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1 Introduction

The infrared (IR) structure of scattering amplitude has a long history of almost a cen-

tury [3–19] and still remains an interesting object of study. These structures are universal,

that is they are independent of the relevant hard scattering process. The universality of

these structures gives us remarkable all order insights in their organisation at all orders in

the perturbation theory. Although, these studies are completely theoretical, it has practi-

cal applications in the study of high energy scattering cross-sections in different colliders.

These IR singularities get cancelled in an infrared safe observable, such as total cross-

section; however, they leave their signatures in large logarithms of kinematic invariants,

which disturbs the perturbative expansions. It is the universality of the IR structure which

helps in summing up these large logarithms at all orders in the perturbation theory to

make a precise prediction. Along with these all order predictions, the knowledge about the
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structure of these singularities also helps in the fixed order calculations. The cancellation

of these IR singularities for complicated observables in colliders is non-trivial task, and

using the universality of the IR singularities, several efficient subtraction procedures are

developed [20–30].

The factorization property of QCD in the IR limit enables us in studying these singular

parts efficiently, without calculating the complicated hard parts for a process. The soft

function, that controls the IR singular parts in a scattering process, can be expressed in

terms of matrix elements of the Wilson lines. These matrix elements are also present in

QCD based effective theories [31–33]. The usual Wilson-line operators Φ(ζ) evaluated on

smooth space-time contours ζ are defined as,

Φ (ζ) ≡ P exp

[
ig

∫

ζ
dx · A(x)

]
. (1.1)

where A
µ(x) = Aµ

a(x) T
a is a non-abelian gauge field, and T

a is a generator of the gauge

algebra, which can be taken to belong to any desired representation, and P denotes path

ordering of the gauge fields. The soft function describing the interaction of n hard particles

in general can be expressed as,

Sn (ζi) ≡ 〈0|
n∏

k=1

Φ (ζk) |0〉 , (1.2)

These Wilson lines are semi-infinite Wilson lines along the direction of the hard particle,

that is, the smooth contours run along βk, the velocities of the particles involved in this

scattering, and has limit from origin to ∞. Thus, one can write the soft function as,

Sn

(
βi · βj , αs(µ2), ǫ

)
≡ 〈0|

n∏

k=1

Φβk
(∞, 0) |0〉 , Φβ (∞, 0) ≡ P exp

[
ig

∫
∞

0
dλ β · A(λβ)

]
,

(1.3)

The object S suffers from both UV and IR (soft) singularities, and needs renormalization.

In dimensional regularization d = 4 − 2ǫ, S vanishes as it is made out of Wilson line

correlators, that involve only scaleless integrals. Thus, in a renormalized theory, S contains

pure UV counterterms.

The renormalized soft function obeys a renormalization group equation, and solving

this equation results in an exponentiation of the form,

Sn

(
βi · βj , αs(µ2), ǫ

)
= P exp

[
−

1

2

∫ µ2

0

dλ2

λ2
Γn

(
βi · βj , αs(λ2), ǫ

)]
, (1.4)

where Γn is known as the soft anomalous dimension. In case of multi-parton scatterings, the

soft anomalous dimension is a matrix, which is an interesting theoretical object to study,

and has our main focus in this article. The perturbative calculation of soft-anomalous

dimension using renormalization group approach has a history of more than twenty years.

Γn was computed at one loop in [34] (see also [35]); at two loops in the massless case

in [36, 37], and in the massive case in [38–42]; finally, at three loops in the massless case
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in [43, 44]. The calculation of soft anomalous dimension at four loops is an ongoing effort.

Several studies in this direction are available in the literature in [45–58]. The kinematic

dependence of the soft anomalous dimension for scatterings, which involve only massless

lines is restricted due to constraints discussed in [17, 18, 59]. However, these constraints do

not hold true for scatterings involving massive particles. The state-of-the-art knowledge

for soft anomalous dimension is known upto two loops for scatterings involving massive

particle.

An alternative way of determining the soft anomalous dimension is using diagrammatic

exponentiation. In terms of Feynman diagrams, the soft function has the form,

Sn (γi) = exp
[
Wn (γi)

]
, (1.5)

where Wn (γi) is known as webs, and can be directly computed using Feynman diagrams.

Webs are defined as the connected photon sub-diagrams in the abelian gauge theory, while

in non-abelian gauge theory, for two Wilson line processes, webs are defined as two-line

irreducible diagrams, that is, diagrams that remains connected upon cutting the Wilson

lines [60–62]. In case of multi-parton scattering process, webs in non-abelian gauge theory

are defined as sets of diagrams that differ from each other by the order of gluon attachments

on each Wilson line [63, 64]. The kinematics and the colour factors of diagrams in a web

mix among themselves, through a web mixing matrix, which can be determined using a

replica trick algorithm [64, 65].

Cwebs or correlator webs were defined in [66], as the webs which are made out of gluon

correlators instead of individual Feynman diagrams. Complete results for the required

colour building blocks for the calculation of the soft anomalous dimension matrix at four-

loop order were presented in [66, 67] (see also [68]). It is of interest to understand the

underlying structure of the web mixing matrices and also to find ways of obtaining these

mixing matrices directly without using the replica trick algorithm. A few attempts towards

this goal have been made in [69–71] using combinatorial objects posets. Recently, we

proposed a new method of Fused-Web formalism in [1], which provides insights into the

diagonal blocks of several classes of mixing matrices for Cwebs for massless Wilson lines

— it was shown in [1] that these diagonal blocks are mixing matrices of the basis Cwebs

— and also readily gives the form of these blocks without any additional computation.

For scattering processes involving massive particles, such as top quark, whose masses

cannot be ignored one needs to also consider webs whose diagrams contain self energy

corrections on the Wilson lines. Those webs which contain at least one self energy correction

to one of the Wilson lines are called boomerang webs [2]. The exponentiated colour factors

and kinematic contributions for Boomerang webs at three loops were computed in [2].

Following the definition of Cwebs [66], we define Boomerang Cwebs as those Cwebs that

contain at least one two-point gluon correlator whose both ends are attached to the same

Wilson line. The Boomerang Cwebs are all order objects having their own perturbative

expansion.

In this article, we establish the correspondence between the basis Cwebs introduced

in [1] and boomerang webs and using this correspondence along with the the concepts of
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Normal ordering and Fused-Webs [1] we determine the diagonal blocks, and ranks of all the

mixing matrices of general four classes of Cwebs to all orders in the perturbation theory

that contains all boomerang Cwebs that connect four Wilson lines at four loops. We also

present the complete mixing matrix for one special class of Boomerang Cwebs at all orders

in the perturbation theory. We also demonstrate the correspondence of the basis Cwebs

introduced in [1] with the combinatorial objects called as nodes and edges in graph theory.

The paper is structured as follows. In section 2, we review the concepts of Cwebs

and the known properties of mixing matrices. In section 3, we review the concepts of

Normal ordering and Fused Cwebs. In section 4, we connect the concept of basis Cwebs

to combinatorial objects nodes and edges. In section 5, we establish the correspondence

between Boomerang Cwebs and non-boomerang Cwebs. Further, in section 6, using the

correspondence along with Fused web formalism and Uniqueness theorem, we determine

the diagonal blocks and ranks of four classes of Cwebs at all orders in the perturbation

theory which contains all the Boomerang Cwebs at four loops connecting four lines. Also

in section 6, we directly construct the full mixing matrix of one special class of Boomerang

Cweb at four loops connecting four lines by bypassing the replica trick.

In the section 7, we have calculated the diagonal blocks and rank of mixing matrices

for all the Boomerang Cwebs present at four loops that connect four Wilson lines.

2 Cwebs and properties of mixing matrices

Cweb [66, 72] is defined as a set of skeleton diagrams, built out of connected gluon cor-

relators attached to Wilson lines, and closed under shuffle of the gluon attachments to

each Wilson line. These are not fixed-order quantities, but have their own perturbative

expansion in powers of the gauge coupling g. We define Boomerang Cwebs as the Cwebs

that contain at least one two-point gluon correlator whose both the ends are connected to

a single non-lightlike Wilson line.

Throughout this article we adapt the notation [1, 66, 72] W
(c2,...,cp)
n (k1, . . . , kn) for a

Cweb having cm m-point gluon correlators (m = 2, . . . , p). Further, we choose k1 ≤ k2 ≤

. . . ≤ kn, where ki denotes attachments on different Wilson lines.

Considering the fact that the perturbative expansion for an m-point connected gluon

correlator starts at O(gm−2), while each attachment to a Wilson line further carries a power

of g, the perturbative expansion for a Cweb can be written as

W (c2,...,cp)
n (k1, . . . , kn) = g

∑n

i=1
ki +

∑p

r=2
cr(r−2)

∞∑

j=0

W
(c2,...,cp)
n, j (k1, . . . , kn) g2j , (2.1)

which defines the perturbative coefficients W
(c2,...,cp)
n, j (k1, . . . , kn). The perturbative order of

Cwebs is defined as the order at which they receive their lowest order contributions, which

is given by the prefactor g
∑n

i=1
ki +

∑p

r=2
cr(r−2). The remaining powers of g in eq. (2.1)

arise from the attachments within the blobs (see figure 1) and they do not enter into the

counting of order of Cwebs; for example, a two point correlator attached to Wilson lines

contributes at order g2.

– 4 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
8

≡ + . . .+

Figure 1. Perturbative expansion of a two point gluon correlator.

Cwebs are the proper building blocks of logarithm of the soft function; and are proved

to be useful [66, 72] in their organisation at higher perturbative orders. The logarithm of

the Soft function is a sum over all the Cwebs at each perturbative order,

S = exp

[
∑

w

∑

d,d′∈w

K(d) Rw(d, d′) C(d′)

]
. (2.2)

Here K(d) and C(d) denote the kinematic and colour factors a diagram d in a Cweb w.

The quantity obtained after the application of web mixing matrix R on the colour factors

of diagrams, is the exponentiated colour factor C̃,

C̃(d) =
∑

d′∈w

Rw(d, d′) C(d′) . (2.3)

In addition to the kinematic and colour factors, a weight factor s(d) for a given diagram

d is defined as the numbers of ways in which the gluon correlators can be independently

shrunk to the hard interaction vertex (origin). We can construct a column weight vector

out of these s-factors for a Cweb with n diagrams as

S = {s(d1), s(d2), . . . , s(dn)}. (2.4)

The diagrams of a Cweb were classified [1] based on their s-factors. A diagram d is reducible

if s(d) 6= 0, whereas it is irreducible if s(d) = 0. Further irreducible diagrams were classified

in two categories.

Completely entangled diagram: an irreducible diagram in which all the gluon correla-

tors are entangled and thus none of them can be independently shrunk to the origin.

Partially entangled diagram: an irreducible diagram which has at least one gluon

correlator which is not entangled with the other correlators.

We adapt the notation of [1] to denote S and R of a Cweb compactly. Consider a Cweb

with the column weight vector of the form, S = {s1, . . . , s1, . . . , si, . . . , si, . . . , sl, . . . sl},

where, s1 < s2 < · · · < sl. Here we have ordered the diagrams according to their s-factors.

S can be written as

S = {(s1)k1
, (s2)k2

, . . . , (sl)kl
} . (2.5)

Here first k1 diagrams in the Cweb have weight s1, followed by the k2 diagrams with weight

s2 and so forth. We denote the corresponding mixing matrix for the Cweb as,

R
(
(s1)k1

, (s2)k2
, . . . , (sl)kl

)
. (2.6)

The web mixing matrices are essential quantities for the determination of Wilson line

correlators, and thus, the soft anomalous dimension matrix, and we now turn our focus

on them.
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Properties of mixing matrices

General all order properties of the mixing matrices were first observed in [64], and were

proven in [73]. Further, a conjecture regarding the columns of the mixing matrices was

proposed in [74]. Based on the column weight vector of a Cweb, a uniqueness theorem was

introduced in [1]. Below we list down these properties.

1. Idempotence: These matrices are idempotent and act as projection operators:

R2 = R . (2.7)

Thus their eigenvalues can only be either 0 or 1, which further implies that their

trace is equal to their rank.

2. Non-abelian exponentiation: The general non-abelian exponentiation theorem [75]

states that the colour factors that survive the above projection by R are the ones

that are associated with a diagram that has only one gluon correlator.

3. Row sum rule: The elements of web mixing matrices obey the row sum rule
∑

d′

R(d, d′) = 0 . (2.8)

4. Column sum rule: The mixing matrices obey the following column sum conjecture:
∑

d

s(d)R(d, d′) = 0 . (2.9)

5. Uniqueness: For a given column weight vector S = {s(d1), s(d2), . . . , s(dn)} with all

s(di) 6= 0, the mixing matrix is unique.

The idempotence of mixing matrices implies that R projects onto only those combinations

of kinematic factors that do not contain ultraviolet sub-divergences.1 For the case of two

Wilson lines, the absence of sub-divergences was proved in [60–62]. However, for more than

two Wilson lines, the all order proof for column sum is not available, although this property

has been verified upto four loops [66, 72, 74, 75] for massless Wilson lines and upto three

loops [2] with massive lines. The connection of the column-sum rule to UV sub-divergences

is explained in a coordinate-space picture in [76]. In coordinate-space, UV divergences arise

from short distances between interaction vertices, and, thus the ‘shrinkable’ correlators are

naturally associated to UV sub-divergences, eq. (2.9) guarantees that these correlators are

projected out of the webs.

3 Normal ordering and Fused-Webs

The Normal ordering of diagrams and Fused-webs were the two main ideas developed

in [1] that shed light on the structure of the mixing matrices and were instrumental in the

determination of diagonal blocks of mixing matrices for Cwebs. In this section, we briefly

review these two concepts.

1We refer here to UV divergences arising from sub-diagrams involving the Wilson lines: interactions

away from the Wilson lines will still involve the usual gauge-theory UV divergences, which are dealt with

by means of ordinary renormalization techniques.
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Normal ordering

The idea of normal ordering of diagrams in a Cweb, that was introduced in [1], makes the

structure of the web mixing matrix particularly transparent by reorganising its elements.

Consider a Cweb with n diagrams out of which k, (l − k), and m are completely entan-

gled, partially entangled and reducible diagrams, respectively. The normal ordering is then

defined as:

Normal order : The order in which first k diagrams are completely entangled, fol-

lowed by (l − k) partially entangled diagrams, then followed by reducible diagrams

in ascending order of their s-factors.

Taking into account the fact (as can be readily inferred from the replica trick) that the

exponentiated colour factors of reducible diagrams do not contain the colours of the irre-

ducible diagrams, and those of completely entangled diagrams do not contain the colours

of the partially entangled diagrams, the normal ordered mixing matrix takes the following

form [1]:

R =

(
Al×l Bl×m

Om×l Dm×m

)
=




Ik×k (AU )k×(l−k)

O(l−k)×k (AL)(l−k)×(l−k)
Bl×m

Om×l Dm×m


 . (3.1)

The properties of block D were studied in [1] and it was shown that D satisfies the

known properties of a web mixing matrix with SD = {sl+1 . . . sl+m}. The diagrams present

in D form a closed set under the action of replica ordering operator R (see appendix A)

in the same way as that of a Cweb with SD = {sl+1 . . . sl+m}. Then mixing between the

diagrams of D is same as that of the Cweb, and they have the same mixing matrix R(SD).

Fused-Webs

In this section, we review the Fused-Webs formalism [1] which proved to be useful in the

determination of the diagonal blocks of A of the mixing matrix.

Let us start with the definition of Fused diagrams. The diagram generated by replacing

each entangled piece of an irreducible diagram involving n-Wilson lines, with an n-point

correlator connecting the same n-lines, is defined as Fused diagram associated with the

irreducible diagram. This new n-point correlator is called Fused correlator, which is denoted

by the dotted lines.2 These Fused correlators are essentially gluon correlators. However,

note that an n-point Fused correlator does not have the colour structure of an n-point

gluon correlator. The illustration of obtaining Fused diagrams is shown in figure 2.

The number of ways in which all the correlators of a Fused diagram, including the

Fused correlators can be sequentially shrunk to the origin was defined [1] as the s-factor of

the Fused diagram.

Starting from a Fused diagram we can generate a fictitious Cweb in the usual way by

shuffling all the attachments on each Wilson line. This Cweb has its own mixing matrix Rfict

2Denoting these new correlators by gluon lines introduces spurious problem of counting in the number

of diagrams for a Cweb.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Replacing an entangled piece by n-point correlators. Here, the diagrams in (a), (b)

and (c) have an entangled piece made up of the blue and the red gluon correlators involving two

and three Wilson lines. Therefore, replacing the entangled piece of diagram (a) with a two point

Fused correlator; and that of diagram (b), and (c) with a three point Fused correlator, provides the

Fused diagrams (d), (e), and (f) respectively. With this replacement, the diagrams (a), (b), and (c),

having s = 0 correspond to Fused diagrams (d), (e), and (f), with s = 1, respectively. The colour

factors of (d), (e) and (f) are same as those of (a), (b) and (c) respectively.

which can be put in the form of eq. (3.1) by reordering the diagrams. The mixing between

the Fused diagrams of the fictitious Cweb that have s 6= 0, is given by the corresponding

Dfict, and this corresponds to the mixing between the respective irreducible diagrams of

the original Cweb. Thus, Fused-Webs were defined as the set of all reducible (s 6= 0) Fused

diagrams that appear in the fictitious Cweb. The mixing matrix of a Fused-Web is given by

Dfict. However, note that, even though the mixing matrix Dfict satisfies all the properties

of a web mixing matrix that are known to date, Fused-Web is not really a Cweb as not all

the diagrams of the fictitious Cweb are part of it.

The above concepts were used to provide an algorithm to obtain the diagonal blocks

of A. We outline the steps of the algorithm below.

1. Identify the completely entangled diagrams of the Cweb. Fused diagram of each

of these forms a Fused-Web which has only one diagram. The number of these

completely entangled diagrams in a Cweb is the order of identity matrix appearing

in the Normal ordered mixing matrix of the Cweb.

2. Identify the distinct entangled pieces appearing in partially entangled diagrams, and

obtain Fused diagram for each of these.

3. Shuffle the attachments on each Wilson line of a Fused diagram to generate the cor-

responding fictitious Cweb, the reducible diagrams of which will form the associated

Fused-Web.

– 8 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
8

Figure 3. A Cweb constructed out of n two-point correlators connecting n + 1 Wilson lines. This

is one of the basis Cwebs at order αn
s .

Figure 4. Example of a tree with three unlabelled nodes and two edges.

4. Obtain the mixing matrix of the Fused-Web. For this we first find the weight vectors

and then use the Uniqueness theorem. This will correspond to the mixing between

the associated partially entangled diagrams.

5. Order the diagrams of the Cweb associated with a Fused-Web, such that they appear

next to each other.

6. Repeat steps 3, 4 and 5 for all distinct entangled pieces in a Cweb in order to compute

the diagonal blocks of the matrix A.

4 Counting basis Cwebs: connection with the trees with nodes

The study of basis Cwebs from the combinatorial point of view is important as their mixing

matrices form the diagonals blocks of the mixing matrices of a general Cweb. In this section

we discuss a direct correspondence between the basis Cwebs and the combinatorial objects

known as nodes. A basis Cweb is defined [1] as follows:

Basis Cweb: Cweb formed by connecting n two-point gluon correlators to n + 1

Wilson lines.

For example, figure 3 displays a basis Cweb.3

In graph theory, a vertex or a node is defined as the fundamental unit of which the

graphs are formed which are generally represented by points. There are two different types

of nodes namely labelled and unlabelled. As the names suggest, the labelled nodes are

distinguishable among themselves, whereas unlabelled are not. Further, an edge is defined

as the connection between two nodes and is represented by a line. An object formed out

of edges and nodes is called a graph in graph theory. There are different types of graphs,

however for our analysis in this section we only discuss tree (open undirected graphs). Tree

graphs are defined as the graphs in which there is only one edge between two nodes. Thus,

a tree with n + 1 nodes has n edges. A simple example of a tree graph connecting three

nodes with two edges is shown in figure 4.

Now, we relate these objects of graph theory to the basis Cwebs. We start by noting

that the Cwebs which differ only by a permutation of their Wilson lines are structurally

identical [66, 72]. Hence, in the language of graph theory, Wilson lines behave as unlabelled

3In this article we draw only one diagram and still call it a Cweb and it is understood that the other

diagrams of the Cweb are obtained by shuffling all the attachments on each of the Wilson lines.
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(a) (b)

(c) (d)

Figure 5. Basis Cwebs upto three loops.

nodes. Further, for basis Cwebs the Wilson lines can only be connected by two-point gluon

correlators which is equivalent of connecting two nodes by a single edge. Thus obtaining

the trees for a given number of nodes is equivalent of obtaining the basis Cwebs for a given

number of Wilson lines.

Now, let us count the number of basis Cwebs:

1. Let us start with one loop basis Cweb, which contains two Wilson lines connected

by a single two-point gluon correlator, shown in figure 5a. In graph theory, this is a

tree with two unlabelled nodes and one edge, shown in figure 6a.

2. At two loops, we have only one basis Cweb shown in figure 5b. It has three Wilson

lines which are connected by two gluons. In graph theory, this is equivalent of a

graph with two nodes and three edges, which is shown in figure 6b.

3. There are two basis Cwebs at three loops have four Wilson line connected by three

gluons. These are shown in figures 5c and 5d. This is equivalent of connecting four

nodes with three edges which gives two trees shown in figures 6c and figures 6d. It

can be realized that these are the only possible trees with two, three and four nodes.

4. Beyond three loops, we find that there are three, six and eleven basis Cwebs at four,

five and six loops respectively using the recursive algorithm of [66].

We see from the above that each of the trees connecting n unlabelled nodes has a one

to one correspondence to one of the basis Cwebs connecting n lines.

In combinatorial mathematics the trees for a given number of nodes n are known [77].

The first few entries of this sequence for n = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, · · · } are {1, 1, 1, 1, 2,

3, 6, 11, 23, 47, · · · }. The sequence for the number of basis Cwebs starts at n = 2 and we

have included the first two entries — 0 and 1, for the completeness of the sequence. With

this analysis, we conclude that the structures of basis Cwebs at any arbitrary loop order

can be determined as the structures of trees with unlabelled nodes are known.
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(a) (b)

(c) (d)

Figure 6. Tree with unlabelled nodes.

Figure 7. A boomerang Cweb constructed out of n two point correlators connecting n Wilson

lines, derived from one of the basis Cwebs at O(αn
s ).

5 Information exchange between Boomerang Cwebs and non-Boomerang

Cwebs

There is a flow of data from Boomerang Cwebs to (non-Boomerang) basis Cwebs and vice

versa.

Form basis Cwebs to Boomerang Cwebs

Recall that the definition of basis Cweb allows us to draw a general structure with n two-

point gluon correlators connecting (n+1) Wilson lines as shown in figure 3. The symmetry

factor s for this is non-zero as any rearrangement that lead to an irreducible diagram cannot

connect all the n + 1 Wilson lines. Also, any rearrangement of the attachments on and

across the Wilson lines, keeping the number of lines fixed, gives another basis Cweb.

As noted earlier, when the Wilson lines are massive, the diagrams that have boomerang

correlators are also present. At O(αn
s ), one can at most connect n Wilson lines to form a

boomerang Cweb. Such a boomerang Cweb is shown in figure 7. The boomerang Cwebs of

figure 7 can be obtained from that in figure 3 by shifting one of the attachments of a two

point correlator such that both of its ends attach on the same Wilson line. Note that all the

diagrams of a basis Cweb are reducible, that is each of the diagram di in a basis Cweb sat-

isfies s(di) 6= 0. Contrary to this the boomerang Cweb shown in figure 7 has both reducible

and irreducible diagrams; the reducible diagrams are the ones for which none of the gluon

attachments fall between the two ends of a boomerang correlator. Thus, for the purpose of

counting the number of shuffles, or equivalently, the number of reducible diagrams, the two

ends of the boomerang can be viewed as one single attachment on the concerned Wilson line.

Once the diagrams are normal ordered, the mixing matrix of the above boomerang

Cweb takes the general form eq. (3.1). Recall that the block D generates the mixing

among the reducible diagrams. From uniqueness theorem and properties of D found in [1]

it follows that D is a mixing matrix of a basis Cweb. This basis Cweb has the same number

of diagrams as the number of reducible diagrams in the boomerang Cweb that connects the
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(a) (b) (c)

Figure 8. Cwebs with same reducible diagrams.

(a) (b)

Figure 9. Family of a boomerang Cweb.

maximum number of Wilson lines at a given order. Thus, we have shown that the block

D of the mixing matrix of any boomerang Cweb that connect highest possible number of

Wilson lines at a given order (these contain only two-point gluon correlators) is the same

as the mixing matrix of the basis Cwebs at that order.

The above correspondence also holds for Cwebs with a self-energy correlator (for which

all the gluons of the correlator are attached to the same Wilson line) because, the mixing

of reducible diagrams for this and the boomerang Cweb — obtained by replacing the self-

energy correlator with a boomerang — is the same.

We illustrate this correspondence by using a simple example of a basis Cweb shown in

figure 8a. It has shuffle only on line 1 and other lines are symmetric with respect to the

gluon attachments. One can turn this into a boomerang Cweb by connecting both ends

of any of the four two-point gluon correlators to line 1, one of which results in figure 8b.

Further a higher order member of this boomerang Cweb is shown in figure 8c. The basis

Cweb has 4! diagrams each with s = 1. The boomerang Cwebs of figures 8b and 8c also

have 4! reducible diagrams each with s = 1. These reducible diagrams can be generated by

shuffling the attachments on line 1, and considering both the attachments of boomerang

gluon as one attachment. From the uniqueness theorem and the fact that D is itself a

mixing matrix [1] of basis Cwebs, we get the D block for the boomerang Cwebs,

D = R(124) . (5.1)

From Boomerang Cwebs to basis Cwebs

Now, we discuss another correspondence between boomerang and non-boomerang Cwebs.

We note that, one can obtain non-Boomerang Cwebs from Boomerang Cwebs by attaching
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a gluon from the boomerang correlator to a new Wilson line as shown in figure 9. Now,

using the fact that the family of Cwebs has same mixing matrix due to same shuffle,

both Boomerang Cwebs and non-Boomerang Cwebs obtained this way have same mixing

matrices as they belong to the same family. Thus, the two Cwebs shown in figure 9 have

the same mixing matrix.

6 Direct construction of Boomerang Cwebs

The computation of mixing matrices for boomerang Cwebs, its rank which gives the number

of exponentiated colour factors can be found using replica trick formalism. However, a

direct construction is desirable using the known properties of the mixing matrices as it

sheds light on the structure of these matrices. A few attempts towards this goal have been

made in the literature in [1, 69–72]. Recently several new concepts such as basis Cwebs,

Normal ordering and Fused-Webs were introduced in [1], which proved to be very useful in

determining the diagonal blocks of several classes of mixing matrices for Cwebs for the case

of massless Wilson lines, which readily yield the number of exponentiated colour factors

for a given web if certain data is already available. These concepts were discussed briefly

in section 2.

The Normal ordered form of eq. (3.1) and the properties of the matrix D allow us

to obtain the diagonals blocks of mixing matrices for boomerang Cwebs at order αn
s and

beyond using the basis Cwebs upto αn
s . Towards this end, we introduce few objects and

notations that would be helpful. In the next subsection, we will also apply these concepts to

completely determine the mixing matrix of a special class of boomerang Cwebs at all orders.

Suppose there are several gluon attachments on a Wilson line. If A1, A2, . . . An denote

attachments that originate from the same gluon correlator and there no attachments from

any other correlator between A1 and An, then we denote these attachments as A1, . . . , An.

A useful quantity is the number of shuffles for which the correlators attached to a

Wilson line remain entangled, which we will denote by E(a1, . . . an) where aj denotes the

number of attachments from a gluon correlator. This equals the total number of shuffles

on the Wilson line minus the number of shuffles for which the correlators get disentangled.

If a gluons from one correlator and b gluons from a different correlator are attached to

the same Wilson line, as shown in figure 10a, then the number of ways in which these

correlators remain entangled is,

E(a, b) = (a Π b) − 2 =
(a + b)!

a! b!
− 2 , (6.1)

where the first term indicates the total number of shuffles possible on the given Wilson

line, and the second term i.e., 2 represents the total number of reducible diagrams.

If there are a, b and c attachments from three different correlators to a Wilson line, as

shown in figure 10b, then the number of ways in which these correlators are entangled is

given by

E(a, b, c) = (a Π b Π c) − 2[(a Π b) − 2] − 2[(b Π c) − 2] − 2[(c Π a) − 2] − 6 (6.2)

=
(a + b + c)!

a! b! c!
+ 6 − 2

[
(a + b)!

a! b!
+

(b + c)!

b! c!
+

(c + a)!

c! a!

]
. (6.3)
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(a) (b)

Figure 10. Cwebs having shuffle of a, b and c attachments at same lines.

where the first term represents total number of shuffles among the three correlators whereas

second, third and fourth terms represent the number of ways in which attachments from

two of the three correlators remain entangled; fifth term ie 6 or 3! represents the number of

ways in which all the three correlators are completely disentangled. If there are attachments

from several correlators on more than one Wilson line then the number of shuffles for which

the correlators are entangled on each line are multiplied together.

In the next subsection, we describe the calculation of diagonal blocks for four special

classes of Cwebs. These four special classes are considered because if one sits down and

draws the Boomerang Webs that appear at four loops connecting four Wilson lines, one

finds that these classes are sufficient to determine their diagonal blocks. In subsection 6.2

we fully construct the mixing matrix of a class of Cwebs to all orders.

6.1 Diagonal blocks of four special classes

6.1.1 Cweb W
(n,1)
n+2 (1, 1, . . . , 1, n + 2)

Cwebs of this class contain one three-point and n two-point gluon correlators connecting

(n + 2) Wilson lines. In this Cweb, the shuffle is possible only on one Wilson line, and the

other lines have single attachments. A general Cweb of this class is shown in figure 11.

The shuffle of attachments on line 1 generates all the diagrams for this Cweb. The total

number of diagrams is

(n + 2)!

2!
.

Note that the reducible diagrams can only be generated by considering the three point

correlator as a single entity. If we do so then the reducible diagrams of the Cweb become

same as that of W
(n+1)
n+2 (1, 1, · · · , n + 1), with S = {1, 1, 1, · · · , 1} [69]. The total number of

reducible diagrams for this Cweb is (n+1)!. Thus the column weight vector SD = {1(n+1)!},

is associated with matrix D. Further, from the Uniqueness theorem we can write

D = R(1(n+1)!) ; r(D) = r(R(1(n+1)!)) = n! . (6.4)

The explicit form and rank of R(1(n+1)!) for any arbitrary n has been computed [69] without

applying the replica trick algorithm. For n = 1, 2 and 3, we get R(12!), R(13!) and R(14!)

which appear as mixing matrices of basis Cwebs at two, three and four loops connecting

three, four and five Wilson lines respectively, see appendix C of [1].

– 14 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
8

Figure 11. Diagram of the general Cweb W
(n+1)
n+1 (1, 1, 1, . . . , n + 2).

(a) (b) (c)

(d) (e) (f)

Figure 12. Fused-Web for completely and partially entangled diagrams of Cweb

W
(n+1)
n+1 (1, 1, 1, . . . , n + 2).

After computing the block D, we can determine the diagonal blocks of A using Fused-

Webs. The form of A has a similar structure as that of R,

A =

(
I AU

O AL

)
. (6.5)

The order of identity matrix is determined by the number of completely entangled diagrams

of a Cweb. For completely entangled diagrams in this Cweb, the attachments of all the

two point gluon correlators on line 1 are in between the two attachments of the three-point

gluon correlator, as shown in figure 12a.

These attachments have n! shuffle, within the two attachments of three point corre-

lator and each of these shuffle corresponds to an ordering of attachments of a completely

entangled diagram whose Fused-Web is shown in figure 12d. Thus the order of identity

matrix is n! .
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two point correlators Irreducible Fused-Web Mixing matrix Rank Number of ways

outside three point correlator diagram of Fused-Web for configuration

0 12a 12d I 0! nC0 n!

1 12b 12e R(12!) 1! nC1 (n − 1)!

2 12c 12f R(13!) 2! nC2 (n − 2)!

k R(1(k+1)!) k! nCk (n − k)!
...

...
...

...
...

...

n − 1 R(1(n)!) (n − 1)! nCn−1 1!

Table 1. Fused-Webs and their mixing matrices for Cweb W
(n+1)
n+1 (1, 1, 1, . . . , n + 2).

Further, to determine the diagonal blocks of AL, we have to consider partially entangled

diagrams of this Cweb. Any diagram of this Cweb is partially entangled when at least one of

the two-point gluon correlator lies outside the attachments of three-point gluon correlator.

Consider a general case, where k two-point gluon correlators (k < n) are outside the

two attachments of the three point correlator. There are nCk possibilities in which k

two-point gluon correlators are chosen and they can be placed outside the three point

correlator on line 1 in k! ways. Further, the remaining (n − k) gluon correlators can be

attached in (n − k)! ways within the attachments of three point correlator. For example

if we take k = 2 as shown in figure 12c then the two two-point gluon correlators can be

placed outside the three point correlator in 2! ways, and the remaining (n−2) attachments

inside the boomerang will shuffle in (n − 2)! ways. Thus for general k, number of partially

entangled diagrams is,

nCk (n − k)! .

There is a Fused diagram corresponding to all completely and partially entangled diagrams.

The shuffle of attachments of each Fused diagram generates the corresponding Fused-Web

with S = {1(k+1)!}. This Fused-Web is the member of family f(1(k+1)!) with basis Cweb

W
(k+2)
k+1 (1, 1, . . . , k + 1). From the Uniqueness theorem, we can directly write the mixing

matrix for this Fused-Cweb as R(1(k+1)!).

The above discussion is illustrated explicitly for k = 1, 2 in figure 12. The details of

the Fused-Webs and associated mixing matrices for any general k are given in table 1.

The mixing matrices of Fused-Webs appear as the diagonal blocks of A. The rank of

A is given by the sum of product of rank of these matrices and the number of times they

appear on the diagonals. Using table 1, the rank of A for this class of Cwebs is given by,

r(A) = nC0 n! × 0! + nC1 (n − 1)! × 1! + nC2 (n − 2)! × 2! + . . . + nCn−1 1! × (n − 1)!

= nC0 n! × 0! +
n−1∑

1

nCk (n − k)! × k!

= n! + n!(n − 1) = n × n! (6.6)

The rank of R is given by the sum of ranks of A and D [1], thus,

r(R) = n × n! + n! = (n + 1)! . (6.7)
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Value of n Boomerang Cweb Attachment on leg 1 Loop order Matrix D r(A) r(R)

1 W
(2)
2 (1, 3) 3 O(g4) R(12!) 1 2

2 W
(3)
3 (1, 1, 4) 4 O(g6) R(13!) 4 6

3 W
(4)
4 (1, 1, 1, 5) 5 O(g8) R(14!) 18 24

Table 2. Ranks of mixing matrices for Cweb W
(n+1)
n+1 (1, 1, 1, . . . , n + 2).

By removing the gluon attachment on line n + 2 in the diagram of Cweb, the three point

correlator can be turned into a boomerang. Based on the correspondence established in the

previous section we can make the predictions for boomerang Cwebs of this family as well.

Table 2 shows the ranks of mixing matrices for boomerang Cwebs that appear upto

four loops and belong to this category. The families of above Cwebs also have same ranks.

Thus, boomerang Cweb W
(1,0,1)
4 (1, 1, 1, 3), shown in figure 24 being a higher order member

in family of W
(2)
2 (1, 3) has rank 2. Similarly, boomerang Cweb W

(2,1)
4,I (1, 1, 1, 4), shown

in figure 27 is the member of family of W
(3)
3 (1, 1, 4). Finally, the third boomerang Cweb

W
(4)
4 (1, 1, 1, 5) of the above table appears at four loops and connects four lines, as shown

in figure 33. The Fused-Web formalism for each of these Cweb is shown in section 7.

6.1.2 Cweb W
(1,1,1,1)
5 (1, 1, 1, k + p, m + l + n)

A general Cweb of this class is shown in figure 13 which contains (m + 1)-point, (n + 1)-

point, (p + 1)-point and a (l + k)-point gluon correlators connecting five Wilson lines. The

reducible diagrams for this Cweb can be obtained by considering the gluon attachments that

are coming from the same correlator as a single piece and can be denoted by C · · · B, defined

in section 6. The sequences of reducible diagrams for this Cweb and their corresponding

s-factors are given in table 3.

The s-factors of the reducible diagrams, the Uniqueness theorem and the property of

D fix,

D = R(14, 28) , r(D) = r(R(14, 28)) = 2 . (6.8)

Note that the Cweb corresponding to the basis matrix R(14, 28) appears for W
(4)
5 (1, 1, 1, 2, 3)

at four loops connecting five massless Wilson lines. To determine the diagonal blocks of

the mixing matrix for this Cweb, we now need to calculate A.

We start with the completely entangled diagrams which appear when all the four gluon

correlators present in this Cweb are entangled with each other as shown in figure 16a. Using

eqs. (6.1) and (6.2), the number of completely entangled diagrams is given by,

((k Π p) − 2!)
(
(l Π m Π n) − 2{(l Π m) + (m Π n) + (l Π n)} + 6

)
.

Each of these form a Fused diagram, shown in figure 16d, and corresponds to identities of

the mixing matrix.

The number of partially entangled diagrams for different entanglements can appear in

four different ways.
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Sequences s-factors

{{F · · · A, C · · · B}, {G · · · J, H · · · L, K · · · D}} 1

{{F · · · A, C · · · B}, {G · · · J, K · · · D, H · · · L}} 1

{{C · · · B, F · · · A}, {H · · · L, K · · · D, G · · · J}} 1

{{C · · · B, F · · · A}, {K · · · D, H · · · L, G · · · J}} 1

{{F · · · A, C · · · B}, {H · · · L, G · · · J, K · · · D}} 2

{{F · · · A, C · · · B}, {H · · · L, K · · · D, G · · · J}} 2

{{F · · · A, C · · · B}, {K · · · D, H · · · L, G · · · J}} 2

{{F · · · A, C · · · B}, {K · · · D, G · · · J, H · · · L}} 2

{{C · · · B, F · · · A}, {H · · · L, G · · · J, K · · · D}} 2

{{C · · · B, F · · · A}, {G · · · J, H · · · L, K · · · D}} 2

{{C · · · B, F · · · A}, {G · · · J, K · · · D, H · · · L}} 2

{{C · · · B, F · · · A}, {K · · · D, G · · · J, H · · · L}} 2

Table 3. Reducible diagrams and their s-factors.

Figure 13. Diagram of the general Cweb W
(1,1,1,1)
5 (1, 1, 1, k + p, m + l + n).

• First type of partially entangled diagrams appear when two out of three correlators

are entangled on Wilson line 3 and and both the correlators are entangled on line 1.

One such diagram, shown in figure 14b involves (l + k) and (m + 1)-point correlators

entangled on line 3, and (p + 1)-point correlator entangled with the (l + k)-point

gluon correlator on line 1. There are three such possibilities in which this type of

entanglement can appear. The correlator which is not entangled on line 3 is placed

to the right of the entangled correlators. Thus, the number of diagrams with this

type of entanglement is given by,

(k Π p − 2)
(
(l Π m − 2) + (l Π n − 2) + (m Π n − 2)

)
,

The Fused-diagrams for this type of entanglement are shown in figure 14. The shuffle

of the correlators for each of these diagrams generates a Fused-Web with S = {12}

and mixing matrix R(12).
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(a) (b) (c)

(d) (e) (f)

Figure 14. Fused-Webs for Cweb W
(1,1,1,1)
5 (1, 1, 1, k + p, m + l + n).

• In the second type of entanglement, two of the three correlators are entangled on line

3 and there is no entanglement on line 1. A diagram of this configuration is shown in

figure 15a, where (l + k) and (n + 1)-point gluon correlators are entangled with each

other. There are again three such possibilities in which two of the three correlators

on line 3 are entangled. Also, the correlator which is not entangled on line 3 and

the (p + 1)-point correlator on line 1 are placed to the right of entangled piece and

(k + l)-point gluon correlator respectively. Using eq. (6.1), the number of diagrams

which involve this type of entanglement is given by,

(l Π m − 2) + (l Π n − 2) + (m Π n − 2) .

The Fused diagrams for this type of entanglement are shown in figure 15. The shuffle

of the correlators for each of these diagrams generates a Fused-Web with S = {12, 22}

and mixing matrix R(12, 22).

• In the third type of entanglement, all three correlators on line 3 are entangled and

there is no entanglement on line 1. An example of this kind of entanglement is

shown in figure 16b. The number of diagrams in which this entanglement appears is

given by,

(l Π m Π n) − 2[(l Π m) + (l Π n) + (m Π n)] + 6

where we have considered that the (p + 1)-point correlator on line 1 is placed to the

right of (l + k)-point gluon correlator. The Fused diagram for this entanglement is

shown in figure 16e. The shuffle of attachments generates a Fused-Web with S = {12}

and mixing matrix R(12).
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(a) (b) (c)

(d) (e) (f)

Figure 15. Fused-Webs for Cweb W
(1,1,1,1)
5 (1, 1, 1, k + p, m + l + n).

(a) (b) (c)

(d) (e) (f)

Figure 16. Fused-Webs for Cweb W
(1,1,1,1)
5 (1, 1, 1, k + p, m + l + n).

• Finally, in the fourth type of entanglement, the (p + 1)-point and (k + l)-point cor-

relators on line 1 are entangled and there is no entanglement on line 3, shown in

figure 16c. The number of diagrams in which this entanglement appears is given by,

(k Π p) − 2, (6.9)

Here we have considered that (m + 1) and (n + 1)-point correlators are placed to

the left and the right of entangled correlator, respectively. Each of these diagrams

generates Fused diagram of figure 16f. The shuffle of correlators for each of these

Fused diagrams generates a Fused-Web with S = {16} and mixing matrix R(16).
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Entangled Diagram Fused Diagrams in s-factors R Number of ways

correlators Web Fused-Web for configuration

[(k Π p) − 2!] × [(l Π m Π n)

All 16a 16d - 1 I −2{(l Π m)

+(m Π n) + (l Π n)} + 6]

(m + 1), (k + l), 14b 14e {a, KD} 1 R(12) {(k Π p) − 2}

(p + 1) {KD, a} 1 ×{(l Π m) − 2}

(n + 1), (k + l), 14c 14f {a, HL} 1 R(12) {(k Π p) − 2}

(p + 1) {HL, a} 1 ×{(l Π n) − 2}

(m + 1), (n + 1), 14a 14d {a, c} 1 R(12) {(k Π p) − 2}

(p + 1),(k + l) {c, a} 1 ×{(m Π n) − 2}

(n + 1), (k + l), 15a 15d {a, HL}, {b, AF } 2 R(12, 22) {(l Π n) − 2}

{a, HL}, {AF, b} 1

{HL, a}, {b, AF } 1

{HL, a}, {AF, b} 2

(m + 1), (k + l), 15b 15e {a, KD}, {b, AF } 2 R(12, 22) {(l Π m) − 2}

{a, KD}, {AF, b} 1

{KD, a}, {b, AF } 1

{KD, a}, {AF, b} 2

(n + 1), (m + 1), 15c 15f {a, GJ}, {BC, AF} 1 R(12, 22) {(m Π n) − 2}

{a, GJ}, {AF, BC} 2

{GJ, a}, {BC, AF} 2

{GJ, a}, {AF, BC} 1

(n + 1), (k + l), 16b 16e {a, AF } 1 R(12) (l Π m Π n) − 2{(l Π m)

(m + 1) {AF, a} 1 +(m Π n) + (l Π n)} + 6

(k + l), (p + 1) 16c 16f {a, HL, KD} 1 R(16) {(k Π p) − 2}

{a, KD, HL} 1

{HL, a, KD} 1

{HL, KD, a} 1

{KD, a, HL} 1

{KD, HL, a} 1

Table 4. Fused-Webs and their mixing matrices for Cweb.

The details of each type of entanglement, their associated Fused-Webs and the mixing

matrices are listed in table 4.

The diagonal blocks of the mixing matrix for this class of Cweb is then given by,

R =




I · · · B

O

R (12)
. . .

... R (12, 22)
. . .

R(16)

· · · R(14, 28)




, (6.10)
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Value of Value of Value of Value of Value of Boomerang Loop r(R)

k l m n p Cweb order

1 1 1 1 2 W
(4)
4 (1, 1, 3, 3) O(g8) 4

1 1 1 2 1 W
(4)
4 (1, 1, 2, 4) O(g8) 6

1 1 1 2 2 W
(3,1)
4 (1, 1, 3, 4) O(g10) 12

1 1 2 2 2 W
(2,2)
4 (1, 1, 3, 5) O(g12) 40

1 2 2 2 2 W
(1,3)
4 (1, 1, 3, 6) O(g12) 148

Table 5. Boomerang Cwebs present at four loops and beyond.

Using the data given in table 4 the rank of A is given by,

r(A) = r(I)
(
(k Π p) − 2!

) (
(l Π m Π n) − 2{(l Π m) + (m Π n) + (l Π n)} + 6

)

+ r(R(12))
(
(k Π p) − 2!

)(
(l Π m) − 2! + (m Π n) − 2! + (l Π n) − 2!

)

+ r(R(12, 22))
(
(l Π n) − 2! + (l Π m) − 2! + ((m Π n) − 2!

)

+ r(R(12))
(
(l Π m Π n)−2{(l Π m) + (m Π n)+(l Π n)}+6

)
+r(R(16))

(
(k Π p)−2!

)

Using the ranks of the mixing matrices of basis Cwebs, we get,

r(A) =
(
(k Π p) − 1

)(
(l Π mΠ n) − (l Π m) − (m Π n) − (l Π n) + 2

)
− 2 .

Now using the rank of D, given in eq. (6.8), the rank of R becomes

r(R) = r(A) + r(R(14, 28))

=
(
(k Π p) − 1

)(
(l Π mΠ n) − (l Π m) − (m Π n) − (l Π n) + 2

)
. (6.11)

The correspondence described in the beginning of this section allow us to predict the rank

of boomerang webs as well. Thus, few Cwebs, their attachment content, perturbative order

and the rank of the mixing matrices of this class is given in table 5. Note that this class of

Cwebs appears at four loops and beyond.

The first two boomerang Cwebs listed above are shown in figure 29a and 30a appear

at four loops connecting Wilson four lines. The Fused-Web formalism for each of these web

is shown in section 7.

6.1.3 Cweb W
(1,1,1)
4 (1, 1, l + p, k + q)

The general form of this class of Cwebs is shown in figure 17. It contains one (k + l)-point,

(p + 1)-point and a (q + 1)-point gluon correlator with k and l attachments on Wilson

line 1 and 2 respectively. The shuffle of attachments on both the Wilson lines generates

all diagrams of the Cweb, out of which only four are reducible (s 6= 0). Shuffle for the

reducible diagrams, represented with attachments {H · · · J, G · · · D} and {B · · · C, A · · · F}

on line 1 and 2 respectively, are given in table 6.
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Sequences s-factors

{H · · · J, G · · · D}, {A · · · F , B · · · C} 1

{G · · · D, H · · · J}, {B · · · C, A · · · F} 1

{H · · · J, G · · · D}, {B · · · C, A · · · F} 2

{G · · · D, H · · · J}, {A · · · F , B · · · C} 2

Table 6. Reducible diagrams of the Cweb and their s-factors.

Figure 17. Diagram of the general Cweb W
(1,1,1)
4 (1, 1, l + p, k + q).

From Uniqueness theorem the diagonal block D is given by,

D = R(12, 22) ; r(D) = r(R(12, 22)) = 1. (6.12)

Note that R(12, 22) is a basis Cweb at 3 loops connecting 4 Wilson lines.

We now proceed to determine the diagonal blocks of A using Fused-Webs. The com-

pletely entangled diagrams for this Cwebs have all the three correlators entangled as shown

in figure 18a. From eq. (6.1), the number of completely entangled diagrams is given by,

{(k Π q) − 2} × {(l Π p) − 2} =

(
(k + q)!

k! q!
− 2

)
×

(
(l + p)!

l! p!
− 2

)
, (6.13)

where the first and second factor give the number of ways in which correlators remain

entangled on line 1 and 2 respectively. Thus, the order of identity is given by eq. (6.13).

Next, we consider the partially entangled diagrams. There are two kind of entangle-

ments that appear in partially entangled diagrams:

• The (l + k)-point gluon correlator gets entangled with (q + 1)-point correlator on line

1 and (p + 1)-point correlator on line 2 is placed to the right of entangled correlators,

as shown in figure 18b. The number of such diagrams in which this entanglement

appears, is given by,

(
(k + q)!

k! q!
− 2

)
.

Every such diagram has a corresponding Fused diagram, shown in figure 18e and

the shuffle of its correlators generates the Fused-Web with S = {12} and the mixing

matrix R(12).
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(a) (b) (c)

(d) (e) (f)

Figure 18. Fused-Webs for Cweb W
(1,1,1)
4 (1, 1, l + p, k + q).

• Entanglement of the (l + k)-point gluon correlator with (p + 1)-point correlator on

line 2 and again remaining correlator is placed to the right of entangled correlators on

line 1, as shown in figure 18c. The number of such diagrams with this entanglement

is given by,

(
(l + p)!

l! p!
− 2

)
.

The Fused diagrams for each of these diagrams are same, and is given in figure 18f.

It again generates the Fused-Web with S = {12} and the mixing matrix R(12).

The diagrams in Fused-Webs, their mixing matrices and number of times they appear, are

listed in table 7. Using this table, the diagonal blocks of the mixing matrix for this class

of Cwebs are constructed and are given by,

R =




I · · · B

O

R (12)
. . .

... R (12)
. . .

R(12, 22)




, (6.14)

– 24 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
8

Entanglements Fused Diagrams in s-factors R Number of ways

Web Fused-Web for configuration

Completely entangled 18d - 1 I {(k Π q) − 2}×{(l Π p) − 2}

First partial entanglement 18e {a, GD} 1 R(12) {(k Π q) − 2}

{GD, a} 1

Second partial entanglement 18f {a, AF } 1 R(12) {(l Π p) − 2}

{AF, a} 1

Table 7. Fused-Webs and their mixing matrices for Cweb W
(1,1,1)
4 (1, 1, l + p, k + q).

Value of Value of Value of Value of Boomerang Loop r(R)

k l p q Cweb order

1 1 1 2 W
(3)
3 (1, 2, 3) O(g6) 2

1 1 2 2 W
(3)
2 (3, 3) O(g6) 4

1 2 2 2 W
(2,1)
2 (3, 4) O(g8) 10

2 2 2 2 W
(2,0,1)
2 (4, 4) O(g10) 25

Table 8. Cwebs of this class present at different loops.

The rank of block A is then given by,

r(A) = r(I) × {(k Π q) − 2} × {(l Π p) − 2} + r(R(12)) × {(k Π q) − 2}

+ r(R(12)) × {(l Π p) − 2}

Now, using eq. (6.1) and the ranks of mixing matrices of basis Cwebs, above equation takes

the form

r(A) =
(k + q)! (l + p)!

k! l! p! q!
−

(k + q)!

k! q!
−

(l + p)!

l! p!
(6.15)

The rank of the mixing matrices is the sum of that of A and D as follows

r(R) = r(A) + r(D) =
(k + q)! (l + p)!

k! l! p! q!
−

(k + q)!

k! q!
−

(l + p)!

l! p!
+ 1 (6.16)

Based on the correspondence mentioned in the previous section, we list down the Cwebs

that fall under this class in table 8.

The family of first boomerang Cweb in the table 8 has two boomerang Cwebs

W
(2,1)
4,I (1, 1, 2, 3) and W

(2,1)
4,II (1, 1, 2, 3), shown in figures 25a and 26a respectively, appearing

at four loops connecting four lines.

6.1.4 Cweb W
(1,1,1,1)
5 (1, 1, k + p, m + l, q + n)

A general structure of this class is shown in figure 19. This Cweb has (l + p)-point, (k + q)-

point, (m+1)-point and one (n+1)-point gluon correlator connecting five Wilson lines. The
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Figure 19. Diagram of the general Cweb W
(1,1,1,1)
5 (1, 1, k + p, m + l, q + n).

Diagrams Sequences S-factors

C3 {{N · · · M, L · · · K}, {H · · · J, G · · · D}, {A · · · F , B · · · C}} 1

C6 {{L · · · K, N · · · M}, {G · · · D, H · · · J}, {B · · · C, A · · · F}} 1

C4 {{N · · · M, L · · · K}, {H · · · J, G · · · D}, {B · · · C, A · · · F}} 2

C5 {{L · · · K, N · · · M}, {G · · · D, H · · · J}, {A · · · F , B · · · C}} 2

C1 {{N · · · M, L · · · K}, {G · · · D, H · · · J}, {A · · · F , B · · · C}} 3

C8 {{, L · · · KN · · · M}, {H · · · J, G · · · D}, {B · · · C, A · · · F}} 3

C7 {{, L · · · KN · · · M}, {H · · · J, G · · · D}, {A · · · F , B · · · C}} 4

C2 {{, N · · · ML · · · K}, {G · · · D, H · · · J}, {B · · · C, A · · · F}} 4

Table 9. Web W
(1,1,1,1)
5 (1, 1, k + p, m + l, q + n).

shuffle of attachments from different correlator on each Wilson line generates all diagrams

of the Cweb. Order of attachments and s-factors of the reducible diagrams are given in

table 9. The Fused-Web formalism for each of these web is shown in section 7.

The uniqueness theorem tells that the D block of the associated mixing matrix is

given by,

D = R(12, 22, 33, 42); r(D) = r(R(12, 22, 33, 42)) = 1 . (6.17)

In order to determine the rank of mixing matrix we need to calculate the rank of A

block of R. For this we require the order of identity matrix in A, which is the number of

completely entangled diagrams. One of these diagram and its Fused diagram are shown in

figure 20. The number of entangled diagrams, determined by using the eq. (6.1) for each

of the Wilson lines, is given as,
(
l Π m − 2

) (
p Π k − 2

) (
q Π n − 2

)
. (6.18)

Each of these diagrams has the same associated Fused diagram, shown in figure 20b. The

shuffle of which forms the Fused-Web having one diagram. Next we have two types of

partially entangled diagrams.

• The first case involves entanglement among the correlators at two Wilson lines si-

multaneously. There are three such possibilities, as shown in figure 22a, 22b and 22c
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(a) (b)

Figure 20. Fused-Webs for Cweb W
(1,1,1,1)
5 (1, 1, k + p, m + l, q + n).

with the remaining correlator placed towards the head of each Wilson line. The sum

of number of such diagrams for all the three possibilities is given by,
(
l Π m − 2

) (
p Π k − 2

)
+
(
l Π m − 2

) (
q Π n − 2

)
+
(
p Π k − 2

) (
q Π n − 2

)

The Fused diagrams for each of three cases are shown in figure 22d, 22e and 22f

respectively. Each of the Fused diagrams form a Fused-Web by the shuffle of its

attachment. Every such Fused-Web has two diagrams with s = 1, that has a mixing

matrix R(12), given by the Uniqueness theorem.

• In the second case, entanglement occurs between correlators only at one Wilson line.

Again there are three possibilities. The first case shown in figure 21a entangles (l+p)

with (m + 1)-point correlator on line 3. The number of such diagrams with (p + l)-

point correlator is placed right to the (k + q)-point correlator on line 2, and on line 1,

(n + 1)-point correlator is placed right to the (k + q)-point correlator, is given by
(
l Π m − 2

)
. (6.19)

The corresponding Fused diagram shown in figure 21d generate the Fused-Web with

four diagrams having following order of attachments and s-factors.

Diagrams Sequences s-factors

C1 {B · · · C, A · · · F}, {b, N · · · M} 1

C2 {A · · · F , B · · · C}, { N · · · M, b} 1

C3 {B · · · C, A · · · F}, {N · · · M, b} 2

C4 {A · · · F , B · · · C, }, {b, N · · · M} 2

The R for this Fused-Web is R(12, 22). The second case is shown in figure 21b where

(l + p) and (k + q)-point correlators are entangled on line 2. The number of such

diagrams with both the remaining correlators placed after the entangled correlators

on line 1 and 3, is given by
(
p Π k − 2

)
. (6.20)
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Figure 21. Fused-Webs for Cweb W
(1,1,1,1)
5 (1, 1, k + p, m + l, q + n).

The Fused diagram for each of these is same and displayed in figure 21e. The shuffle of

its attachments generate Fused-Webs with four diagrams whose order of attachments

and s-factor are given in the following table

Diagrams Sequences s-factors

C1 {b, A · · · F}, {G · · · D, a} 1

C2 {A · · · F , b, }, {a, G · · · D} 1

C3 {b, A · · · F}, {a, G · · · D} 2

C4 {A · · · F , b}, {G · · · D, a} 2

Following the uniqueness theorem, the mixing matrix for the Fused-Web is R(12, 22).

The third possibility involves the attachments from (k+q) and (n+1)-point correlator

on line 1 as shown in figure 21c. The number of such diagrams with attachments

from (m + 1) and (l + p)-point correlators placed right to the (l + p) and (q + k) on

line 3 and 2 respectively, is given as

(
q Π n − 2

)
. (6.21)

Each of these has same Fused diagram shown in figure 21f. The Fused-Web generated

by the shuffle of its attachments has four diagrams with following s-factors.
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Figure 22. Fused-Webs for Cweb W
(1,1,1,1)
5 (1, 1, k + p, m + l, q + n).

Diagrams Sequences s-factors

C1 {G · · · D, H · · · J}, {K · · · L, a} 1

C2 {H · · · J, G · · · D}, {K · · · L, a} 1

C3 {H · · · J, G · · · D}, {K · · · L, a} 2

C4 {G · · · D, H · · · J}, {a, K · · · L} 2

The uniqueness theorem tells that these s-factors correspond to a unique mixing

matrix R(12, 22).

Therefore the rank of block A for this class of Cwebs is,

r(A) = r(I)
(
l Π m − 2

)(
p Π k − 2

)(
q Π n − 2

)

+ r(R(12))
[(

l Π m − 2
)(

p Π k − 2
)
+
(
l Π m − 2

)(
q Π n − 2

)
+
(
p Π k − 2

)(
q Π n − 2

)]

+ r(R(12, 22))
[(

l Π m − 2
)

+
(
p Π k − 2

)
+
(
q Π n − 2

)]
(6.22)

Upon substituting the ranks of Identity and basis matrices we get,

r(A) =
(k + p)! (l + m)! (n + q)!

k! l! m! n! p! q!
−

(k + p)! (l + m)!

k! l! m! p!
−

(k + p)! (n + q)!

k! n! p! q!
+

(k + p)!

k! p!

−
(l + m)! (n + q)!

l! m! n! q!
+

(l + m)!

l! m!
+

(n + q)!

n! q!
− 2 (6.23)
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The rank of D for this Cweb is 1. Thus, we can write the rank of the mixing matrix of this

class of Cweb as

r(R) =
(k + p)! (l + m)! (n + q)!

k! l! m! n! p! q!
−

(k + p)! (l + m)!

k! l! m! p!
−

(k + p)! (n + q)!

k! n! p! q!
+

(k + p)!

k! p!

−
(l + m)! (n + q)!

l! m! n! q!
+

(l + m)!

l! m!
+

(n + q)!

n! q!
− 1 (6.24)

The correspondence described in the previous section guides us to predict the rank of

boomerang Cwebs along with the non Boomerang ones. A boomerang Cweb W
(4)
4 (1, 2, 2, 3),

shown in figure 32a appearing at four loops connecting four lines belong to this class. The

mixing matrix corresponding to this has rank 2 as predicted from above expression by

choosing the values n = 2 and l = m = k = q = p = 1. The Fused-Web formalism for this

web is shown in section 7.

We end this section by concluding that we have provided four all order general struc-

tures of Cwebs. The ranks of the mixing matrices for these are predicted using the for-

malism developed in [1]. These four classes suffice to determine the diagonal blocks and

ranks of mixing matrices of the boomerang Cwebs appearing at four loops connecting four

Wilson lines.

6.2 Explicit form of mixing matrix for W
(1,1)
2 (1, k + 2)

We start our discussion with a class of Cwebs W
(1,1)
2 (1, k + 2) as the explicit form of the

mixing matrix for this class can be obtained using the properties and the concepts discussed

in section 3.

In this class, we have one (k + 1)-point gluon correlator along with one Boomerang

correlator. Its general structure is shown in figure 23. The shuffle of correlators on Wilson

line 1 generates all the the diagrams of Cwebs, which can either be completely entangled

or reducible. There are only two possible reducible diagrams in which the boomerang is

either placed left or right to the (k+1)-point correlator on line 1. Both of these diagrams

have s = 1, and from the Uniqueness theorem, we can write the explicit form of D as

R(12). Thus

D = R(12) , and r(D) = r(R(12)) = 1 . (6.25)

In this case A contains only the identity matrix as there are no partially entangled

diagrams. Henceforth it is sufficient to determine the number of completely entangled

diagrams of the Cweb to determine the rank of the mixing matrix [1]. As mentioned

earlier, the number of ways in which two correlators of attachments a and b on the same

line remain entangled is given in eq. (6.1). In this case a = k and b = 2, so the number of

completely entangled diagrams and the rank of A is given by

r(A) = (k Π 2) − 2 =
(k + 1) (k + 2)

2
− 2 . (6.26)

Thus, using the above equation and eq. (6.25) rank of R is given by,

r(R) =
(k + 1) (k + 2)

2
− 1 . (6.27)
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Figure 23. Diagram of the general Cweb W
(1,1)
2 (1, k + 2).

Now, we can calculate the off-diagonal entries of R using the known properties of the

mixing matrices described in section 2. Once diagonals are known, we can write down the

explicit form of the mixing matrix R for this class as,

R =




Il

c1 b1

c2 b2

...
...

cl bl

O2×l R (12)




; l ≡
(k + 1) (k + 2)

2
− 2 , (6.28)

where bi and ci are unknowns. Also note that, here we have denoted the order of identity

by l, which is the number of completely entangled diagrams. Now, to determine these

unknowns, we use the known properties of the mixing matrices. The row-sum rule fixes,

bj = −1 − cj , 1 ≤ j ≤ l, (6.29)

and the idempotence property fixes,

cj = −
1

2
1 ≤ j ≤ l . (6.30)

With this we have uniquely fixed all the elements of the mixing matrix for this class of

boomerang Cwebs, and it is then given by

R =




1 0 0 . . . 0 −1/2 −1/2

0 1 0 . . . 0 −1/2 −1/2

0 0 1 . . . 0 −1/2 −1/2
...

...
...

...
...

...
...

...

0 0 0 . . . 1 −1/2 −1/2

0 0 0 . . . 0 1/2 −1/2

0 0 0 . . . 0 −1/2 1/2




. (6.31)

We now conclude this section. In this section, we have discussed four classes of Cwebs

for which the diagonals of the mixing matrices can be constructed using the Normal or-

dering, Fused-Webs, uniqueness theorem and properties of mixing matrices. We again
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Diagrams Sequences s-factors

C1 {ABK} 0

C2 {AKB} 1

C3 {BAK} 1

Table 10. Normal ordered diagrams of Cweb W
(1,0,1)
4 (1, 1, 1, 3).

Figure 24. A diagram of Cweb W
(1,0,1)
4 (1, 1, 1, 3).

emphasize that these four classes are sufficient to calculate diagonal blocks of all eight

boomerang Cwebs occurring at four loops that connect four Wilson lines. We have also

obtained explicit form a special class of boomerang Cweb at all orders in the perturbation

theory. We verify the results of this section for boomerang Cwebs at four loops in the next

section.

7 Diagonal blocks of boomerang Cwebs at four loops connecting 4 Wil-

son lines

In this section, we calculate the diagonal blocks of mixing matrices of boomerang Cwebs

that appear at four loops and connect four lines. There are total eight such boomerang

Cwebs at four loops which are generated using the algorithm presented in [66, 72]. We

show in this section that the mixing matrices for all eight boomerang Cwebs at four loops

connecting four Wilson lines have general form of the four special classes shown in the

previous section.

1. W
(1,0,1)
4 (1, 1, 1, 3)

This Cweb has three diagrams, out of which one is completely entangled and two are

reducible. The diagrams after normal ordering and their corresponding s-factors are pre-

sented in table 10.

We show only C2 in figure 24. The number of diagrams and the dimension of the mixing

matrix for this Cweb is three, thus the mixing matrix for this Cweb is given by [1, 72],

R =




1 −1
2 −1

2

0 1
2 −1

2

0 −1
2

1
2


 (7.1)
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Diagrams Sequences s-factors

C1 {{ABK}{CF}} 0

C2 {{ABK}{FC}} 0

C3 {{AKB}{FC}} 1

Diagrams Sequences s-factors

C4 {{BAK}{FC}} 1

C5 {{BAK}{CF}} 2

C6 {{AKB}{CF}} 2

Table 11. Normal ordered diagrams of Cweb W
(2,1)
4,II

(1, 1, 2, 3).

(a) (b)

Figure 25. Cweb W
(2,1)
4,II

(1, 1, 2, 3) and the corresponding Fused-Web.

2. W
(2,1)
4,II (1, 1, 2, 3)

This Cweb is made out of one three-point and one two-point gluon correlator along with a

boomerang. It and has six diagrams, out of which we only show in figure 25a. The shuffle

and the s-factors of the Normal ordered diagrams are shown in table 11.

Note that the s-factor for the reducible diagrams for this Cweb is {1, 1, 2, 2}. Thus,

uniqueness theorem and the properties of D fixes,

D = R(12, 22) , r(D) = r(R(12, 22)) = 1 . (7.2)

To obtain the diagonal blocks of A, we use the Fused-Web formalism [1]. This Cweb does

not have any completely entangled diagrams thus its mixing matrix is free from identity.

The partially entangled diagrams for this Cweb are possible when the red two-point gluon

correlator is placed inside the two attachments of the boomerang correlator, which are

diagrams C1 and C2 of table 11. A diagram of the Fused-Web correspond to this type of

entanglement is shown in figure 25b. The Fused-Web for this diagram has S = {12} with

mixing matrix R(12). Thus, the matrix A and its rank are given by,

A = R(12) , r(A) = 1 . (7.3)

The above statements are summarized in table 12. The diagonal blocks of the mixing

matrix for this Cweb is then given by,

R =




R (12) · · ·
... R (12, 22)


 (7.4)

The rank and thus the number of exponentiated colour factor for this Cweb is given by,

r(R) = r (R(12)) + r (R(12, 22)) = 2 (7.5)
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Entanglement Diagrams of Fused-Web Diagrams in s-factors R

Cweb Fused-Web

First Partial Entangled C1, C2 25b {b, C} 1 R(12)

{C, b} 1

Table 12. Fused-Webs and their mixing matrices for Cweb W
(2,1)
4,II

(1, 1, 2, 3).

Diagrams Sequences s-factors

C1 {{ABK}, {DE}} 0

C2 {{ABK}, {ED}} 0

C3 {{AKB}, {DE}} 1

Diagrams Sequences s-factors

C4 {{BAK}, {DE}} 1

C5 {{BAK}, {ED}} 2

C6 {{AKB}, {ED}} 2

Table 13. Normal ordered diagrams of Cweb W
(2,1)
4,I (1, 1, 2, 3).

(a) (b)

Figure 26. Cweb W
(2,1)
4,I (1, 1, 2, 3) and its Fused-Web.

3. W
(2,1)
4,I (1, 1, 2, 3)

This Cweb has six diagrams and one of them is shown in figure 26a. The normal ordered

diagrams and their corresponding s-factors are shown in table 13.

This Cweb has two irreducible diagrams and four reducible diagrams, further the

reducible diagrams have s-factors {12, 22}. Thus, using the Uniqueness theorem and the

fact that the block D is itself a mixing matrix, we get D and rank of D as,

D = R(12, 22) , r(D) = r(R(12, 22)) = 1 (7.6)

This Cweb does not contain any partially entangled diagrams thus the mixing matrix does

not have any identity. The only way that the diagrams of this Cweb are entangled is

when the correlators on line 1 are entangled. Applying the Fused-Web formalism [1], we

get the Fused diagram, shown in figure 26b for this type of entanglement. The shuffle of

attachments of this Fused diagram generate a Fused-Web with S = {12} and thus it has

the mixing matrix R(12).
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Entanglement Diagrams of Fused-Web Diagrams in s-factors R

Cweb Fused-Web

First Partial Entangled C1, C2 26b {b, E} 1 R(12)

{E b} 1

Table 14. Fused-Webs and their mixing matrices for Cweb W
(2,1)
4,I (1, 1, 2, 3).

Diagrams Sequences s-factors

C1 {{ABCK} 0

C2 {{ACBK} 0

C3 {{ABKC} 0

C4 {{CABK} 0

C5 {{ACKB} 0

C6 {{BACK} 0

Diagrams Sequences s-factors

C7 {{AKBC} 1

C8 {{AKCB} 1

C9 {{BAKC} 1

C10 {{BCAK} 1

C11 {{CAKB} 1

C12 {{CBAK} 1

Table 15. Normal ordered diagrams of Cweb W
(2,1)
4,I (1, 1, 1, 4).

Note that, there is only one type of entanglement is possible for this Cweb, thus the

block A is given by,

A = R(12) . (7.7)

The above statements are summarized in table 14. The diagonal blocks of the mixing

matrix is then given by,

R =




R(12) · · ·
... R(12, 22)


 (7.8)

Thus, the rank of the mixing matrix for this Cweb is given by,

r(R) = r (R(12)) + r (R(12, 22)) = 2 . (7.9)

4. W
(2,1)
4,I (1, 1, 1, 4)

A diagram of this Cweb is shown in figure 27. It has twelve diagrams, out of which six

are reducible, two are completely entangled, and other four are partially entangled. The

Normal ordered diagrams and their s-factors are shown in table 15.

Note that the reducible diagrams of this Cweb has S = {16}. The fact that D follows

the properties of mixing matrices and the uniqueness theorem fixes D and its rank as,

D = R(16) , r(D) = r(R(16)) = 2 (7.10)

The diagrams of this Cweb are completely entangled when all three correlators on line 1

are entangled. These are C1 and C2 in table 15 and corresponds to two identities in the

mixing matrix for this Cweb. The Fused diagram is for C1 and C2 is shown in figure 28a.
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Figure 27. Cweb W
(2,1)
4,I (1, 1, 1, 4).

(a) (b) (c)

Figure 28. Fused-Webs for Cweb W
(2,1)
4,I (1, 1, 1, 4).

Entanglement Diagrams of Fused-Web Diagrams in s-factors R

Cweb Fused-Web

Complete entangled C1, C2 28a - 1 I2

First Partial Entangled C3, C4 28b {a, C} 1 R(12)

{C a} 1

Second Partial Entangled C5, C6 28c {a B} 1 R(12)

{B a} 1

Table 16. Fused-Webs and their mixing matrices for Cweb W
(2,1)
4,I (1, 1, 1, 4).

There are two different ways in which two of the three correlators on Wilson line 1 are

entangled. The Fused diagrams for these two different types of entanglements are shown

in figure 28b and figure 28c. Each of these forms a Fused-Web with S = {12} and mixing

matrix R(12). The table 16 summarizes the above statements.

The order of diagrams in the Cweb given in table 15 is chosen in a way such that

diagrams with same kind of entanglement appear together. Then the diagonal blocks of

matrix A becomes,

A =




I2 · · ·

O4×2
R (12)

R (12)


 , (7.11)
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Diagrams Sequences s-factors

C1 {{ACK}, {FHD}} 0

C2 {{ACK}, {FDH}} 0

C3 {{ACK}, {HFD}} 0

C4 {{ACK}, {HDF }} 0

C5 {{ACK}, {DFH}} 0

C6 {{ACK}, {DHF }} 0

C7 {{AKC}, {HFD}} 1

C8 {{AKC}, {HDF }} 1

C9 {{CAK}, {FDH}} 1

Diagrams Sequences s-factors

C10 {{CAK}, {DFH}} 1

C11 {{AKC}, {FHD}} 2

C12 {{AKC}, {FDH}} 2

C13 {{AKC}, {DFH}} 2

C14 {{AKC}, {DHF }} 2

C15 {{CAK}, {FHD}} 2

C16 {{CAK}, {HFD}} 2

C17 {{CAK}, {HDF }} 2

C18 {{CAK}, {DHF }} 2

Table 17. Normal ordered diagrams of Cweb W
(4)
4 (1, 1, 3, 3).

(a) (b)

Figure 29. Cweb W
(4)
4 (1, 1, 3, 3) and its Fused-Web.

Further, the diagonal blocks of R is given by,

R =




I2 · · ·

R (12)

R (12)

R(16)




, (7.12)

The rank of the mixing matrix for this Cweb is given by

r(R) = r(12) + 2r(R(12)) + r(R(16)) = 6 . (7.13)

5. W
(4)
4 (1, 1, 3, 3)

This Cweb, shown in figure 29a has eighteen diagrams, out of which twelve are reducible

and remaining six are partially entangled. The Normal ordered diagrams and their s-factors

are shown in table 17.

For this case, the s-factors of reducible diagrams forms a column weight vector S =

{14, 28} which gives mixing matrix R(14, 28) using Uniqueness theorem. Thus the block D

of this matrix is,

D = R(14, 28) ; r(D) = r(R(14, 28)) = 2 , (7.14)
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Entanglement Diagrams of Fused-Web Diagrams in s-factors R

Cweb Fused-Web

Partial Entangled C1, C2, 29b {F, a, D} 1

C3, C4 {F, D, a} 1

C5, C6 {a, F, D} 1

{a, D, F } 1 R(16)

{D, a, F } 1

{D, F, a} 1

Table 18. Fused-Webs and their mixing matrices for Cweb W
(4)
4 (1, 1, 3, 3).

Now we use procedure of Fused-Webs for the determination of diagonal blocks of A. In

this Cweb there is no completely entangled diagram. Therefore the identity matrix in A

does not exist.

There is only one kind of entanglement — involving boomerang and two point correla-

tor on line 1 — that appears in partially entangled diagrams. There are six such diagrams,

C1, C2, C3, C4, C5 and C6, whose order of attachments are given in table 17. The shuffle

of attachments of Fused diagram, shown in figure 29b generates a Fused-Web with column

weight vector S = {16} and the mixing matrix is R(16), as given in table 18. The order

of diagrams in the Cweb given in table 17, is chosen such that all the partially entangled

diagrams appear together. Therefore, mixing matrices of Fused-Web is the block A itself,

A = R(16) (7.15)

Having obtained the block A, the diagonal blocks of R are,

R =

(
R (16) · · ·

· · · R (14, 28)

)
, (7.16)

the rank of R is the number of exponentiated colour factors which is given as

r(R) = r(A) + r(D) = 2 + 2 = 4 (7.17)

6. W
(4)
4 (1, 1, 2, 4)

This Cweb, shown in figure 30 has twenty four diagrams, out of which twelve are reducible

and remaining twelve are partially entangled. The Normal ordered diagrams and their

s-factors are shown in table 19.

For this case, the s-factors of reducible diagrams forms a column weight vector S =

{14, 28}. This is a column weight vector of a known Basis web present at four loops, with

mixing matrix be R(14, 28). Thus the block D of this matrix is,

D = R(14, 28) r(D) = r(R(14, 28)) = 2 . (7.18)

We now use procedure of Fused-Webs to determine the diagonal blocks of A. In this Cweb,

the identity in A does not exist as there is no completely entangled diagram. Further, there

are two kind of entanglements leading to different partial entanglement.
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Diagrams Sequences s-factors

C1 {{ABCK}, {FD}} 0

C2 {{ABCK}, {DF}} 0

C3 {{ACBK}, {FD}} 0

C4 {{ACBK}, {DF}} 0

C5 {{ABKC}, {FD}} 0

C6 {{ABKC}, {DF}} 0

C7 {{CABK}, {FD}} 0

C8 {{CABK}, {DF}} 0

C9 {{ACKB}, {FD}} 0

C10 {{ACKB}, {DF}} 0

C11 {{BACK}, {FD}} 0

C12 {{BACK}, {DF}} 0

Diagrams Sequences s-factors

C13 {{AKBC}, {FD}} 1

C14 {{BAKC}, {FD}} 1

C15 {{CAKB}, {DF}} 1

C16 {{CBAK}, {DF}} 1

C17 {{AKBC}, {DF}} 2

C18 {{AKCB}, {FD}} 2

C19 {{AKCB}, {DF}} 2

C20 {{BAKC}, {DF}} 2

C21 {{BCAK}, {FD}} 2

C22 {{BCAK}, {DF}} 2

C23 {{CAKB}, {FD}} 2

C24 {{CBAK}, {FD}} 2

Table 19. Normal ordered diagrams of Cweb W
(4)
4 (1, 1, 2, 4).

Figure 30. Cweb W
(4)
4 (1, 1, 2, 4).

• First, when one of the two, two-point correlator is entangled with the boomerang on

line 1. These two possibilities of choosing the two point correlator leads to two distinct

partial entanglements, appearing in C5, C6, C7, C8, and C5, C6, C7, C8 respectively.

The Fused diagrams associated with C5 and C9 are shown in figure 31c and figure 31d.

The shuffle of correlators for each of these generate the associated two Fused-Webs.

The column weight vector S = {12, 22} and mixing matrix R(12, 22) are the same for

both the Fused-Webs.

• The second kind involves entanglement of both the two point correlators along with

the boomerang. Two possible order of attachments of two point correlators in between

the boomerang define two distinct such partial entanglements appearing in diagrams

C1, C2 and C3, C4 respectively. The Fused diagrams corresponding to C1 and C3

are shown in figure 31a and figure 31b. The shuffle of correlators for each of these

generate the associated two Fused-Webs. Both of these has column weight vector

S = {12} and mixing matrix is R(12).

Above discussion is mentioned in the table 20. It classifies the irreducible diagrams of

the Cweb according to the entangled pieces. The order of diagrams in the Cweb given in

table 19, is chosen such that diagrams with same kind of entanglement appear together.
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(a) (b)

(c) (d)

Figure 31. Fused-Webs for Cweb W
(4)
4 (1, 1, 2, 4).

Entanglement Diagrams of Fused-Web Diagrams in s-factors R

Cweb Fused-Web

First Partial Entangled C1, C2, 31a {b, D} 1 I2

{D, b} 1

Second Partial Entangled C3, C4 31b {b, D} 1 R(12)

{D, b} 1

Third Partial Entangled C5, C6 31c {{b, C}, {F, D}} 1 R(12, 22)

C7, C8 {{b, C}, {D, F }} 2

{{C, b}, {F, D}} 2

{{C, b}, {D, F }} 1

Fourth Partial Entangled C9, C10 31d {{a, B}, {F, D}} 2 R(12, 22)

C11, C12 {{a, B}, {D, F }} 1

{{B, a}, {F, D}} 1

{{B, a}, {D, F }} 2

Table 20. Fused-Webs and their mixing matrices for Cweb W
(4)
4 (1, 1, 2, 4).

Therefore, mixing matrices of the Fused-Webs for this Cweb are present as the diagonal

blocks of A, given as,

A =




R (12) · · ·
... R (12)

R(12, 22)
... R(12, 22)




, (7.19)
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The rank of A is,

r(A) = 2 r(R(12)) + 2 r(R(12, 22)) = 4 .

The diagonal blocks of R is then given by

R =




R (12) · · · · · ·
... R (12)

R(12, 22)
...

... R(12, 22)

R(14, 28)




, (7.20)

The number of exponentiated colour factors is the rank of the mixing matrix R, which is

given as

r(R) = r(A) + r(D) = 4 + r(R(14, 28)) = 6 . (7.21)

7. W
(4)
4 (1, 2, 2, 3)

This Cweb, shown in figure 32a has twelve diagrams, out of which eight are reducible and

remaining four are partially entangled. The Normal ordered diagrams and their s-factors

are shown in table 21.

For this case, the s-factors of reducible diagrams forms a column weight vector S =

{12, 22, 32, 42}. This is a column weight vector of a known Basis web present at four loops,

with mixing matrix be R(12, 22, 32, 42). Thus the block D of this matrix is,

D = R(12, 22, 32, 42) , r(D) = r(R(12, 22, 32, 42)) = 1 (7.22)

Now we use procedure of Fused-Webs for the determination of diagonal blocks of A. There

is no completely entangled diagram in this Cweb which implies that identity in A does

not exist. There is only one kind of entanglement involving boomerang and the two point

correlator on line 1 which appears in all four partially entangled diagrams C1, C2, C3, C4.

The Fused diagram corresponding to C1 is shown in figure 32b. The shuffle of its correlators

generates the digrams of Fused-Web with S = {12, 22}, which mix through the mixing

matrix R(12, 22). The details of diagrams in Fused-Web, their s-factors and the associated

diagrams of Cweb are listed in table 22. The order of diagrams in the Cweb given in table 21,

is chosen such that all the partially entangled diagrams appear together. Therefore, mixing

matrix of Fused-Web is the block A, given as,

A = R(12, 22)

The diagonal blocks of R is then given by,

R =

(
R(12, 22) · · ·

· · · R(12, 22, 32, 42)

)
(7.23)

The rank of mixing matrix R is given as

r(R) = r(A) + r(D) = 1 + 1 = 2. (7.24)
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Diagrams Sequences s-factors

C1 {{ADK}, {CH}, {EF}} 0

C2 {{ADK}, {CH}, {FE}} 0

C3 {{ADK}, {HC}, {EF}} 0

C4 {{ADK}, {HC}, {FE}} 0

C5 {{AKD}, {HC}, {FE}} 1

C6 {{DAK}, {CH}, {EF}} 1

Diagrams Sequences s-factors

C7 {{AKD}, {CH}, {EF}} 2

C8 {{DAK}, {HC}, {FE}} 2

C9 {{AKD}, {HC}, {EF}} 3

C10 {{DAK}, {CH}, {FE}} 3

C11 {{AKD}, {CH}, {FE}} 4

C12 {{DAK}, {HC}, {EF}} 4

Table 21. Normal ordered diagrams of Cweb W
(4)
4 (1, 2, 2, 3).

(a) (b)

Figure 32. Cweb W
(4)
4 (1, 2, 2, 3) and the associated Fused-Web.

Entanglement Diagrams of Fused-Web Diagrams in s-factors R

Cweb Fused-Web

First Partial Entangled C1, C2 32b {{C, b}, {E, F}} 1 R(12, 22)

C3, C4 {{C, b}, {F, E}} 2

{{b, C}, {E, F}} 2

{{b, C}, {F, E}} 1

Table 22. Fused-Webs and their mixing matrices for Cweb W
(4)
4 (1, 2, 2, 3).

8. W
(4)
4 (1, 1, 1, 5)

This Cweb, shown in figure 33 has sixty diagrams, out of which twenty four are reducible,

six are completely entangled and other thirty are partially entangled. The Normal ordered

diagrams and their s-factors are shown in table 23.

For this case, the s-factors of reducible diagrams forms a column weight vector S =

{124}. This is a column weight vector of a known Basis web present at four loops, with

mixing matrix be R(124). Thus the block D of this matrix is,

D = R(124) , r(D) = r(R(124)) = 6 (7.25)

We now proceed to determine the diagonal blocks of A starting with identity matrix. The

number of completely entangled digrams is the order of identity matrix. In order to be

completely entangled every attachment of two point correlators on line 1 must be in between

the attachments of boomerang. Also, these three attachments can be ordered in 3! ways,
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Figure 33. Cweb W
(4)
4 (1, 1, 1, 5).

Diagrams Sequences s-factors

C1 {{ABCDK}} 0

C2 {{ABCDK}} 0

C3 {{ACBDK}} 0

C4 {{ACDBK}} 0

C5 {{ADBCK}} 0

C6 {{ADCBK}} 0

C7 {{ABCKD}} 0

C8 {{DABCK}} 0

C9 {{ABDKC}} 0

C10 {{CABDK}} 0

C11 {{ACBKD}} 0

C12 {{DACBK}} 0

C13 {{ACDKB}} 0

C14 {{BACDK}} 0

C15 {{ADBKC}} 0

C16 {{CADBK}} 0

C17 {{ADCKB}} 0

C18 {{BADCK}} 0

C19 {{BACKD}} 0

C20 {{ACKBD}} 0

C21 {{ACKDB}} 0

C22 {{BDACK}} 0

C23 {{DACKB}} 0

C24 {{DBACK}} 0

C25 {{CABKD}} 0

C26 {{ABKCD}} 0

C27 {{ABCDC}} 0

C28 {{CDABK}} 0

C29 {{DABKC}} 0

C30 {{DCABK}} 0

Diagrams Sequences s-factors

C31 {{ADKBC}} 0

C32 {{ADKCB}} 0

C33 {{BADKC}} 0

C34 {{BCADK}} 0

C35 {{CADKB}} 0

C36 {{CBADK}} 0

C37 {{AKBCD}} 1

C38 {{AKBDC}} 1

C39 {{AKCBD}} 1

C40 {{AKCDB}} 1

C41 {{AKDBC}} 1

C42 {{AKDCB}} 1

C43 {{BAKCD}} 1

C44 {{BAKDC}} 1

C45 {{BCAKD}} 1

C46 {{BCDAK}} 1

C47 {{BDAKC}} 1

C48 {{BDCAK}} 1

C49 {{CAKBD}} 1

C50 {{CAKDB}} 1

C51 {{CBAKD}} 1

C52 {{CBDAK}} 1

C53 {{CDAKB}} 1

C54 {{CDBAK}} 1

C55 {{DAKBC}} 1

C56 {{DAKCB}} 1

C57 {{DBAKC}} 1

C58 {{DBCAK}} 1

C59 {{DCAKB}} 1

C60 {{DCBAK}} 1

Table 23. Normal ordered diagrams of Cweb W
(4)
4 (1, 1, 1, 5).
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inside boomerang. Thus the order of identity matrix is six which correspond to the first

six diagrams of the Cweb with order of attachments given in table 13.

Now we consider partially entangled diagrams. There are two kind of entanglements

that lead to such diagrams:

• Two of the three two point correlators are entangled with boomerang on line 1. These

two correlators can be chosen in 3C2 ways. Also, attachments of each pair can be

further ordered in two ways inside boomerang. These two are distinct entanglements.

In this ways we have following distinct entanglements of this kind

3C2 × 2

These six are associated with {C7, C8}, {C9, C10}, {C11, C12}, {C13, C14}, {C15, C16}

and {C17, C18}. the Fused diagrams for first diagrams of each of these pairs are shown

in figures 28b, 28c, 28d, 28e, 28f and 28g respectively. The shuffle of attachments

generate six Fused-Webs, one for every pair. Each of these has S = {12}, and their

mixing matrix is R(12).

• One of the three two point correlators are entangled with boomerang on line 1. There

are three possibilities for this. Each of which is treated as a distinct entanglement

within this kind. The three cases are associated with {C19, C20, C21, C22, C23, C24},

{C25, C26, C27, C28, C29, C30} and {C31, C32, C33, C34, C35, C36}. For first diagram of

each of these sets, the associated Fused diagrams are shown in figures 28h, 28i and 28j.

The shuffle of attachments generate three Fused-Webs, one for each of three sets.

Every such Fused-Web has S = {16}, and it has the mixing matrix R(16)

Above discussion is given in detail in table 24. It classifies the irreducible diagrams

of the Cweb according to the entanglements. This table provides the Fused-Webs with

the associated mixing matrices for the Cweb. The order of diagrams in the Cweb given in

table 23, is chosen such that diagrams with same kind of entanglement appear together.

Therefore, mixing matrices of the Fused-Webs for this Cweb are present as the diagonal

blocks of A, which is given as,

A =




I6 · · ·

O2×4

R (12) · · · · · ·

R (12) · · ·
...

R (12) · · ·
... R (12) · · ·

R (12) · · ·

R (12) · · ·
... R (16)

R (16)

R (16)




. (7.26)

the rank of A is,

r(A) = r(I6) + 6 r(R (12)) + 3 r(R (16)) = 18 .
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Entanglement Diagrams of Fused-Web Diagrams in s-factors R

Cweb Fused-Web

Complete entangled C1, C2,C3 34a - 1 I6

C4, C5,C6

First Partial Entangled C7, C8 34b {a, D} 1 R(12)

{D a} 1

Second Partial Entangled C9, C10 34c {C a} 1 R(12)

{a C} 1

Third Partial Entangled C11, C12 34d {a, D} 1 R(12)

{a, D} 1

Fourth Partial Entangled C13, C14 34e {a, B} 1 R(12)

{B a} 1

Fifth Partial Entangled C15, C16 34f {C a} 1 R(12)

{a C} 1

Sixth Partial Entangled C17, C18 34g {B a} 1 R(12)

{a, B} 1

Seventh Partial Entangled C19, C20 34h {B, a, D} 1

C21, C22 {B, D, a} 1

C23, C24 {a, B, D} 1 R(16)

{a, D, B} 1

{D, a, B} 1

{D, B, a} 1

Eighth Partial Entangled C25, C26 34i {C, a, D} 1

C27, C28 {C, D, a} 1

C29, C30 {a, C, D} 1 R(16)

{a, D, C} 1

{D, a, C} 1

{D, C, a} 1

Ninth Partial Entangled C31, C32 34j {C, a, B} 1

C33, C34 {C, B, a} 1

C35, C36 {a, C, B} 1 R(16)

{a, B, C} 1

{B, a, C} 1

{B, C, a} 1

Table 24. Fused-Webs and their mixing matrices for Cweb W
(4)
4 (1, 1, 1, 5).

– 45 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
8

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 34. Fused-Webs for Cweb W
(4)
4 (1, 1, 1, 5).
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The diagonal blocks of R is given as,

R =




I6 · · ·

O2×4

R (12) · · · · · ·

R (12) · · ·
...

R (12) · · ·
... R (12) · · ·

R (12) · · ·

R (12) · · ·
... R (16)

R (16)

R (16)

R(124)




.

(7.27)

The number of exponentiated colour factors is the rank of the mixing matrix, which is

given as

r(R) = r(A) + r(R(124)) = 18 + 6 = 24 (7.28)

8 Summary and outlook

The logarithm of the Soft function can be expressed as a sum over Cwebs which are

sets of Feynman diagrams. This exponentiation in terms of Cwebs allows us to make

predictions about the IR structures in the multiparton scattering amplitudes to all orders

in the perturbation theory. The diagrams of a Cweb mix via a mixing matrix such that

they select only colour factors that correspond to fully connected diagrams.

In this article we have defined boomerang Cwebs as the Cwebs that contain at least

one two-point gluon correlator whose both ends are attached to the same Wilson line. The

studies of these Cwebs are useful for the calculation of IR structure of scattering amplitudes

that involve massive particles [2].

It was shown in [1] that the diagonal blocks of the mixing matrices can be constructed

using the basis Cwebs. We have found that there is a direct correspondence of basis Cwebs

with the tree graphs used in graph theory. We have shown that there is a flow of data

from the boomerang and non-boomerang Cwebs and vice versa, which helps in predicting

the diagonal blocks of their mixing matrices. Using these concepts, we have calculated the

diagonal blocks and ranks for all the boomerang Cwebs at four loops that connect four

Wilson lines. In doing so, we have used Fused-Web formalism to obtain the general form

of four special classes of boomerang Cwebs by determining the types of entanglements and

number of diagrams belonging to each of them. Note that Cweb and web do not differ in

terms of the colour structure, thus colour factors of boomerang Cwebs will exhibit the same

structure as boomerang webs; specifically the complete decoupling of self energy diagrams

from boomerang webs which was proven in [2] using combinatorics will hold true for Cwebs
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as well. We believe that the general structure of the diagonal blocks of several other classes

of Cwebs at all order in the perturbation theory can be obtained following the method

described in this paper.
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A Replica trick

One of the powerful techniques in the combinatorial problems in physics, which involves

exponentiation is the replica trick [78]. For Wilson line correlators, the replica trick algo-

rithm was developed in [64, 65]. The same replica trick was adopted in [66, 72] for the

calculation of the mixing matrices for four-loop Cwebs [66, 67]. Here, we briefly discuss the

replica trick algorithm, which was used in the calculation of the mixing matrices for Cwebs

at four loops. To start with, we consider the path integral of the Wilson line correlators as,

Sn(γi) =

∫
DAa

µ exp(iS(Aa
µ))

n∏

k=1

φk(γk) = exp[Wn(γi)] (A.1)

where S(Aa
µ) is the classical action of the gauge fields. In order to proceed with the replica

trick algorithm, one introduces Nr non-interacting identical copies of each gluon field Aµ,

which means, we replace each Aµ by Ai
µ, where, i = 1, . . . , Nr. Now, for each replica, we

associate a copy of each Wilson line, thereby, replacing each Wilson line by a product of Nr

Wilson lines. Thus, in the replicated theory, the path integral of the Wilson line correlator

can then be written as,

S repl.
n (γi) =

[
Sn (γi)

]Nr

= exp
[
Nr Wn(γi)

]
= 1 + Nr Wn(γi) + O(N2

r ) . (A.2)

Now, using this equation, one can calculate Wn by calculating O(Nr) terms of the Wilson

line correlator in the replicated theory. The method of replicas involves five steps, which

are summarized below.

- Associate a replica number to each connected gluon correlator in a Cweb.

- Define a replica ordering operator R, which acts on the colour generators on each

Wilson line and order them according to their replica numbers. Thus, if Ti denotes

a colour generator for a correlator belonging to replica number i, then action of R

on TiTj preserves the order for i ≤ j, and reverses the order for i > j. Thus,

replica ordered colour factor for a diagram in a Cweb will always be a diagram of the

same Cweb.
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- The next step in order to calculate the exponentiated colour factors, one needs to

find the hierarchies between the replica numbers present in a Cweb. If a Cweb has m

connected pieces, we call hierarchies h(m). h(m) are known as Bell number or Fubini

number [79] in the number theory and combinatorics. The first few Fubini numbers

are given by h(m) = {1, 1, 3, 13, 75, 541} for m = 0, 1, 2, 3, 4, 5. At four loops, the

highest number of correlator in a Cweb is mmax = 4, which corresponds to hmax = 75

- The next object is to calculate MNr
(h), which counts the number of appearances of

a particular hierarchy in the presence of Nr replicas. For a given hierarchy h, which

contains nr(h) distinct replicas, the multiplicity MNr
(h) is given by,

MNr
(h) =

Nr!(
Nr − nr(h)

)
! nr(h)!

(A.3)

- The exponentiated colour factor for a diagram d is then given by,

C repl.
Nr

(d) =
∑

h

MNr
(h) R

[
C(d)

∣∣h
]
, (A.4)

where R
[
C(d)

∣∣h is the replica ordered colour factor of diagram d, for hierarchy h.

Finally, the exponentiated colour factor for diagram d is computed by extracting the

coefficient of O(Nr) terms of the above equation.
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