogenuous on this scale and entails

low RL. From this perspective, RL may additionally

provide similar spectral information on the time series

as usually obtained from Wavelet analysis [63] in some

cases.

3.3 Bistable noise-driven system

Finally, we demonstrate that RL can also uncover sub-

tle transitions in the time evolution of a nonstationary,

stochastic system. To this extent, we study a bistable

system which is driven by uncorrelated noise ξ(t) and

a periodic component. Such a system is often illus-

trated as a Brownian particle trapped in a double-well

potential with a periodic driving force [64]. It can be

described by the Langevin equation given in Table 1

where K controls the shape of the deterministic poten-

tial function, A yields the strength of the periodic com-

ponent with its frequency ω and D controls the noise

strength. ξ(t) is chosen as Gaussian white noise. Equa-

tion 4 is solved using the Euler–Maruyama method

with a sampling interval of Δt = 0.002 and subse-

quent downsampling to Δt = 0.006. The interplay of

the noise strength and the periodic force determines the

transition dynamics between the two stable fixed points

as described by the general phenomenon of stochastic

resonance [65]. For fixed A, an optimal D exists such

that the signal-to-noise ratio (SNR) is maximized.

There are several notions of how different regime

shifts can be classified [66]. A basic differentiation

may be made between transitions which are induced

by a stochastic or a deterministic component of the

respective system. We vary both the frequency ω of the

driving force and noise strength D to test whether RL

is able to detect these two different types of transitions.

Both increasing ω and decreasing D result in a lower

SNR since it triggers more high-frequency variability

and impedes regular switching. We generate time series

of total length T = 1.5 · 104 whereas the frequency ω

is first abruptly decreased from ω = 20 to ω = 8

at t1 = T/3 while noise strength remains constant at

D = 36. At t2 = 2T/3, noise strength σ is decreased

from D = 36 to D = 28 while retaining ω = 8.

100 realizations xi (t) with random initial conditions

are generated. The height of the potential barrier is

h = K 2/4 = 2500 ≫ A, therefore jumps between the

potential minima can not be solely caused by the peri-

123



3966 T. Braun et al.

odic forcing. However, both noise strengths can result

in purely noise-driven jumps. RL is computed for RPs

with a fixed recurrence rate of 10% on sliding windows

of width 2000 with a 90% overlap for each sample. In

total, the following two shifts are studied:

X1 → X2 → X3|K=100,A=320 :

(ω = 20, D = 36)
t1
−→ (ω = 8, D = 36)

t2
−→ (ω = 8, D = 28)

between states X1, X2 and X3. The upper panel of Fig.

7 shows an example of a sampled time series. We can

observe the subtlety of the two parameter shifts which

can not be solely localized through visual inspection.

In the lower panel, the variation of color-coded RL

curves is displayed whereas the average over all gen-

erated samples is shown. As expected, the transitions

are most striking for the largest considered box sizes

w since these have the same order of magnitude as

the switching time scales between the two fixed points.

Such switches are encoded as gaps in the RPs and can

thus be well identified by RL. The decrease of ω after

X1 → X2 results in more homogenuous RPs on these

time scales since the system on average resides for

shorter time periods within one potential minimum.

Within the X2 regime, SNR is enhanced yielding a

more regular switching behaviour. This regularity fur-

ther stands out as an almost stable switching period as

indicated by RL at w ≈ 100. Recurrences within this

regime can consequently be regarded as less complex

for time periods exceeding this switching cycle. A sim-

ilar increase in large-scale RL can be observed for the

decrease in noise intensity X2 → X3 : as noise-driven

transitions are less likely, the RPs are more ‘gappy’ on

longer time scales.

Both states X1 and X3 thus share the feature that

lower frequency variability is more complex in terms

of more diverse recurrent patterns. Anyway, they dif-

fer with respect to their high-frequency variability. For

small box sizes (mostly reflecting intra-well dynam-

ics), RL is higher in the X3 regime as indicated by the

gray contours.

When both the driving frequency and noise inten-

sity are low, recurrences are less eratically clustered,

yielding more coherent, variable recurrent periods for

short durations. The semi-stable period is preserved in

X3 but less pronounced than in X2 since lower noise

strength results in a weakened SNR through the mech-

anism of stochastic resonance. Finally, we compute

Fig. 7 Single time series realization and averaged RL curves

on sliding windows for bistable noise-driven system. Sample

averaged SNR (gray) is indicated in the upper panel, sample

averaged DET (purple) and α (cyan) are compared in the center

panel. Vertical dashed lines mark the two transitions X1 → X2

and X2 → X3. For the RL curves, w –axis and color coding are

scaled logarithmically

three regime-specific RL curves for each of the 100

samples and calculate the sample averaged slopes α

for the different regimes. With αX1
= −1.09 ± 0.17 ,

αX2
= −1.38±0.18 and αX3

= −1.00±0.18 , the two

regimes X1 and X2 can be well distinguished from X2

but are similar to each other in the range of their respec-

tive standard errors. Anyway, the middle panel in Fig. 7

shows that α still captures both transitions more clearly

compared to DET. While DET performed superior for

short time series (see Fig. 5b), RL gives more convinc-

ing results for these rather subtle shifts.

4 Application to thermoacoustic instability time

series

In order to evaluate the performance of RL as a com-

plexity indicator for empirical data, we apply it to

acoustic pressure time series from a laboratory com-

bustor with turbulent flow, operating at atmospheric

pressure. The univariate time series was measured with

a 10kHz resolution and is known to undergo a rich

variety of transitions between chaotic, intermittent and

periodic dynamics [11]. Practical relevance arises, e.g.

from the use of gas turbine engines for propulsion and

power generation. The two main acting subsystems are

the unsteady heat release and the acoustic field. Pos-

itive feedbacks between both may lead into a state

called thermoacoustic instability, enhancing heat trans-

fer to the walls of the combustion chamber and resulting

in increased mechanical stress. This can cause severe
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damages to an aircraft’s engine or shutdown in the case

of a power plant [67]. The parameter which can drive

the turbulent system into an unstable state is the fuel/air

ratio. If it falls below a critical threshold, flame blowout

can be the result which leads to an abrupt drop of thrust

for an aircraft. This raises the need of effective monitor-

ing to detect impending instabilities and thermoacous-

tic transitions such including thermoacoustic instabil-

ity and blowout. In the following, we will apply RL

analysis to RPs of the system in order to identify the

different regimes and localize the shifts between them.

Several studies have been carried out in this context,

classifying dynamical states with fractal measures [10],

employing complex networks [21,68] and RPs [11,69–

71]. Special emphasis will be given to the distinction

of normal operating conditions (combustion noise) and

an impending blowout situation. We first introduce the

experimental setup in Sect. 4.1. In Sect. 4.2, we inves-

tigate regime shifts in the system in terms of varying

RL of acoustic pressure time series.

4.1 Experimental setup and data acquisition

The acoustic pressure (p′) data used for the study was

obtained from a turbulent combustor with a bluff body

stabilized flame. The combustor consists of a rectangu-

lar chamber (length = 140 cm, cross section= 9 cm×9

cm) that houses a circular disk (bluff body, diameter =

4.7 cm, thickness = 1 cm) aligned along the axis of the

combustion chamber. The bluff body produces stagna-

tion points and recirculation zone in the flow where

the flame can be stabilized. The flame is unsteady due

to the turbulent fluctuations in the flow. The unsteady

fluctuations of the flame and the fluctuations in the

acoustic field of the combustion chamber is in feed-

back with each other. At certain conditions, the feed-

back is positive causing growth of amplitude of peri-

odic acoustic pressure oscillations inside the combus-

tion. The amplitude of oscillations eventually saturates

as the losses (damping) due to the nonlinearities in the

system increase with the increase in the amplitude of

acoustic pressure oscillations. Such pressure oscilla-

tions are known as thermoacoustic instability.

The acoustic pressure fluctuations in the combus-

tion chamber is measured using a pressure transducer

(PCB103B02) at 1 × 104 samples per second. The fuel

used is LPG (40% Butane, 60% Propane). The flow

rate of partially premixed air-fuel mixture is varied in

Pressure sensor

Bluff body

Combus�on chamber

Air-fuel mixture

Fig. 8 Schematic illustration of the combustion chamber

employed in the experimental setup

a quasi steady manner by increasing the air flow rate

for a fixed fuel flow rate (1.04 g/s). This also reduces

the equivalence ratio, φ, of the fuel-air mixture defined

as the ratio of actual fuel-air mass flow rate ratio to

the stoichiometric fuel-air mass flow rate ratio. As φ

reduces by increasing the airflow rate, initially the pres-

sure fluctuations change from aperiodic oscillations to

thermoacoustic instability via intermittency. On fur-

ther reduction of φ, the pressure oscillations exhibits

intermittency post thermoacoustic instability. When φ

is reduced further, we approach flame blowout. Flame

blowout is a phenomena where the flame loses its abil-

ity to stabilize inside a combustion chamber and hence

undergoes extinction. Prior to flame blowout, the pres-

sure oscillations have low amplitude and are aperiodic.

Further details of the experimental setup (Fig. 8) and

different dynamic regimes are detailed in [10].

4.2 Results

The different operating conditions of a thermoacous-

tic combustor have been extensively studied in the

literature both in laboratory conditions and model

system data [67]. Measures based both on RPs and

recurrence networks have been successfully applied to

detect dynamical transitions between different regimes

[11,70]. Prior to our analysis, we can already give a

brief classification of the different dynamical states

based on these insights. Figure 9 shows the full time

series in the bottom panel and enlarged segments with

normalized amplitude of it in the top panel. The first

segment shows combustion noise (X1) which is the

general term for stable operating conditions. It is com-

prised of low amplitude aperiodic pressure fluctuations

which can be classified as chaotic dynamics. Every

dotted gray line in the lower panel marks a decrease

in φ. In this sense, each three second sub-time series

should be regarded as a separate experiment with con-

stant parameters and will be evaluated as such in the
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Fig. 9 a Application of RL

to acoustic pressure

fluctuation time series from

a thermoacoustic combustor.

Enlarged, normalized time

series segments of different

dynamical regimes and the

entire measurement time

series of acoustic pressure

in kPa. Each fixed

parameter window covers a

duration of 3 s. The

displayed dynamical states

are refered to as combustion

noise (X1), intermittency

prior to instability (X2),

thermoacoustic instability

(X3), intermittency after

instability (X4) and

near-blowout oscillations

(X5) respectively. b

Scale-averaged lacunarities

Λw and RL curves for full

time series computed on

sliding windows of 900 ms

width. In the upper panel,

green and red shading

indicate combustion noise

(X1) and near blowout

oscillations (X5)

respectively. Air flow rate is

increased in a quasi-static

manner after maintaining it

steady for a duration of 3 s.

In the lower panel, w –axis

and color coding are scaled

logarithmically

(a)

(b)
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following. As φ is discontinuously increased along the

time axis, we observe a dynamical state characterized

by aperiodic oscillations interrupted by large amplitude

harmonic oscillations. This state is generally referred

to as intermittency(X2) and is observed as a transi-

tion state between aperiodic oscillations and thermoa-

coustic instability. The third zoomed segment shows

thermoacoustic instability (X3) which is constituted by

periodic large amplitude pressure fluctuations. As φ is

increased further, the periodic oscillations subside and

a different state of intermittency (X4) is observed which

we will refer to as intermittency after instability (in con-

trast to intermittency prior to instability). The last seg-

ment again shows aperiodic oscillations of low ampli-

tude which are a precursor of an impending blowout

situation where the flame can not longer be sustained

(X5).

In order to carry out our analysis, an adequate phase

space embedding is required for the measured time

series as the underlying system should be regarded as

high-dimensional. We apply the mentioned standard

methods to fix a suitable embedding delay and dimen-

sion. Since we aim at analysing the dynamics of the

combustor for a range of parameters, we estimate com-

mon embedding parameters appropriate for all differ-

ent dynamical states. To also evaluate significance of

our results for RL, we apply a sliding window anal-

ysis to the time series. We choose a window size of

900 ms with 95% overlap between consecutive win-

dows while no overlap is allowed between the different

sub-time series with fixed φ. We ensured that all of

the following results are robust in a reasonable range

of window and overlap widths. A sufficient tradeoff

for all time series segments is obtained by analysing

how strongly both embedding parameters fluctuate

for the different regimes in time. Embedding delay

is maximum for combustion noise and it decreases

towards enhanced periodic oscillations. Highest aver-

age embedding dimensions are estimated for intermit-

tency prior to instability. We conclude that our global

parameter choice of d = 5 , τ = 23 is suitable for

further analysis.

Based on this choice, we compute RPs on sliding

windows based on the delay-embedded phase space

trajectory of the system. We choose a threshold ǫ such

that it yields constant recurrence rate of 10% for all

RPs. All results are qualitatively sustained for reason-

able variations of ǫ. For a visual impression of RPs of

a similar system, the reader is pointed to [69,70]. The

procedure is now carried out as follows: we first calcu-

late a RL curve for each obtained RP which refers to

a certain time instance for fixed φ. We concatenate the

entire set of RL curves to illustrate them in the same

fashion as for the synthetic data examples to display

variations of complexity on all time scales. Addition-

ally, we classify the different dynamical regimes by

scale-averages of the RL curves. In order to estimate

scale averages of RL, we first average all RL curves

for fixed φ obtained from the sliding window analysis.

Next, we average RL values for time scales w ≤ 1 ms,

1 ms < w < 100 ms and w ≥ 100 ms separately. Note

that these groups cover different numbers of RL values.

The results are shown in Fig. 9.

In the lower panel, we observe a gradual descent of

RL at all time scales w from combustion noise into the

impending instability, interrupted by spikes of varying

amplitude. The overarching trend until about 51s shows

a reduction in dynamic complexity from the aperiodic,

chaotic oscillations during stable operation into peri-

odic oscillations during thermoacoustic instability. By

means of RL, we can interpret this decrease as weak-

ened heterogeneity of recurrences, entailing that the

system shows temporal patterns with less strong vari-

ability as it approaches the instability regime. The inter-

mittency route into instability becomes well visible by

the shape of the RL curves: the cut-off value of the trun-

cated power law decay is continuously reduced, dis-

playing a significant shift of characteristic time scales

in the pressure fluctuations of the combustor. Cut-off

values can be inferred approximately from the graph by

tracking sudden color switches. In the range between

24 − 38s, intermittency manifests itself in the episodic

reduction of large scale heterogeneity in the RPs. The

system jumps between harmonic and aperiodic oscilla-

tions and thus shifts its characteristic time scale discon-

tinuously until multiple coexisting periods (horizontal

yellow lines) are reduced to a single dominant period.

A sharp rise of RL at all scales marks the slow intermit-

tency regime prior to the near blowout situation. The

average level of complexity during this lean blowout

state appears close to that observed for combustion

noise at the beginning of the measurement series. In

the upper panel, the scale-averages yet uncover a differ-

ence in sub-ms RL between combustion noise and lean

blowout state: the aperiodic oscillations in the former

regime seemingly occur in a more heterogeneous fash-

ion than for the latter. The two other scales-averages

do not indicate a remarkable difference between these
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two regimes. Note that the scale averages are rescaled to

[0, 1] for better comparison. Consequently, RL enables

us to detect five distinct regimes and to track respective

variations in the characteristic time scale of the system.

These findings generally corroborate those from earlier

studies. Furthermore, it detects a subtle difference in the

complexity between the dynamically similar combus-

tion noise state and the near blow out situation.

5 Conclusion

We have put forward a novel recurrence quantification

measure to quantify the degree of complexity of non-

linear time series, namely recurrence lacunarity. The

identification of different dynamical regimes in multi-

ple real-world applications has attracted a lot of interest

in the literature. The method we propose contributes to

this toolbox of complexity indicators by representing

a time series as a recurrence plot and characterizing its

heterogeneity on all time scales relevant to the system.

Even though both recurrence plots and lacunarity are

broadly acknowledged as powerful stand-alone tools,

we have demonstrated that their combination can yield

valuable insights in the context of regime shift detec-

tion. The method’s main advantage is that it is able

to capture multiscale features of the recurrence plot

while traditional measures are based on line structures

which can always only encode a certain aspect of the

dynamics. Our approach does not require specification

of minimum line lengths.

It naturally yields information both on the hetero-

geneity of recurrence plots and their scaling properties,

opening up a new perspective of analysing point statis-

tics in partitioned RPs rather than constricted struc-

tures. We have shown that the applicability of lacunar-

ity to general nonlinear dynamical systems by means

of the well established recurrence plot approach can be

fruitful.

As this work’s main focus was on the identifica-

tion of dynamical regime shifts, we have studied three

different paradigmatic systems in detail to showcase

the potentials of the method. We have found that the

proposed method is able to uncover transitions of dif-

ferent origin even in presence of noise and for short

time series which makes it broadly applicable to many

real-world phenomena. We have further demonstrated

that recurrence lacunarity may also be useful in charac-

terizing subtle transitions of different nature. In com-

parison to DET as a traditional recurrence quantifier,

it showed comparable well performance for noisy time

series. Even though the results were less convincing for

a short time series, RL performed superior for subtle

transitions in the bistable system.

Finally, we have employed a system exhibiting ther-

moacoustic instability to study whether our approach

enables us to detect regime shifts in an (experimental)

real world system. It was demonstrated that the pro-

posed method is effective for identifying the different

dynamical transitions that the system undergoes. We

found that the intermittency route from stable opera-

tion into thermoacoustic instability manifests itself as a

continuous transition from aperiodic to harmonic oscil-

lations. We have ultimately addressed the challenge

of differentiating between the dynamically similar but

practically different states of stable operation and a near

blowout situation. It appeared that short-term acoustic

pressure fluctuations show less variable temporal recur-

rent patterns during a near-blowout situation than dur-

ing regular operating mode. How this can be interpreted

and whether it can also be captured in terms of (non-

linear) serial dependence should be addressed in future

work.

Furthermore, it appears as a promising direction

for future work to investigate in more detail the rela-

tions between the fractal scaling of RPs and fractality

of the underlying time series and the attractor dimen-

sion. Including RL in feature selection approaches may

also improve the performance of machine learning

techniques that classify nonlinear data [72]. Another

line of research should be concerned with the robust-

ness of the proposed method against spurious effects

introduced by erroneous embedding and RP related

pitfalls when compared to traditional RQA measures

[44,45].
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