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Abstract: Correlators of Wilson-line operators in non-abelian gauge theories are known

to exponentiate, and their logarithms can be organised in terms of collections of Feynman

diagrams called webs. In [1] we introduced the concept of Cweb, or correlator web, which

is a set of skeleton diagrams built with connected gluon correlators, and we computed the

mixing matrices for all Cwebs connecting four or five Wilson lines at four loops. Here we

complete the evaluation of four-loop mixing matrices, presenting the results for all Cwebs

connecting two and three Wilson lines. We observe that the conjuctured column sum rule

is obeyed by all the mixing matrices that appear at four-loops. We also show how low-

dimensional mixing matrices can be uniquely determined from their known combinatorial

properties, and provide some all-order results for selected classes of mixing matrices. Our

results complete the required colour building blocks for the calculation of the soft anomalous

dimension matrix at four-loop order.
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1 Introduction

The infrared (IR) structure of scattering amplitudes in gauge field theories is universal. It

is this universality — the independence from the specific nature of the hard process under

consideration, that makes it an important object of study. Remarkable insights on how

IR singularities organise themselves in perturbation theory have been accumulated over a

long history spanning almost a century [2–18]. While these studies are of course interesting

in their own right, uncovering subtle properties of gauge field theories, it is important to

note that they also have practical applications to high-energy scattering. First of all, even

though IR singularities cancel when one constructs an experimentally measurable IR-safe

observable, they often leave behind potentially large logarithms of kinematic variables that

jeopardise the applicability of fixed-order perturbation theory. The universal IR structure

of scattering amplitudes is one of the key ingredients allowing for the all-order summation

of these large logarithms, leading to more precise and controlled physical predictions [19–

21]. Furthermore, even at fixed orders, implementing the cancellation of IR singularities

for complex collider observables at high perturbative orders is a difficult and important un-

dertaking: indeed, the construction of general and efficient subtraction procedures beyond

next-to-leading order (NLO) is a broad ongoing effort (see, for example, [22–32]).
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To be somewhat more precise, gauge theory scattering amplitudes in the IR limit

factorise into universal soft and collinear functions [15–19, 33], multiplying finite matching

coefficients. These soft and collinear functions, in turn, can be expressed as matrix elements

of field operators and Wilson lines, which are the object of the present study. We note

in passing that such matrix elements play a ubiquitous role, not only for the factorisation

of scattering amplitudes, but also in many effective theories based on QCD [34–36]. The

methods developed in [1] and the objects of interest — Cwebs — concern the evaluation

of Wilson-line correlators of the general form

Sn (γi) ≡ 〈0|
n∏

k=1

Φ (γk) |0〉 , (1.1)

where Φ(γ) are Wilson-line operators evaluated on smooth space-time contours γ,

Φ (γ) ≡ P exp

[
ig

∫

γ
dx · A(x)

]
, (1.2)

where A
µ(x) = Aµ

a(x) T
a is a non-abelian gauge field, and T

a is a generator of the gauge

algebra, which can be taken to belong to any desired representation. If the smooth contours

γ are closed, then the correlator is gauge-invariant, while, if they are open, the correlator

is a colour tensor with open colour indices in the chosen representations, attached to the

endpoints of each Wilson line. In the present paper, we will restrict ourselves to soft colour

operators associated with multi-particle scattering amplitudes in gauge theories, which

encode all their soft singularities. These operators are of the form of eq. (1.1), with the

contours γk given by rays extending from the origin along directions βk, corresponding to

the four-velocities of the particles participating in the scattering. In this case, we write the

soft operator as

Sn

(
βi · βj , αs(µ2), ǫ

)
≡ 〈0|

n∏

k=1

Φβk
(∞, 0) |0〉 , Φβ (∞, 0) ≡ P exp

[
ig

∫
∞

0
dλ β · A(λβ)

]
,

(1.3)

where each Wilson line is taken in the representation of the gauge algebra corresponding

to the high-energy particle it represents.

We note that soft operators of the form of eq. (1.3) are affected by ultraviolet, soft,

and, for β2
i = 0, collinear singularities: as a consequence, special care is required to eval-

uate them [37–40]. In what follows, we will generally assume β2
i 6= 0, so that collinear

divergences will not arise; for soft divergences, we will make use of the smooth exponential

suppression of gluon interactions at large distances, discussed in refs. [39, 40]; finally, we

will retain dimensional regularisation for ultraviolet singularities. With this scheme, the

bare correlator is finite, and can be evaluated and renormalised. The physically relevant

quantity to be extracted is then the set of ultraviolet counterterms for the correlator: in-

deed, in the absence of an IR regulator, all radiative corrections to eq. (1.3) vanish, since

all relevant Feynman diagrams are scale-less; the renormalised correlator is therefore given

precisely (in a minimal scheme) by the set of its UV counterterms.
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Renormalised correlators of the form of eq. (1.3) obey renormalisation group equations

which lead to exact exponentiation. This means that they can be written as

Sn

(
βi · βj , αs(µ2), ǫ

)
= P exp

[
−

1

2

∫ µ2

0

dλ2

λ2
Γn

(
βi · βj , αs(λ2), ǫ

)]
, (1.4)

where Γn is the soft anomalous dimension matrix, which is the focus of our studies. Γn was

computed at one loop in [41] (see also [42]); at two loops in the massless case in [43, 44], and

in the massive case in [45–49]; finally, at three loops in the massless case in [50, 51]. Pushing

these calculations to higher perturbative orders is of great interest, since the resulting

structures are highly constrained by symmetries, and display non-trivial mathematical

properties, tied to interesting physical configurations: preliminary results on the four-loop

structure of Γn have been given in [52, 53].

In practice, an approach alternative to the above renormalisation-group based methods

is often useful for studying general Wilson-line correlators of the form of eq. (1.1). All such

correlators are known to obey a non-trivial form of diagrammatic exponentiation, so that

one can write

Sn (γi) = exp
[
Wn (γi)

]
, (1.5)

where the exponent, Wn (γi), can be directly computed in terms of a subset of the Feynman

diagrams contributing to Sn(γi). For non-abelian gauge theories, this was first pointed

out in refs. [54–56], in the case of two straight, semi-infinite Wilson lines. For general

configurations, it was proven in refs. [57, 58]. These studies show that Feynman diagrams

contributing to Wn (γi) are organised in sets that are called webs: in particular,

• For an abelian theory, webs are given by connected photon diagrams attaching to the

Wilson lines.

• For a non-abelian theory, if only two Wilson lines are present, webs are given by two-

eikonal irreducible diagrams, i.e. diagrams that do not become disconnected upon

cutting only the two Wilson lines.

• For general, multi-line correlators, webs are sets of diagrams that differ among them-

selves by the ordering of their gluon attachments to the Wilson lines.

Clearly, by means of webs, one can directly compute the soft anomalous dimension matrix

Γn. It is important, however, to note that, for general multi-line correlators, multiplicative

renormalisability and exponentiation combine non-trivially, due to the non abelian nature

of webs, and the calculation of renormalised correlators includes commutators of countert-

erms and bare webs, as required [59]. Not surprisingly, non-trivial simplifications of the

final result for Γn appear only when the commutator terms are properly taken into account.

We also recall the special properties arising in the massless case, when the countours γi

are light-like, straight, semi-infinite Wilson lines: for such amplitudes, scale invariance

imposes strong constraints on the functional dependence of the soft anomalous dimension

matrix. Up to two loops, Γn can only involve dipole colour correlations between Wilson

lines [16, 17, 33, 43, 44, 60]; beyond two loops, scale-invariant conformal cross ratios of the
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form ρijkl ≡ (βi · βjβk · βl)/(βi · βkβj · βl) correlating four partons can also appear: the first

such correlations arise at three loops, with at least four Wilson lines, and were computed

in ref. [50]. At four loops, one finds the first occurence of higher-order Casimir operators of

the gauge algebra, which have recently been computed in the case of the cusp anomalous

dimension [61, 62]: the interplay of this class of contributions to the cusp with similar

contributions to multi-particle correlators is a very interesting open problem, with subtle

connections to the factorisation of collinear poles. We note that an interesting alternative

approach to IR exponentiation, focusing not on diagrammatics but on the symmetries and

renormalisation properties of Wilson-line correlators, was developed in refs. [63, 64].

The present paper focuses on the colour structure of the perturbative exponent Wn for

the soft operator in eq. (1.3), mostly at the four-loop order. Specifically, we complete the

task of computing the mixing matrices determining the exponentiated colour factors for

all four-loop Cwebs, initiated in ref. [1], and we present some general properties of mixing

matrices, valid to all orders. We begin by reviewing existing results on diagrammatic ex-

ponentiation in section 2, where we discuss the concept of Cweb and the main properties of

webs and Cwebs, and we list the four-loop Cwebs connecting two and three Wilson lines.

Section 3 describes the replica method [58] for generating the Cweb mixing matrices, and

its implementation in our code. In section 4, we give two detailed examples, presenting

the mixing matrices for one two-line Cweb and for one three-line Cweb. In section 5, we

present some observations on the structure of mixing matrices, including a derivation of

two- and three-dimensional mixing matrices directly based on their combinatorial proper-

ties, bypassing the replica algorithm. Finally, we summarise our results and perspectives in

section 6. In the appendix, we list in detail the mixing matrices for all the Cwebs discussed

in the main text.

2 Webs and Cwebs for correlators of two and three Wilson lines

In this section we introduce mixing matrices and their main properties, using the language

of webs for multi-particle amplitudes, developed in [57–59, 65–69]. We then proceed to

introduce correlator webs, or Cwebs, following [1], exploiting the fact that the combinatorial

problem associated with gluon attachments to Wilson lines is structurally factored from the

colour algebra associated with gluon subdiagrams. Finally, as an example, we enumerate

Cwebs with lowest-order contributions at three and four loops and connecting two or three

Wilson lines.

A web is defined as a set of fixed-order Feynman diagrams contributing to a Wilson-line

correlator, which differ only by the permutation of their gluon attachments to each Wilson

line. If we write every Feynman diagram D as the product of its kinematic factor K(D)

and its colour factor C(D), then the logarithm of the correlator, Wn, can be written as

Wn(γi) =
∑

D

K(D) C̃(D) , (2.1)

where the Exponentiated Colour Factor (ECF) for diagram D, denoted by C̃(D), is a linear

combination of the colour factors of the diagrams which are present in the web. Thus we
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(a) W
(0,0,1)
2 (1, 3). (b) W

(0,0,1)
2 (2, 2). (c) W

(1,1)
2 (2, 3). (d) W

(3)
2 (3, 3).

Figure 1. Representative skeleton diagrams for the four three-loop Cwebs connecting two Wilson

lines in a massless theory. As clarified in the text, the Cwebs in (a) and (b) have only one diagram,

displayed here, while the Cwebs in (c) and (d) have six diagrams.

can write

C̃(D) =
∑

D′∈w

Rw(D, D′)C(D′) , (2.2)

where the sum runs over all the diagrams present in web w and Rw is the web mixing

matrix. Using eq. (2.1) and eq. (2.2) we obtain an expression for the correlator in eq. (1.5),

Sn(γi) = exp

[ ∑

D,D′

K(D)R(D, D′)C(D)

]
, (2.3)

where the block-diagonal matrix R is built using the web mixing matrices Rw as blocks.

In turn, each web w can be written as

w =
∑

D∈w

K(D) C̃(D) =
∑

D,D′∈w

K(D) Rw(D, D′) C(D′) . (2.4)

In this language, Wn =
∑

wn, where the sum extends to all webs arising in the presence

of n Wilson lines, order by order in perturbation theory. It is evident that a computation

of the soft anomalous dimension matrix crucially involves these mixing matrices: they

were studied systematically up to three loops, and several of their all-order properties were

uncovered, in [57–59, 65–68]. The first important point is that they are idempotent i.e.

R2
w = Rw, and thus they are projection operators; in particular, their eigenvalues can

either be 1 or 0. Acting on the right, according to eq. (2.4), they select a subset of the

possible colour factors, while, acting on the left, they identify the set of linear combinations

of kinematic factors that will contribute to the exponent. The rank rw of the mixing

matrix Rw equals the number of independent colour factors onto which it projects. Web

mixing matrices, further, enforce the non-abelian exponentiation theorem [67], stating that

all exponentiated colour factors correspond to Feynman diagrams where the gluon sub-

diagram is completely connected. Two further combinatorial properties have important

physical consequences: first, web mixing matrices of dimension dw > 1 obey a row sum

rule, stating that the sum of the elements of each row vanishes,
∑

D′ RDD′ = 0; this ensures

that diagrams contributing to the exponent are a proper subset of all diagrams contributing

to the correlator. In addition, mixing matrices are conjectured [59] to obey a column sum

– 5 –
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(a) W
(0,0,1)
3 (1, 1, 2). (b) W

(1,1)
3 (1, 1, 3). (c) W

(1,1)
3, I (2, 1, 2). (d) W

(1,1)
3, II (2, 1, 2).

(e) W
(3)
3 (3, 1, 2). (f) W

(3)
3 (2, 2, 2).

Figure 2. Representative skeleton diagrams for the six three-loop Cwebs connecting three Wil-

son lines in a massless theory. The dimensions of the associated mixing matrices are dw =

{1, 3, 2, 4, 6, 4}, in the order shown.

rule, which can be written as
∑

D s(D)R(D, D′) = 0, where s(D) is called the column weight

vector. For a diagram D, s(D) denotes the number of different ways in which the connected

gluon sub-diagrams can be sequentially shrunk to the common origin of the Wilson lines.

This second combinatorial property has important consequences for the renormalisation of

the correlator: it ensures that web mixing matrices project on kinematic factors which are

free from ultraviolet sub-divergences; this, in turn, simplifies the evaluation of the exponent,

implying that the UV counterterms are independent of the selected IR regulator.

A close examination of the properties of mixing matrices confirms the intuitive notion

that the internal structure of connected gluon sub-diagrams does not affect the combina-

torics of their attachments to the Wilson lines: a connected multi-gluon correlator may

generate a number of independent ‘internal’ colour factors, but each one of them can be

treated separately when considering the connection to Wilson lines. This observation moti-

vated the introduction, in ref. [1], of the concept of Cwebs, building Wilson-line correlators

in terms of connected gluon correlators instead of individual diagrams.

More precisely, a Cweb is a set of skeleton diagrams, built out of connected gluon

correlators attached to Wilson lines, and closed under permutations of the gluon attach-

ments to each Wilson line. Clearly, the main difference between webs and Cwebs is the

fact that Cwebs are not fixed-order quantities, but admit their own perturbative expansion

in powers of g. Cwebs strongly simplify the counting and organisation of contributions to

the exponent, especially at high orders, where radiative corrections to gluon sub-diagrams

become important and proliferate. They may also provide ingredients to generalise to

multi-line correlators the fascinating arguments given in ref. [70] for the two line case (see

also ref. [71]). Cweb mixing matrices are identical to those of their constituent webs, as

the properties of mixing matrices are blind to gluon interactions away from the Wilson

– 6 –
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(a) W
(0,0,0,1)
2 (2, 3). (b) W

(0,0,0,1)
2 (1, 4). (c) W

(1,0,1)
2 (2, 4). (d) W

(1,0,1)
2 (3, 3).

(e) W
(0,2)
2 (2, 4). (f) W

(0,2)
2 (3, 3). (g) W

(2,1)
2 (3, 4). (h) W

(4)
2 (4, 4).

Figure 3. Representative skeleton diagrams for the eight four-loop Cwebs connecting two Wil-

son lines in a massless theory. The dimensions of the associated mixing matrices are dw =

{1, 1, 8, 9, 6, 9, 36, 24}, in the order shown.

lines, and only depend on the ordering of their attachments on the Wilson lines, which is

same in both the definitions. To identify Cwebs, we adopt the notation of ref. [1], writing

W
(c2,...,cp)
n (k1, . . . , kn), where n denotes the number of Wilson lines, cm denotes the number

of m-point correlators forming the Cweb, and kl denotes the number of attachments on each

Wilson line, where, without loss of generality, we take k1 ≤ k2 ≤ . . . ≤ kn. When a further

degeneracy arises, we distinguish the Cwebs sharing the same notation by roman numerals.

A systematic way of generating all Cwebs recursively at any perturbative order was

presented in [1]. Assuming one has already enumerated all Cwebs at O(g2n−2), the steps

to generate all Cwebs at O(g2n) are listed below, keeping in mind the possibility of adding

a Wilson line with no attachments at lower orders.

1. Connect any two Wilson lines by introducing a two-gluon correlator.

2. Connect any existing m-point gluon correlator to a Wilson line, turning it into an

(m + 1)-point gluon correlator.

3. Connect an existing m-point gluon correlator to an existing n-point gluon correlator

by a single gluon, resulting in an (n + m)-point correlator.

4. Discard Cwebs that are given by the product of two or more disconnected lower-order

webs.

5. In a massless theory, discard all self-energy Cwebs, where all gluon lines attach to

the same Wilson line, as they vanish as a consequence of the eikonal Feynman rules.

6. Discard Cwebs that have been generated by the procedure more than once.

– 7 –
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(a) W
(0,0,0,1)
3 (1, 1, 3). (b) W

(0,0,0,1)
3 (1, 2, 2). (c) W

(1,0,1)
3,I (2, 1, 3). (d) W

(1,0,1)
3,II (2, 1, 3).

(e) W
(0,2)
3,I (3, 1, 2). (f) W

(0,2)
3,II (2, 1, 3). (g) W

(2,1)
3,I (3, 2, 2). (h) W

(2,1)
3,II

(3, 2, 2).

(i) W
(2,1)
3,III

(2, 2, 3). (j) W
(1,0,1)
3 (3, 1, 2). (k) W

(0,2)
3,I (2, 2, 2). (l) W

(1,0,1)
3 (2, 2, 2).

(m) W
(0,2)
3,II

(2, 2, 2). (n) W
(2,1)
3,I (3, 1, 3). (o) W

(2,1)
3,II

(3, 1, 3). (p) W
(1,0,1)
3 (1, 1, 4).

(q) W
(0,2)
3 (1, 1, 4). (r) W

(2,1)
3 (4, 1, 2). (s) W

(0,2)
3 (4, 1, 2). (t) W

(4)
3 (3, 2, 3).

(u) W
(4)
3 (4, 2, 2). (v) W

(4)
3 (4, 1, 3).

Figure 4. Representative skeleton diagrams for the twenty-two four-loop Cwebs connecting three

Wilson lines in a massless theory. The dimensions of the associated mixing matrices are dw =

{1, 1, 6, 2, 3, 6, 24, 6, 12, 3, 2, 4, 8, 18, 18, 4, 6, 24, 12, 36, 24, 24}, in the order shown.
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Following the above steps, and focusing on the results for two and three Wilson lines, we

find four Cwebs connecting two Wilson lines at three loops, shown in figure 1, and six

Cwebs connecting three Wilson lines at three loops, shown in figure 2. At four loops, we

find eight Cwebs connecting two lines, shown in figure 3, and twenty-two Cwebs connecting

threee lines, shown in figure 4. Cwebs connecting four and five lines were studied in [1].

Note that Cwebs that differ only by the permutation of the Wilson lines are identical in

structure and we do not include them in our counting.

3 Implementing a replica algorithm to generate Cweb mixing matrices

In this section, we will briefly describe our implementation of the replica method, intro-

duced in [72], and used in this context by [58, 73], for the calculation of the web mixing

matrices. The starting point is the path integral expression for the Wilson line correlator

Sn (γi) =

∫
DAa

µ eiS(Aa
µ)

n∏

k=1

Φ (γk) = exp
[
Wn(γi)

]
, (3.1)

where S(Aa
µ) is the classical action. The method is based on the construction of a replicated

theory, where we replace the gluon field Aa
µ with Nr identical copies, Aa, i

µ (i = 1, . . . , Nr),

which do not interact with each other. Further, we associate a copy of each Wilson line

to each replica, effectively replacing each Wilson line in eq. (3.1) with the product of Nr

Wilson lines. The correlator in the replicated theory can then be written as

S repl.
n (γi) =

[
Sn (γi)

]Nr

= exp
[
Nr Wn(γi)

]
= 1 + Nr Wn(γi) + O(N2

r ) . (3.2)

Using eq. (3.2), one can calculate Wn(γi) by computing the coefficient of the O(Nr) terms of

the replicated Wilson line correlator. As there are no interaction vertices involving gluons

belonging to different replicas, each connected gluon correlator in a Cweb is naturally

assigned a unique replica number: this means that the replica method designed for webs

in [58, 73] immediately generalizes to Cwebs. The general structure of the algorithm can

be summarised as follows.

• Assign a replica number i, 1 ≤ i ≤ Nr, to each connected gluon correlator in a Cweb.

• Introduce a replica ordering operator R, which acts on the colour generators on each

Wilson line ordering them according to their replica numbers. More precisely, if T
(i)
k

denotes a generator associated with the emission of a gluon belonging to replica i

from Wilson line k, then R acts on a product of T
(i)
k T

(j)
k by preserving the given

order if i ≤ j, and by reversing it if i > j. The action of R effectively replaces a

skeleton diagram with another one belonging to the same Cweb.

• In order to compute the colour factors in the replicated theory, one then needs to

determine the number of possible hierarchies of replica numbers occurring in a Cweb

with m connected pieces, which we call h(m), and the number of occurrences of a

particular hierarchy in the presence of Nr replicas, which we call MNr (h). h(m)

– 9 –
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counts the number of weak orderings on a set of m elements, and is known in number

theory and enumerative combinatorics as ordered Bell number or Fubini number [74].

The first few ordered Bell numbers are given by h(m) = {1, 1, 3, 13, 75, 541} for

m = 0, 1, 2, 3, 4, 5, where we included the case m = 0 to follow the mathematical

convention. On the other hand, the multiplicity of a given hierarchy h, containing

nr(h) distinct replicas, is easily determined, and it is given by

MNr (h) =
Nr!(

Nr − nr(h)
)
! nr(h)!

. (3.3)

• With these ingredients, one can compute the colour factor of a skeleton diagram D

in the replicated theory, which is given by

C repl.
Nr

(D) =
∑

h

MNr (h) R
[
C(D)

∣∣h
]
, (3.4)

where R
[
C(D)

∣∣h
]

is the replica-ordered colour factor of diagram D for a given hier-

archy h. The exponentiated colour factor for diagram D is finally given by the O(Nr)

terms in eq. (3.4).

In order to compute the Cweb mixing matrices by applying the replica trick algorithm, we

developed an in-house Mathematica code which was used to calculate the mixing matrices

for Cwebs connecting four and five Wilson lines at four loops in ref. [1]. Interestingly,

lowering the number of Wilson lines increases the combinatorial complexity of the problem,

which may lead to a critical slowing down of the algorithm for Cwebs involving many

connected correlators attached to few Wilson lines. The basic reason is the fact that,

with few Wilson lines, at high orders the typical number of gluon attachments to each

Wilson line grows, and so does the size of a typical mixing matrix. To keep the runtime

under control, one has to take full advantage of the symmetries of the problem, including

Bose symmetry for each connected gluon correlator, and the symmetry under the exchange

of identical gluon correlators connecting the same set of Wilson lines. Below, we briefly

present the main steps in our current implementation of the algorithm.

• The starting point is to list the building blocks for four-loop Cwebs, which are the

sets of connected gluon correlators shown in figure 5. The code generates all four-

loop Cwebs by combining the building blocks and attaching them to the Wilson

lines in all possible ways. This is done starting from the most intricate case, which

is the attachment of a set of four two-point correlators in all possible ways to the

Wilson lines. Proceeding with other combinations of correlators, the combinatorial

problem simplifies, and finally the five-point correlator shown in figure 5 only produces

completely connected Cwebs with a mixing matrix R = 1.

• The above step generates Cwebs which are related to one another by the permutation

of the Wilson lines. As far as the colour structure is concerned, they are all identical,

so the duplicates are removed.

• The code then assigns a distinct replica number to each connected correlator.
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Figure 5. Combinations of connected correlators that can form Cwebs at four loops.

• Starting from a single diagram, the code generates all diagrams for a Cweb by identify-

ing the gluon attachments on each Wilson line, and placing the attachments originat-

ing from different gluon correlators in different packs. These packs are then shuffled.

• A subroutine generates all possible hierarchies h for a Cweb. As an example, for a

Cweb with two connected gluon correlators, the subroutine generates the three hier-

archies h = {i = j, i > j, i < j}, where i and j denote the replica numbers. The code

then determines the number of distinct replicas nr for each hierarchy. For example,

for the hierarchy i = j one has nr = 1, whereas for hierarchies i > j and i < j one

has nr = 2. Using eq. (3.3), one then computes the multiplicity MNr (h).

• At this stage, one can construct, for each Cweb, a table of the form of table 1

of ref. [58], and finally determine the mixing matrix Rw for Cweb w. The code

then diagonalizes Rw, constructing a matrix Yw such that YwRwY −1
w is of the form

1rw ⊕ 0dw−rw
, where dw is the dimension of the mixing matrix, and rw its rank. The

matrix Yw, acting from the left on the vector of colour factors for the diagrams in w,

computes the exponentiated colour factors.

• In its present form, the code does not generate self-energy Cwebs, where a connected

gluon correlator is attached only to a single Wilson line, since such Cwebs vanish in

the massless theory. The code however generates disconnected Cwebs (where the set

of Wilson lines can be partitioned in subsets whose elements are not connected by

any gluons): the vanishing of the mixing matrices for disconnected Cwebs works as

a check on the code. Further checks are provided by verifying two known properties:

the idempotence of mixing matrices, and the row sum rule. The conjectured column

sum rule, on the other hand, is verified a posteriori.

We note that, for a number of Cwebs with non-trivial symmetries, the procedure of

generating all diagrams by shuffling the packs on each of the Wilson lines will pro-
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(a) C1. (b) C2. (c) C3. (d) C4.

Figure 6. All diagrams generated by shuffling gluons on all Wilson lines, for the case of W
(2)
2 (2, 2).

duce multiple duplicates of each diagram, which can be obtained from each other

by simply relabelling some of the correlators. In the case at hand, this happens

for the Cwebs: W
(2,1)
3,II (2, 2, 3), W

(2,1)
3,II (1, 3, 3), W

(0,2)
3 (1, 2, 4), W

(4)
3 (2, 3, 3), W

(4)
3 (2, 2, 4),

W
(4)
3 (1, 3, 4), W

(0,2)
2 (2, 4), W

(2,1)
2 (3, 4), W

(4)
2 (4, 4), shown, with all other Cwebs connect-

ing three and four lines at four loops, in the appendix. To contain the computation time,

it is crucial to remove these duplicates before applying the replica algorithm. For exam-

ple, the Cweb W
(4)
2 (4, 4) has a total of 24 diagrams, but each diagram is generated in 24

duplicate copies: the present version of the code automatically identifies and removes all

duplicates.

To further illustrate this issue consider the simple case of the two-loop Cweb W
(2)
2 (2, 2),

which has two attachments on both Wilson lines, and is shown in figure 6. The shuffle

(which is just a single permutation in this case) of the correlators on each Wilson line

generates the four diagrams shown in figure 6. As the colour indices a and b in figure 6

are summed over, diagrams C1 and C3 are duplicates, and similarly C2 and C4. The code

identifies the duplicates and deletes C3 and C4.

The exponentiated colour factors generated by the code have open colour indices for

each gluon attachment to the Wilson lines: these open indices must then be contracted with

the colour structures arising from the connected gluon correlators. These colour structures,

in turn, are constrained by Bose symmetry and gauge invariance. For example, a two-gluon

correlator joining any two lines i and j will generate only the dipole structure Ti ·Tj , while

a three-point gluon correlator is conjectured to be proportional to the structure constants

fabc to any perturbative order. For four-gluon correlators, three colour structures are

available at tree level, while more complicated ones will arise when loop corrections are

considered, including contributions proportional to quartic Casimir operators of the gauge

algebra [75–77].

4 Examples of four-loop Cwebs connecting two and three Wilson lines

In this section, we present in some detail the calculation of two four-loop Cwebs connecting

respectively two and three Wilson lines. We present their mixing matrices, the diagonalizing

matrices Y, and we give explicit results for the exponentiated colour factors. The results

for all other four-loop Cwebs connecting two and three Wilson lines are presented in the

appendix.
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Figure 7. Skeleton diagram C1 for the Cweb W
(1,0,1)
2 (2, 4).

4.1 A two-line Cweb at four loops

As a first example, we consider the two-line Cweb W
(1,0,1)
2 (2, 4), which contains one two-

gluon correlator, no three-gluon correlators, and one four-gluon correlator; furthermore,

there are two gluon attachments on line 1 and four gluon attachments on line 2. Clearly,

the perturbative expansion for this Cweb starts at O(g8), i.e. at four loops. A representative

skeleton diagram for the Cweb is shown in figure 7. The available shuffles on line 1 and

line 2 produce a total of eight skeleton diagrams for this Cweb which we denote by the

order of the gluon attachments on the two lines, and are given by

{C1,C2,C3,C4,C5,C6,C7,C8} ≡
{

{{BA},{EDCG}},{{BA},{EDGC}},{{BA},{EGDC}},

{{BA},{GEDC}},{{AB},{EDCG}},{{AB},{EDGC}},

{{AB},{EGDC}},{{AB},{GEDC}}
}

. (4.1)

Keeping in mind the orientation of the Wilson lines, the diagram portrayed in figure 7 is

diagram C1. With this ordering, the column weights s(Ci) for the diagrams in the Cweb

are collected in the vector

{s(C1), s(C2), s(C3), s(C4), s(C5), s(C6), s(C7), s(C8)} = {0, 0, 0, 1, 1, 0, 0, 0} .

Note that, only C4 and C5 have nonzero s values. We find that the mixing matrix R, the

diagonalising matrix Y and the diagonal matrix D for this Cweb are given by

R =




1 0 0 −1
2 −1

2 0 0 0

0 1 0 −1
2 −1

2 0 0 0

0 0 1 −1
2 −1

2 0 0 0

0 0 0 1
2 −1

2 0 0 0

0 0 0 −1
2

1
2 0 0 0

0 0 0 −1
2 −1

2 1 0 0

0 0 0 −1
2 −1

2 0 1 0

0 0 0 −1
2 −1

2 0 0 1




, Y =




−1 0 0 0 0 0 0 1

−1 0 0 0 0 0 1 0

−1 0 0 0 0 1 0 0

−1 0 0 0 1 0 0 0

−1 0 0 1 0 0 0 0

−1 0 1 0 0 0 0 0

−1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0




, D = (17, 0) . (4.2)

One may easily verify the properties of the mixing matrix: R is idempotent, the matrix

elements in each row sums to zero, and the column sum rule is obeyed. After diagonalising
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Figure 8. Skeleton diagram C1 for the Cweb W
(1,0,1)
3,I (1, 2, 3).

the mixing matrix, we find that the rank of the mixing matrix is rw = 7, which means that

there will be 7 independent exponentiated colour factors for this Cweb, which are given by

(Y C)1 = ifacgfdegfebh
T

b
1T

a
1T

c
2T

d
2T

h
2 + ifacgf bdjfdeg

T
b
1T

a
1T

c
2T

j
2T

e
2

+ifacgf cbmfdeg
T

b
1T

a
1T

m
2 T

d
2T

e
2 − ifabufacgfdeg

T
u
1T

b
2T

c
2T

d
2T

e
2 ,

(Y C)2 = ifacgf bdjfdeg
T

b
1T

a
1T

c
2T

j
2T

e
2 + ifacgf cbmfdeg

T
b
1T

a
1T

m
2 T

d
2T

e
2

−ifabufacgfdeg
T

u
1T

b
2T

c
2T

d
2T

e
2 ,

(Y C)3 = ifacgf cbmfdeg
T

b
1T

a
1T

m
2 T

d
2T

e
2 − ifabufacgfdeg

T
u
1T

b
2T

c
2T

d
2T

e
2 ,

(Y C)4 = −ifabufacgfdeg
T

u
1T

b
2T

c
2T

d
2T

e
2 ,

(Y C)5 = ifacgfdegfebh
T

a
1T

b
1T

c
2T

d
2T

h
2 + ifacgf bdjfdeg

T
a
1T

b
1T

c
2T

j
2T

e
2

+ifacgf cbmfdeg
T

a
1T

b
1T

m
2 T

d
2T

e
2 , (4.3)

(Y C)6 = ifacgf bdjfdeg
T

a
1T

b
1T

c
2T

j
2T

e
2 + ifacgf cbmfdeg

T
a
1T

b
1T

m
2 T

d
2T

e
2 ,

(Y C)7 = ifacgf cbmfdeg
T

a
1T

b
1T

m
2 T

d
2T

e
2 . (4.4)

We observe that all the exponentiated colour factors correspond to completely connected

Feynman diagrams, which verifies, as expected, the non-abelian exponentiation theo-

rem [67].

4.2 A three-line Cweb at four loops

As a second example, we select a three-line Cweb at four loops, labelled as W
(1,0,1)
3,I (2, 1, 3),

with a two-gluon correlator and a four-gluon correlator. Here the roman numeral I appears

to distinguish this Cweb from a second one, shown in the appendix, and denoted by

W
(1,0,1)
3,II , which shares the same number of attachments to the Wilson lines and the same

number of two-, three- and four-gluon correlators. A representative skeleton diagram is

displayed in figure 8. This Cweb has 6 diagrams which are denoted by

{C1, C2, C3, C4, C5, C6} =
{

{{BA}, {GFE}}, {{BA}, {FGE}}, {{BA}, {FEG}} ,

{{AB}, {GFE}}, {{AB}, {FGE}}, {{AB}, {FEG}}
}

.
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With this ordering, the skeleton diagram depicted in figure 8 is diagram C1. The weight

factors s(Ci) for the diagrams in this Cwebs are given by

{s(C1), s(C2), s(C3), s(C4), s(C5), s(C6)} = {0, 0, 1, 1, 0, 0, 0, 0} .

We find the mixing matrix R, the diagonalising matrix Y , and the diagonal matrix D, as

R =




1 0 −1
2 −1

2 0 0

0 1 −1
2 −1

2 0 0

0 0 1
2 −1

2 0 0

0 0 −1
2

1
2 0 0

0 0 −1
2 −1

2 1 0

0 0 −1
2 −1

2 0 1




, Y =




−1 0 0 0 0 1

−1 0 0 0 1 0

−1 0 0 1 0 0

−1 0 1 0 0 0

−1 1 0 0 0 0

0 0 1 1 0 0




, D = (15, 0) , (4.5)

so that the rank in this case is rw = 5. Once again, this mixing matrix satisfies all the

desired properties: idempotence, row sum rule, and column sum rule. The exponentiated

colour factors are

(Y C)1 = ifafkf bcgfefg
T

b
1T

a
1T

c
2T

e
3T

k
3 + ifaehf bcgfefg

T
b
1T

a
1T

c
2T

h
3T

f
3

−ifabmf bcgfefg
T

m
1 T

c
2T

e
3T

f
3T

a
3 ,

(Y C)2 = ifafkf bcgfefg
T

b
1T

a
1T

c
2T

e
3T

k
3 − ifabmf bcgfefg

T
m
1 T

c
2T

e
3T

f
3T

a
3 ,

(Y C)3 = −ifabmf bcgfefg
T

m
1 T

c
2T

e
3T

f
3T

a
3 , (4.6)

(Y C)4 = ifafkf bcgfefg
T

a
1T

b
1T

c
2T

e
3T

k
3 + ifaehf bcgfefg

T
a
1T

b
1T

c
2T

h
3T

f
3 ,

(Y C)5 = ifafkf bcgfefg
T

a
1T

b
1T

c
2T

e
3T

k
3 .

As expected, they all correspond to connected Feynman diagrams.

5 Observations on mixing matrices and their direct construction

The present work, together with the results presented in [1], as well as earlier work in

refs. [58, 59, 65, 67], provides a considerable amount of empirical data about mixing

matrices, partly summarised in table 1 and in table 2. In a massless theory, the total

number of non-vanishing Cwebs having lowest-order contributions at O(g8) or below is 79.

There is just one Cweb at O(g2), four at O(g4), fourteen at O(g6) and sixty at O(g8). Of

these Cwebs, thirteen are fully connected, so they consist of only one skeleton diagram and

have a trivial mixing matrix, R = 1. Setting those aside, the dimensions of the remaining

sixty-six mixing matrices range between dw = 2 and dw = 36, while their ranks range

between rw = 1 and rw = 29. To give a flavour of the distribution of mixing matrices, in

table 1 we present the dimensions of mixing matrices appearing at four loops, distributed

according to the number of Wilson lines occurring in the corresponding Cwebs. In table 2

we present the ranks of all mixing matrices appearing up to four loops, for different matrix

sizes. It is clear that the combinatorial problems associated with mixing matrices are

non-trivial, and indeed interesting connections to abstract combinatorics have already
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Dimension

of the

Mixing

matrix

No. of Cwebs

connecting 5

lines

No. of Cwebs

connecting 4

lines

No. of Cwebs

connecting 3

lines

No. of Cwebs

connecting 2

lines

Total

1 1 1 2 2 6

2 2 2 2 0 6

3 0 2 2 0 4

4 2 3 2 0 7

6 1 4 4 1 10

8 1 2 1 1 5

9 0 0 0 2 2

12 1 3 2 0 6

16 0 1 0 0 1

18 0 1 2 0 3

24 1 2 4 1 8

36 0 0 1 1 2

Total 9 21 22 8 60

Table 1. Distribution of four-loop Cwebs according to the dimension of their mixing matrices and

the number of their Wilson lines.

been uncovered and exploited in refs. [65, 66, 68, 69]. In particular, while the dimensions

of mixing matrices are easily computable from the diagrammatic structure of their Cwebs,

their ranks are not in general predictable with current knowledge, and table 2 does not

display a discernible pattern.

In what follows, we provide some simple results emerging from the empirical data up

to four loops, which in some cases allow for all-order generalisations. In particular, low-

dimensional mixing matrices are highly constrained and can be uniquely determined from

their general properties up to dimension dw = 3, and partially at dw = 4.

A first natural question to ask is how many different mixing matrices can be generated

with a given dimensionality dw. This requires establishing when two mixing matrices should

be considered different: given their definition, we take the viewpoint that two matrices are

in the same equivalence class if they are connected by a permutation of their rows or of their

columns: this corresponds to permuting the diagrams in the web and the components of

the vector of colour factors; row and column sum rules are preserved by these permutations,

provided one permutes the components of the s vectors appropriately. On the other hand,

taking general linear combinations of rows or columns of mixing matrices does not have a

diagrammatic interpretation and we do not consider it. With this definition of equivalence,

we note that matrices of dimension dw = 2 occur ten times up to four loops, but there are

only two different matrices, one of which occurs only once. This is easily understood and is
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Dimension of mixing matrix Ranks at 2 loops Ranks at 3 loops Ranks at 4 loops

2 1 1 1

3 — 2 2

4 — 1,3 1,3

6 — 2,3,4 2,3,5

8 — 4 1,3,4,7

9 — — 8

12 — — 2,3,6,7,8

16 — — 5

18 — — 6,10,13

24 — — 6,8,9,12,13,15,16,17

36 — — 19,29

Table 2. Dimension and the corresponding ranks of mixing matrices at different perturbative

orders.

discussed in section 5.1. Matrices of dimension dw = 3 occur six times up to four loops, but

actually these are six occurrences of the same matrix: this is discussed in section 5.2. At

dw = 4, for the first time we have matrices of different rank (rw = 1, 3), which occur both

at three and at four loops: it turns out that the rank-three matrix is uniquely determined,

while in principle different dw = 4 matrices of lower rank could appear at higher orders. For

dw = {6, 8, 9, 12, 16, 18, 24, 36}, the numbers of inequivalent mixing matrices arising up to

four loops is ni = {6, 4, 1, 6, 1, 3, 8, 2}, and in several cases inequivalent matrices of the same

rank are found. Given these data, we now examine in more detail the low-dimensional cases.

5.1 On two-dimensional mixing matrices

All matrices of dimension two appearing at three and at four loops are the same and have

the form

R =




1
2 −1

2

−1
2

1
2


 . (5.1)

At two loops, however, the matrix in eq. (5.1) appears once, but, in addition, one more

two dimensional matrix appears, in the case of Cweb W
(2)
2 (2, 2). It is

R =


 1 −1

0 0


 . (5.2)

It is easy to show that indeed these are the only two possible two-dimensional mixing

matrices at any perturbative order, and furthermore eq. (5.2) occurs only once, at two

loops. With n ≥ 3 Wilson lines, a two-dimensional mixing matrix requires a Cweb with
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(a) C1. (b) C2.

Figure 9. The two skeleton diagrams of Cweb W
(2)
3 (1, 2, 1).

(a) (b)

Figure 10. The two inequivalent skeleton diagrams of Cweb W
(2)
2 (2, 2).

precisely two gluon attachments from distinct correlators to a specific Wilson line, while all

other Wilson lines must allow no shuffles, i.e. they must each be attached to gluons from a

single correlator. The s vector for such a configuration is always s = {1, 1}, as seen from the

example in figure 9, since in each contributing diagram one of the two correlators involved

can always be shrunk to the origin without affecting the other. Armed with the knowledge

of s, we can impose the row and column sum rules on a generic 2 × 2 matrix, obtaining

R =


 a −a

−a a


 . (5.3)

The normalisation can be fixed by observing that the matrix has rank r = 1, and, since it

is a projection operator, the trace of the matrix must equal the rank. This leads uniquely

to eq. (5.1).

The only exception to the above reasoning occurs at two loops, when there are only

two Wilson lines, and two dressed gluon propagators attach to both lines, as depicted in

figure 10. The dimension of the mixing matrix is reduced from 4 to 2 by the symmetry of

the correlators, but in this case the s vector is given by s = {0, 1}, since for diagram (a)

there are no possibilities to shrink sequentially the two correlators. Once again, imposing

the row and column sum rules, with the new s vector, and normalising the trace of the

matrix to its rank, we find uniquely eq. (5.2). We conclude that, at any perturbative order,

all two-dimensional mixing matrices will have the form of eq. (5.1), with the sole exception

eq. (5.2) in the two-loop, two-line case we just examined.
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(a) (b) (c)

Figure 11. The three skeleton diagrams contributing to W
(1,1)
3 (1, 3, 1).

5.2 The three-dimensional mixing matrix

There are a total of six three-dimensional mixing matrices up to O(g8): two arising at

three loops and four at four loops. It turns out that these are six occurrences of the same

matrix, which is

R =




1
2 0 −1

2

−1
2 1 −1

2

−1
2 0 1

2


 . (5.4)

It is not difficult to prove that this is a general result, and eq. (5.4) is the only possible

three-dimensional mixing matrix at any order. To see it, note that, since dw = 3 is a prime

number, it can only arise for Cwebs where three shuffles are possible on a single Wilson

line, and no shuffles are available on any other Wilson line. The only configuration of gluon

attachments on a Wilson line which leads to three shuffles involves two gluon correlators,

one attaching to the Wilson line via a single gluon, while the second one attaches with two

gluons. An example is the Cweb W
(1,1)
3 (1, 1, 3) at three loops, shown in figure 11. The

column weight vector for this Cweb is s = {1, 0, 1}. Importantly, we notice that diagram

(b), which has s = 0, cannot be generated from diagrams (a) and (c), which have s = 1, by

the action of the replica ordering operator: under that action, all attachments belonging

to a single gluon correlator (and thus to a single replica) move together. In other words,

diagram (b) is a singlet under the mixing operation, whereas diagrams (a) and (c) form a

doublet. Taking this into account, and applying the row and column sum rules, one sees

that the mixing matrix must be of the form

R =




a 0 −a

b 1 −1 − b

−a 0 a


 . (5.5)

Finally, using the idempotence property R2 = R and imposing that the trace of the matrix

must equal its rank (which is rw = 2 in this case) one can fix the two remaining parameters

and obtain precisely eq. (5.4). We conclude that all three-dimensional mixing matrices at

any perturbative order will be given by eq. (5.4).
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5.3 Results for higher-dimensional mixing matrices

The reasoning of the previous two sections generalises in two different directions. On the

one hand, one may consider mixing matrices whose dimension is a prime number, dw = p.

As in the case p = 3, such matrices can only arise from Cwebs where one Wilson line

has a single attachment from a gluon correlator G1, together with p − 1 attachments from

a second gluon correlator G2, with no other Wilson lines providing further shuffles. The

column weight vector for such a web is again of the form s = {1, 0, . . . , 0, 1}, with p − 2

zeroes. Furthermore, once again, the p−2 diagrams where the G1 gluon is inserted between

attachments of G2 gluons cannot be reached by the action of the replica ordering operator,

and are singlets under the mixing operation, while the two diagrams where the G1 gluon

is on one or the other side of the G2 cluster form a doublet. This information, together

with the row sum rule, is sufficient to conclude that the rank of the mixing matrix is p − 1.

Imposing idempotency, and normalising by setting the trace of the matrix equal to the rank,

one finds that mixing matrices of prime dimension p are unique, and they can be written as

R =




1
2 0 0 . . . 0 −1

2

−1
2 1 0 . . . 0 −1

2

. . .

−1
2 0 0 . . . 1 −1

2

−1
2 0 0 . . . 0 1

2




. (5.6)

This reasoning explains the fact that the largest prime number appearing as the dimension

of a mixing matrix at four loops is p = 3. The first mixing matrix of dimension dw = p = 5

will appear at O(g10), arising when four gluons from a five-point gluon correlator are

shuffled with a single gluon from a two-point correlator attaching on the same Wilson line.

Conversely, we can consider any Cweb where a single gluon from a correlator G1 is

shuffled on a Wilson line with a set of n−1 gluons from a second correlator G2, and no other

shuffles are available on other lines, even when n is not a prime number. The reasoning

above still holds, so that the mixing matrix will have dimension n and rank n−1, and it will

be of the form of eq. (5.6). In this case, however, we cannot argue that the matrix is unique,

since other sets of correlators and attachments will likely lead to other matrices with the

same dimension. A case in point is dw = 4, where we find two distinct mixing matrices,

occurring in two three-loop Cwebs and in seven four-loop Cwebs. One of these two matrices,

as expected, has rank r = 3 and is of the form of eq. (5.6): it arises, among others, from the

Cweb W 1,0,1
3 (1, 1, 4), depicted in figure 4(p), which is of the form just described. The second

type of dw = 4 mixing matrix emerging from the algorithm has rank rw = 1. It arises for

example in the case of Cweb W
(2,1)
4, I (1, 2, 2, 2), discussed in ref. [1], and it has a column

weight vector given by s = {1, 2, 2, 1}. In this case, there are no ‘singlet’ skeleton diagrams

in the set, so the available constraints are not sufficient to determine this second matrix

uniquely. Clearly, we are barely scratching the surface of this combinatorial problem, and

further dedicated studies are likely to bring about a much deeper understanding.
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6 Summary and outlook

The study of diagrammatic exponentiation of Wilson-line correlators has a long history,

and has provided many important insights concerning the infrared structure of perturbative

gauge amplitudes. In this paper, we developed the idea of correlator webs, or Cwebs,

introduced in ref. [1], and we completed the study of all Cweb mixing matrices appearing

up to four loops. Specifically, we have listed all four-loop Cwebs connecting two and

three Wilson lines, following the recursive algorithm developed in [1]. Using an improved

version of our in-house Mathematica code, we have computed the mixing matrices for these

Cwebs using the replica method [58, 73]. In all cases, the mixing matrices we have found

verified both the proven and the conjectured properties listed in the literature [58, 59, 65–

68], in particular the general form of the non-abelian exponentiation theorem: all the

exponentiated colour factors correspond to fully connected gluon sub-diagrams [67].

As shown in the examples reported in section 4.1 and in section 4.2, once the mixing ma-

trix is determined, exponentiated colour factors are readily computed by multiplying the di-

agonalising matrix Yw for the given Cweb times the column vector formed out of the colour

factors of individual skeleton diagrams. One must then use the commutation relations of the

gauge algebra to simplify products of colour generators attached to each Wilson line. All

mixing matrices for four-loop Cwebs connecting two and three Wilson lines are presented

in the appendix. When the number of Wilson lines is small, as in this case, at high orders

many attachments are present on each Wilson line, and the commutation relations must be

applied repeatedly, generating a large number of ECFs, many of which have lengthy expres-

sions. As a consequence, we refrain from presenting explictly the ECFs in the appendix:

given the mixing matrices, the steps required to derive the ECFs are straightforward. In any

case, ECFs can be obtained from the authors upon request in the form of Mathematica code.

Given the considerable accumulated data about mixing matrices, from the knowledge

of the 66 non-trivial Cwebs arising up to four loops, we have taken the opportunity to

examine their emerging properties. We noted that, while the dimension dw of mixing

matrices is directly computable, given the set of gluon correlators and attachments in the

selected Cweb, the rank rw of the resulting matrices is not easy to predict in general.

On the other hand, we have observed that low-dimensional mixing matrices are highly

constrained, and we have derived some general results. We have shown that two- and three-

dimensional mixing matrices are uniquely determined to all orders in perturbation theory

by their general properties, given the limited possibilities available for their column weight

vectors. We have also shown that mixing matrices whose dimension is a prime number are

unique, and we have given their form; furthermore, we have uniquely determined the mixing

matrices for an infinite series of simple Cwebs, consistently with the low-order examples

that we have explicitly computed.

Together with the results presented in [1], the results for three- and two-line Cwebs at

four loops presented here complete the computation of the mixing matrices for all four-loop

Cwebs. A direct calculation of mixing matrices using posets (partial ordered sets) was also

explored in [66, 68, 69] for a class of webs: our results provide additional useful data for the

direct construction of the mixing matrices, and for the study of their interesting algebraic

and combinatorial properties.
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We emphasize that exponentiated colour factors are not all independent, and it is

necessary to reduce them to a basis, implementing the constraint of colour conservation,

which implies that, when acting on a physical amplitude, the colour-insertion operators

must satisfy
∑

i Ti = 0, where the sum runs over all hard particles, represented here by

the Wilson lines. The consequences of colour conservation were implemented at three

loops in [50], and studied at four loops in [52, 78]. Together with Bose symmetry, they

allow to reduce the form of the soft anomalous dimension matrix to a relatively simple

parametrisation in terms of a few scalar functions. Of particular interest is the appearance,

at four loops, of contributions proportional to quartic Casimir operators of the gauge

algebra, which are fully known for the simple case of two Wilson lines [61, 62, 79, 80], but,

as yet, undetermined in the general case, although partial results have begun to emerge [53,

81]. Our results provide all the necessary colour ingredients for the complete four-loop

calculation, and other tools are available for the study of colour structures at high orders,

such as the effective vertex analysis of ref. [67], and the generating functional approach

of ref. [82]. That being said, of course by far the most difficult challenge remains the

calculation of the kinematic contributions, in particular for four-loop connected diagrams.

The interplay of colour and kinematics which emerges with striking power and simplicity in

the soft anomalous dimension matrix remains one of the most challenging and interesting

topics in the study of perturbative non-abelian gauge theories.
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A All four-loop mixing matrices connecting two and three Wilson lines

In this appendix we give results for all the Cwebs that appear at 4 loops in the scattering

amplitude, that can connect two or three Wilson lines. Throughout the list, R and D

denote the mixing matrix and the diagonalized matrix respectively. Clearly, D is just a

representation of the rank of R, and we write it as D = (1r, 0), where r is the rank. We

display only one skeleton diagram per web, and we explicitly give the order of the shuffles

that generate the other diagrams, which is tied to the order the columns of the mixing

matrix in the chosen basis. The tables of shuffles also give the components of the column

weight vector for each Cweb. In tables 3 and 4, we present the list of Cwebs, the total

number of skeleton diagrams for each Cweb, the number of replica hierarchies generated

in the application of the replica method, and the rank of the resulting mixing matrices.

We omit from the list the Cwebs that are composed of a single skeleton diagram, whose

mixing matrix is just a number, R = 1.
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Sl. No. Name No. of diagrams No. of hierarchies Rank of R

1 W
(1,0,1)
3,I (1, 2, 3) 6 3 5

2 W
(1,0,1)
3,II (1, 2, 3) 2 3 1

3 W
(0,2)
3,I (1, 2, 3) 3 3 2

4 W
(0,2)
3,II (1, 2, 3) 6 3 5

5 W
(2,1)
3,I (2, 2, 3) 24 13 16

6 W
(2,1)
3,II (2, 2, 3) 6 13 3

7 W
(2,1)
3,III (2, 2, 3) 12 13 7

8 W
(1,0,1)
3 (1, 2, 3) 3 3 2

9 W
(0,2)
3,I (2, 2, 2) 2 3 1

10 W
(1,0,1)
3 (2, 2, 2) 4 3 3

11 W
(0,2)
3,II (2, 2, 2) 8 3 7

12 W
(2,1)
3,I (1, 3, 3) 18 13 10

13 W
(2,1)
3,II (1, 3, 3) 18 13 13

14 W
(1,0,1)
3 (1, 1, 4) 4 3 3

15 W
(0,2)
3 (1, 1, 4) 6 3 5

16 W
(2,1)
3 (1, 2, 4) 24 13 15

17 W
(0,2)
3 (1, 2, 4) 12 3 8

18 W
(4)
3 (2, 3, 3) 36 75 19

19 W
(4)
3 (2, 2, 4) 24 75 12

20 W
(4)
3 (1, 3, 4) 24 75 13

Table 3. Summary of the results for four-loop Cwebs connecting three Wilson lines.

Sl. No. Name No. of diagrams No. of hierarchies Rank of R

1 W
(1,0,1)
2 (2, 4) 8 3 7

2 W
(1,0,1)
2 (3, 3) 9 3 8

3 W
(0,2)
2 (2, 4) 6 3 5

4 W
(0,2)
2 (3, 3) 9 3 8

5 W
(2,1)
2 (3, 4) 36 13 29

6 W
(4)
2 (4, 4) 24 75 17

Table 4. Summary of the results for four-loop Cwebs connecting two Wilson lines.
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A.1 Cwebs connecting three Wilson lines

1. W
(1,0,1)
3,I (1, 2, 3).

This Cweb has six diagrams, one of which is displayed below. The table gives the cho-

sen order of the six shuffles of the gluon attachments, and the corresponding s factors.

Diagrams Sequences s-factors

C1 {{BA}, {GFE}} 0

C2 {{BA}, {FGE}} 0

C3 {{BA}, {FEG}} 1

C4 {{AB}, {GFE}} 1

C5 {{AB}, {FGE}} 0

C6 {{AB}, {FEG}} 0

The R matrix is given by

R =




1 0 −1
2 −1

2 0 0

0 1 −1
2 −1

2 0 0

0 0 1
2 −1

2 0 0

0 0 −1
2

1
2 0 0

0 0 −1
2 −1

2 1 0

0 0 −1
2 −1

2 0 1




, D = (15, 0) . (A.1)

2. W
(1,0,1)
3,II (1, 2, 3).

This Cweb is a second kind of Cweb with notation W
(1,0,1)
3 (1, 2, 3) and has two

diagrams, one of which is displayed below. The table gives the chosen order of the

two shuffles of the gluon attachments, and the corresponding s factors.

Diagrams Sequences s-factors

C1 {{EA}, {DCB}} 1

C2 {{AE}, {DCB}} 1

The R matrix is given by

R =




1
2 −1

2

−1
2

1
2


 , D = (11, 0) . (A.2)
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3. W
(0,2)
3,I (1, 2, 3).

This Cweb has three diagrams, one of which is displayed below. The table gives the

chosen order of the three shuffles of the gluon attachments, and the corresponding

s factors.

Diagrams Sequences s-factors

C1 {{EDA}, {CB}} 1

C2 {{EAD}, {CB}} 0

C3 {{EAD}, {CB}} 1

The R matrix is given by

R =




1
2 0 −1

2

−1
2 1 −1

2

−1
2 0 1

2


 , D = (12, 0) . (A.3)

4. W
(0,2)
3,II (1, 2, 3).

This Cweb has six diagrams, one of which is displayed below. The table gives the cho-

sen order of the six shuffles of the gluon attachments, and the corresponding s factors.

Diagrams Sequences s-factors

C1 {{DA}, {FCB}} 1

C2 {{DA}, {CFB}} 0

C3 {{DA}, {CBF}} 0

C4 {{AD}, {FCB}} 0

C5 {{AD}, {CFB}} 0

C6 {{AD}, {CBF}} 1

The R matrix is given by

R =




1
2 0 0 0 0 −1

2

−1
2 1 0 0 0 −1

2

−1
2 0 1 0 0 −1

2

−1
2 0 0 1 0 −1

2

−1
2 0 0 0 1 −1

2

−1
2 0 0 0 0 1

2




, D = (15, 0) . (A.4)

– 25 –



J
H
E
P
0
3
(
2
0
2
1
)
1
8
8

5. W
(2,1)
3,I (2, 2, 3).

This Cweb has 24 diagrams, one of which is displayed below. The table gives the cho-

sen order of the 24 shuffles of the gluon attachments, and the corresponding s factors.

Diagrams Sequences s-factors

C1 {{EDA}, {GB}, {FC}} 1

C2 {{EDA}, {GB}, {CF}} 0

C3 {{EDA}, {BG}, {FC}} 0

C4 {{EDA}, {BG}, {CF}} 0

C5 {{DEA}, {GB}, {FC}} 1

C6 {{DEA}, {GB}, {CF}} 0

C7 {{DEA}, {BG}, {FC}} 0

C8 {{DEA}, {BG}, {CF}} 0

C9 {{EAD}, {GB}, {FC}} 0

C10 {{EAD}, {GB}, {CF}} 1

C11 {{EAD}, {BG}, {FC}} 0

C12 {{EAD}, {BG}, {CF}} 0

C13 {{AED}, {GB}, {FC}} 0

C14 {{AED}, {GB}, {CF}} 0

C15 {{AED}, {BG}, {FC}} 0

C16 {{AED}, {BG}, {CF}} 1

C17 {{DAE}, {GB}, {FC}} 0

C18 {{DAE}, {GB}, {CF}} 0

C19 {{DAE}, {BG}, {FC}} 1

C20 {{DAE}, {BG}, {CF}} 0

C21 {{ADE}, {GB}, {FC}} 0

C22 {{ADE}, {GB}, {CF}} 0

C23 {{ADE}, {BG}, {FC}} 0

C24 {{ADE}, {BG}, {CF}} 1
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The R matrix is given by

R =




1
3 0 0 0 −1

6 0 0 0 0 −1
6 0 0 0 0 0 −1

6 0 0 −1
6 0 0 0 0 1

3

−1
6

1
2 0 0 −1

6 0 0 0 0 −1
6 0 0 0 0 0 −1

6 0 0 1
3 −1

2 0 0 0 1
3

−2
3 0 1 0 1

3 0 −1
2 0 0 1

3 0 −1
2 0 0 0 −1

6 0 0 −1
6 0 0 0 0 1

3

−1
6 −1

2 0 1 1
3 0 −1

2 0 0 1
3 0 −1

2 0 0 0 −1
6 0 0 1

3 −1
2 0 0 0 1

3

−1
6 0 0 0 1

3 0 0 0 0 −1
6 0 0 0 0 0 1

3 0 0 −1
6 0 0 0 0 −1

6
1
3 −1

2 0 0 −2
3 1 0 0 0 −1

6 0 0 0 0 0 1
3 0 0 1

3 −1
2 0 0 0 −1

6

−1
6 0 0 0 −1

6 0 1
2 0 0 1

3 0 −1
2 0 0 0 1

3 0 0 −1
6 0 0 0 0 −1

6
1
3 −1

2 0 0 −1
6 0 −1

2 1 0 1
3 0 −1

2 0 0 0 1
3 0 0 1

3 −1
2 0 0 0 −1

6

−1
6 0 0 0 −1

6 0 0 0 1
2 −1

6 0 0 0 0 0 −1
6 0 0 1

3 0 0 0 −1
2

1
3

−1
6 0 0 0 −1

6 0 0 0 0 1
3 0 0 0 0 0 −1

6 0 0 1
3 0 0 0 0 −1

6

−1
6 0 0 0 1

3 0 −1
2 0 −1

2
1
3 1 −1

2 0 0 0 −1
6 0 0 1

3 0 0 0 −1
2

1
3

−1
6 0 0 0 1

3 0 −1
2 0 0 −1

6 0 1
2 0 0 0 −1

6 0 0 1
3 0 0 0 0 −1

6

−1
6 0 0 0 1

3 0 0 0 −1
2

1
3 0 0 1 −1

2 0 −1
6 −1

2 0 1
3 0 0 0 −1

2
1
3

−1
6 0 0 0 1

3 0 0 0 0 −1
6 0 0 0 1

2 0 −1
6 −1

2 0 1
3 0 0 0 0 −1

6

−1
6 0 0 0 1

3 0 0 0 −1
2

1
3 0 0 0 0 1 −2

3 0 0 −1
6 0 0 0 −1

2
1
3

−1
6 0 0 0 1

3 0 0 0 0 −1
6 0 0 0 0 0 1

3 0 0 −1
6 0 0 0 0 −1

6

−1
6 0 0 0 −1

6 0 0 0 0 1
3 0 0 0 −1

2 0 1
3

1
2 0 −1

6 0 0 0 0 −1
6

1
3 −1

2 0 0 −1
6 0 0 0 0 1

3 0 0 0 −1
2 0 1

3 −1
2 1 1

3 −1
2 0 0 0 −1

6

−1
6 0 0 0 −1

6 0 0 0 0 1
3 0 0 0 0 0 −1

6 0 0 1
3 0 0 0 0 −1

6
1
3 −1

2 0 0 −1
6 0 0 0 0 1

3 0 0 0 0 0 −1
6 0 0 −1

6
1
2 0 0 0 −1

6
1
3 0 0 0 −1

6 0 0 0 −1
2

1
3 0 0 0 −1

2 0 1
3 −1

2 0 1
3 0 1 0 −1

2 −1
6

1
3 0 0 0 −1

6 0 0 0 0 −1
6 0 0 0 −1

2 0 1
3 −1

2 0 1
3 0 0 1 0 −2

3
1
3 0 0 0 −1

6 0 0 0 −1
2

1
3 0 0 0 0 0 −1

6 0 0 −1
6 0 0 0 1

2 −1
6

1
3 0 0 0 −1

6 0 0 0 0 −1
6 0 0 0 0 0 −1

6 0 0 −1
6 0 0 0 0 1

3




,

D = (116,0) . (A.5)

6. W
(2,1)
3,II (2, 2, 3).

This Cweb has six diagrams, one of which is displayed below. The table gives the cho-

sen order of the six shuffles of the gluon attachments, and the corresponding s factors.
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Diagrams Sequences s-factors

C1 {{EDA}, {FG}, {CB}} 1

C2 {{EDA}, {GF}, {CB}} 0

C3 {{EAD}, {FG}, {CB}} 1

C4 {{EAD}, {GF}, {CB}} 0

C5 {{AED}, {FG}, {CB}} 1

C6 {{AED}, {GF}, {CB}} 0

The R matrix is given by

R =




1
6 0 −1

3 0 1
6 0

−1
3

1
2 −1

3 0 2
3 −1

2

−1
3 0 2

3 0 −1
3 0

1
6 −1

2 −1
3 1 1

6 −1
2

1
6 0 −1

3 0 1
6 0

2
3 −1

2 −1
3 0 −1

3
1
2




, D = (13, 0) . (A.6)

7. W
(2,1)
3,III (2, 2, 3).

This Cweb has twelve diagrams, one of which is displayed below. The table gives the

chosen order of the twelve shuffles of the gluon attachments, and the corresponding

s factors.

Diagrams Sequences s-factors

C1 {{DA}, {EF}, {GCB}} 1

C2 {{DA}, {EF}, {CGB}} 0

C3 {{DA}, {EF}, {CBG}} 0

C4 {{DA}, {FE}, {GCB}} 1

C5 {{DA}, {FE}, {CGB}} 0

C6 {{DA}, {FE}, {CBG}} 1

C7 {{AD}, {EF}, {GCB}} 1

C8 {{AD}, {EF}, {CGB}} 0

C9 {{AD}, {EF}, {CBG}} 1

C10 {{AD}, {FE}, {GCB}} 0

C11 {{AD}, {FE}, {CGB}} 0

C12 {{AD}, {FE}, {CBG}} 1
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The R matrix is given by

R =




1
3 0 0 −1

6 0 −1
6 −1

6 0 −1
6 0 0 1

3

−2
3 1 0 1

3 −1
2 −1

6
1
3 −1

2 −1
6 0 0 1

3

−2
3 0 1 1

3 0 −2
3

1
3 0 −2

3 0 0 1
3

−1
6 0 0 1

3 0 −1
6 −1

6 0 1
3 0 0 −1

6

−1
6 0 0 −1

6
1
2 −1

6
1
3 −1

2
1
3 0 0 −1

6

−1
6 0 0 −1

6 0 1
3

1
3 0 −1

6 0 0 −1
6

−1
6 0 0 −1

6 0 1
3

1
3 0 −1

6 0 0 −1
6

−1
6 0 0 1

3 −1
2

1
3 −1

6
1
2 −1

6 0 0 −1
6

−1
6 0 0 1

3 0 −1
6 −1

6 0 1
3 0 0 −1

6
1
3 0 0 −2

3 0 1
3 −2

3 0 1
3 1 0 −2

3
1
3 0 0 −1

6 −1
2

1
3 −1

6 −1
2

1
3 0 1 −2

3
1
3 0 0 −1

6 0 −1
6 −1

6 0 −1
6 0 0 1

3




,

D = (17, 0) (A.7)

8. W
(1,0,1)
3 (1, 2, 3).

This Cweb has three diagrams, one of which is displayed below. The table gives the

chosen order of the three shuffles of the gluon attachments, and the corresponding

s factors.

Diagrams Sequences s-factors

C1 {{EBA}, {DC}} 1

C2 {{BEA}, {DC}} 0

C3 {{AEB}, {DC}} 1

The R matrix is given by

R =




1
2 0 −1

2

−1
2 1 −1

2

−1
2 0 1

2


 , D = (12, 0) (A.8)

9. W
(0,2)
3,I (2, 2, 2).

This Cweb has two diagrams, one of which is displayed below. The table gives the cho-

sen order of the two shuffles of the gluon attachments, and the corresponding s factors.
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Diagrams Sequences s-factors

C1 {{DA}, {FE}, {CB}} 1

C2 {{AD}, {FE}, {CB}} 1

The R matrix is given by

R =




1
2 −1

2

−1
2

1
2


 , D = (11, 0) (A.9)

10. W
(1,0,1)
3 (2, 2, 2).

This Cweb has four diagrams, one of which is displayed below. The table gives the

chosen order of the four shuffles of the gluon attachments, and the corresponding s

factors.

Diagrams Sequences s-factors

C1 {{BA}, {ED}, {CG}} 1

C2 {{BA}, {ED}, {GC}} 0

C3 {{AB}, {ED}, {CG}} 0

C4 {{AB}, {ED}, {GC}} 1

The R matrix is given by

R =




1
2 0 0 −1

2

−1
2 1 0 −1

2

−1
2 0 1 −1

2

−1
2 0 0 1

2




, D = (13, 0) (A.10)

11. W
(0,2)
3,II (2, 2, 2).

This Cweb has eight diagrams, one of which is displayed below. The table gives the

chosen order of the eight shuffles of the gluon attachments, and the corresponding

s factors.
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Diagrams Sequences s-factors

C1 {{DA}, {EC}, {FB}} 1

C2 {{DA}, {EC}, {BF}} 0

C3 {{DA}, {CE}, {FB}} 0

C4 {{DA}, {CE}, {BF}} 0

C5 {{AD}, {EC}, {FB}} 0

C6 {{AD}, {EC}, {BF}} 0

C7 {{AD}, {CE}, {FB}} 0

C8 {{AD}, {CE}, {BF}} 1

The R matrix is given by

R =




1
2 0 0 0 0 0 0 −1

2

−1
2 1 0 0 0 0 0 −1

2

−1
2 0 1 0 0 0 0 −1

2

−1
2 0 0 1 0 0 0 −1

2

−1
2 0 0 0 1 0 0 −1

2

−1
2 0 0 0 0 1 0 −1

2

−1
2 0 0 0 0 0 1 −1

2

−1
2 0 0 0 0 0 0 1

2




, D = (17, 0) (A.11)

12. W
(2,1)
3,I (1, 3, 3).

This Cweb has eighteen diagrams, one of which is displayed below. The table

gives the chosen order of the eighteen shuffles of the gluon attachments, and the

corresponding s factors.
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Diagrams Sequences s-factors

C1 {{EDA}, {GCB}} 1

C2 {{EDA}, {CGB}} 0

C3 {{EDA}, {CBG}} 0

C4 {{DEA}, {GCB}} 1

C5 {{DEA}, {CGB}} 0

C6 {{DEA}, {CBG}} 0

C7 {{EAD}, {GCB}} 0

C8 {{EAD}, {CGB}} 0

C9 {{EAD}, {CBG}} 1

C10 {{AED}, {GCB}} 0

C11 {{AED}, {CGB}} 0

C12 {{AED}, {CBG}} 1

C13 {{DAE}, {GCB}} 1

C14 {{DAE}, {CGB}} 0

C15 {{DAE}, {CBG}} 0

C16 {{ADE}, {GCB}} 0

C17 {{ADE}, {CGB}} 0

C18 {{ADE}, {CBG}} 1

The R matrix is given by

R =




1
3 0 0 −1

6 0 0 0 0 −1
6 0 0 −1

6 −1
6 0 0 0 0 1

3

−1
6

1
2 0 −1

6 0 0 0 0 −1
6 0 0 −1

6
1
3 −1

2 0 0 0 1
3

−1
6 0 1

2 −1
6 0 0 0 0 −1

6 0 0 −1
6

1
3 0 −1

2 0 0 1
3

−1
6 0 0 1

3 0 0 0 0 −1
6 0 0 1

3 −1
6 0 0 0 0 −1

6
1
3 −1

2 0 −2
3 1 0 0 0 −1

6 0 0 1
3

1
3 −1

2 0 0 0 −1
6

1
3 0 −1

2 −2
3 0 1 0 0 −1

6 0 0 1
3

1
3 0 −1

2 0 0 −1
6

−1
6 0 0 −1

6 0 0 1
2 0 −1

6 0 0 −1
6

1
3 0 0 −1

2 0 1
3

−1
6 0 0 −1

6 0 0 0 1
2 −1

6 0 0 −1
6

1
3 0 0 0 −1

2
1
3

−1
6 0 0 −1

6 0 0 0 0 1
3 0 0 −1

6
1
3 0 0 0 0 −1

6

−1
6 0 0 1

3 0 0 −1
2 0 1

3 1 0 −2
3 −1

6 0 0 −1
2 0 1

3

−1
6 0 0 1

3 0 0 0 −1
2

1
3 0 1 −2

3 −1
6 0 0 0 −1

2
1
3

−1
6 0 0 1

3 0 0 0 0 −1
6 0 0 1

3 −1
6 0 0 0 0 −1

6

−1
6 0 0 −1

6 0 0 0 0 1
3 0 0 −1

6
1
3 0 0 0 0 −1

6
1
3 −1

2 0 −1
6 0 0 0 0 1

3 0 0 −1
6 −1

6
1
2 0 0 0 −1

6
1
3 0 −1

2 −1
6 0 0 0 0 1

3 0 0 −1
6 −1

6 0 1
2 0 0 −1

6
1
3 0 0 −1

6 0 0 −1
2 0 1

3 0 0 −1
6 −1

6 0 0 1
2 0 −1

6
1
3 0 0 −1

6 0 0 0 −1
2

1
3 0 0 −1

6 −1
6 0 0 0 1

2 −1
6

1
3 0 0 −1

6 0 0 0 0 −1
6 0 0 −1

6 −1
6 0 0 0 0 1

3




,

D = (110, 0) (A.12)

– 32 –



J
H
E
P
0
3
(
2
0
2
1
)
1
8
8

13. W
(2,1)
3,II (1, 3, 3).

This Cweb has 18 diagrams, one of which is displayed below. The table gives the cho-

sen order of the 18 shuffles of the gluon attachments, and the corresponding s factors.

Diagrams Sequences s-factors

C1 {{DEA}, {GFB}} 1

C2 {{DEA}, {FGB}} 0

C3 {{DEA}, {GBF}} 0

C4 {{DEA}, {BGF}} 0

C5 {{DEA}, {FBG}} 0

C6 {{DEA}, {BFG}} 0

C7 {{DAE}, {GFB}} 0

C8 {{DAE}, {FGB}} 0

C9 {{DAE}, {GBF}} 1

C10 {{DAE}, {BGF}} 0

C11 {{DAE}, {FBG}} 0

C12 {{DAE}, {BFG}} 0

C13 {{ADE}, {GFB}} 0

C14 {{ADE}, {FGB}} 0

C15 {{ADE}, {GBF}} 0

C16 {{ADE}, {BGF}} 1

C17 {{ADE}, {FBG}} 0

C18 {{ADE}, {BFG}} 0
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The R matrix is given by

R =




1
6 0 0 0 0 0 0 0 −1

3 0 0 0 0 0 0 1
6 0 0

−1
3

1
2 0 0 0 0 0 0 −1

3 0 0 0 0 0 0 2
3 0 −1

2

−1
3 0 1

2 0 0 0 0 0 1
6 −1

2 0 0 0 0 0 1
6 0 0

1
6 0 −1 1 0 0 0 0 2

3 −1 0 0 0 0 0 1
6 0 0

1
6 −1

2 −1
2 0 1 0 0 0 1

6 −1
2 0 0 0 0 0 2

3 0 −1
2

2
3 −1

2 −1 0 0 1 0 0 2
3 −1 0 0 0 0 0 2

3 0 −1
2

−1
3 0 0 0 0 0 1

2 0 1
6 0 0 0 0 0 −1

2
1
6 0 0

1
6 −1

2 0 0 0 0 −1
2 1 1

6 0 0 0 0 0 −1
2

2
3 0 −1

2

−1
3 0 0 0 0 0 0 0 2

3 0 0 0 0 0 0 −1
3 0 0

1
6 0 −1

2 0 0 0 0 0 1
6

1
2 0 0 0 0 0 −1

3 0 0
2
3 −1

2 −1
2 0 0 0 −1

2 0 2
3 −1

2 1 0 0 0 −1
2

2
3 0 −1

2
2
3 −1

2 −1
2 0 0 0 0 0 1

6 −1
2 0 1 0 0 0 1

6 0 −1
2

1
6 0 0 0 0 0 −1 0 2

3 0 0 0 1 0 −1 1
6 0 0

2
3 −1

2 0 0 0 0 −1 0 2
3 0 0 0 0 1 −1 2

3 0 −1
2

1
6 0 0 0 0 0 −1

2 0 1
6 0 0 0 0 0 1

2 −1
3 0 0

1
6 0 0 0 0 0 0 0 −1

3 0 0 0 0 0 0 1
6 0 0

2
3 −1

2 0 0 0 0 −1
2 0 1

6 0 0 0 0 0 −1
2

1
6 1 −1

2
2
3 −1

2 0 0 0 0 0 0 −1
3 0 0 0 0 0 0 −1

3 0 1
2




,

D = (113, 0) (A.13)

14. W
(1,0,1)
3 (1, 1, 4).

This Cweb has four diagrams, one of which is displayed below. The table gives the

chosen order of the four shuffles of the gluon attachments, and the corresponding s

factors.

Diagrams Sequences s-factors

C1 {{EFBC}} 1

C2 {{FEBC}} 0

C3 {{FBEC}} 0

C4 {{FBCE}} 1
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The R matrix is given by

R =




1
2 0 0 −1

2

−1
2 1 0 −1

2

−1
2 0 1 −1

2

−1
2 0 0 1

2




, D = (13, 0) (A.14)

15. W
(0,2)
3 (1, 1, 4).

This Cweb has six diagrams, one of which is displayed below. The table gives the cho-

sen order of the six shuffles of the gluon attachments, and the corresponding s factors.

Diagrams Sequences s-factors

C1 {{FEBC}} 1

C2 {{FBEC}} 0

C3 {{BFEC}} 0

C4 {{FBCE}} 0

C5 {{BFCE}} 0

C6 {{BCFE}} 1

The R matrix is given by

R =




1
2 0 0 0 0 −1

2

−1
2 1 0 0 0 −1

2

−1
2 0 1 0 0 −1

2

−1
2 0 0 1 0 −1

2

−1
2 0 0 0 1 −1

2

−1
2 0 0 0 0 1

2




, D = (15, 0) (A.15)

16. W
(2,1)
3 (1, 2, 4).

This Cweb has 24 diagrams, one of which is displayed below. The table gives the cho-

sen order of the 24 shuffles of the gluon attachments, and the corresponding s factors.
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Diagrams Sequences s-factors

C1 {{EDBA}, {GC}} 1

C2 {{EDBA}, {CG}} 0

C3 {{DEBA}, {GC}} 1

C4 {{DEBA}, {CG}} 0

C5 {{EBDA}, {GC}} 0

C6 {{EBDA}, {CG}} 0

C7 {{BEDA}, {GC}} 0

C8 {{BEDA}, {CG}} 0

C9 {{DBEA}, {GC}} 0

C10 {{DBEA}, {CG}} 0

C11 {{BDEA}, {GC}} 0

C12 {{BDEA}, {CG}} 0

C13 {{EBAD}, {GC}} 0

C14 {{EBAD}, {CG}} 1

C15 {{BEAD}, {GC}} 0

C16 {{BEAD}, {CG}} 0

C17 {{BAED}, {GC}} 0

C18 {{BAED}, {CG}} 1

C19 {{DBAE}, {GC}} 1

C20 {{DBAE}, {CG}} 0

C21 {{BDAE}, {GC}} 0

C22 {{BDAE}, {CG}} 0

C23 {{BADE}, {GC}} 0

C24 {{BADE}, {CG}} 1
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The R matrix is given by

R =




1
3 0 − 1

6 0 0 0 0 0 0 0 0 0 0 − 1
6 0 0 0 − 1

6 − 1
6 0 0 0 0 1

3

− 1
6

1
2 − 1

6 0 0 0 0 0 0 0 0 0 0 − 1
6 0 0 0 − 1

6
1
3 − 1

2 0 0 0 1
3

− 1
6 0 1

3 0 0 0 0 0 0 0 0 0 0 − 1
6 0 0 0 1

3 − 1
6 0 0 0 0 − 1

6
1
3 − 1

2 − 2
3 1 0 0 0 0 0 0 0 0 0 − 1

6 0 0 0 1
3

1
3 − 1

2 0 0 0 − 1
6

− 1
6 0 − 1

6 0 1
2 0 0 0 0 0 0 0 0 − 1

6 0 0 0 − 1
6

1
3 0 − 1

2 0 0 1
3

− 1
6 0 − 1

6 0 0 1
2 0 0 0 0 0 0 0 − 1

6 0 0 0 − 1
6

1
3 0 0 − 1

2 0 1
3

− 1
6 0 1

3 0 − 1
2 0 1 0 − 1

2 0 0 0 0 1
3 0 − 1

2 0 − 1
6

1
3 0 − 1

2 0 0 1
3

− 1
6 0 1

3 0 0 − 1
2 0 1 − 1

2 0 0 0 0 1
3 0 − 1

2 0 − 1
6

1
3 0 0 − 1

2 0 1
3

− 1
6 0 − 1

6 0 0 0 0 0 1
2 0 0 0 0 1

3 0 − 1
2 0 1

3 − 1
6 0 0 0 0 − 1

6
1
3 − 1

2 − 1
6 0 0 0 0 0 − 1

2 1 0 0 0 1
3 0 − 1

2 0 1
3

1
3 − 1

2 0 0 0 − 1
6

1
3 0 − 1

6 0 − 1
2 0 0 0 − 1

2 0 1 0 0 1
3 0 − 1

2 0 1
3

1
3 0 − 1

2 0 0 − 1
6

1
3 0 − 1

6 0 0 − 1
2 0 0 − 1

2 0 0 1 0 1
3 0 − 1

2 0 1
3

1
3 0 0 − 1

2 0 − 1
6

− 1
6 0 − 1

6 0 0 0 0 0 0 0 0 0 1
2 − 1

6 0 0 0 − 1
6

1
3 0 0 0 − 1

2
1
3

− 1
6 0 − 1

6 0 0 0 0 0 0 0 0 0 0 1
3 0 0 0 − 1

6
1
3 0 0 0 0 − 1

6

− 1
6 0 1

3 0 0 0 0 0 − 1
2 0 0 0 − 1

2
1
3 1 − 1

2 0 − 1
6

1
3 0 0 0 − 1

2
1
3

− 1
6 0 1

3 0 0 0 0 0 − 1
2 0 0 0 0 − 1

6 0 1
2 0 − 1

6
1
3 0 0 0 0 − 1

6

− 1
6 0 1

3 0 0 0 0 0 0 0 0 0 − 1
2

1
3 0 0 1 − 2

3 − 1
6 0 0 0 − 1

2
1
3

− 1
6 0 1

3 0 0 0 0 0 0 0 0 0 0 − 1
6 0 0 0 1

3 − 1
6 0 0 0 0 − 1

6

− 1
6 0 − 1

6 0 0 0 0 0 0 0 0 0 0 1
3 0 0 0 − 1

6
1
3 0 0 0 0 − 1

6
1
3 − 1

2 − 1
6 0 0 0 0 0 0 0 0 0 0 1

3 0 0 0 − 1
6 − 1

6
1
2 0 0 0 − 1

6
1
3 0 − 1

6 0 − 1
2 0 0 0 0 0 0 0 0 1

3 0 0 0 − 1
6 − 1

6 0 1
2 0 0 − 1

6
1
3 0 − 1

6 0 0 − 1
2 0 0 0 0 0 0 0 1

3 0 0 0 − 1
6 − 1

6 0 0 1
2 0 − 1

6
1
3 0 − 1

6 0 0 0 0 0 0 0 0 0 − 1
2

1
3 0 0 0 − 1

6 − 1
6 0 0 0 1

2 − 1
6

1
3 0 − 1

6 0 0 0 0 0 0 0 0 0 0 − 1
6 0 0 0 − 1

6 − 1
6 0 0 0 0 1

3




,

D = (115,0) (A.16)

17. W
(0,2)
3 (1, 2, 4).

This Cweb has 12 diagrams, one of which is displayed below. The table gives the cho-

sen order of the 12 shuffles of the gluon attachments, and the corresponding s factors.
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Diagrams Sequences s-factors

C1 {{EDBA}, {FG}} 1

C2 {{EDBA}, {GF}} 0

C3 {{EBDA}, {FG}} 0

C4 {{EBDA}, {GF}} 0

C5 {{BEDA}, {FG}} 0

C6 {{BEDA}, {GF}} 0

C7 {{EBAD}, {FG}} 1

C8 {{EBAD}, {GF}} 0

C9 {{BEAD}, {FG}} 0

C10 {{BEAD}, {GF}} 0

C11 {{BEAD}, {FG}} 1

C12 {{BEAD}, {GF}} 0

The R matrix is given by

R =




1
6 0 0 0 0 0 −1

3 0 0 0 1
6 0

−1
3

1
2 0 0 0 0 −1

3 0 0 0 2
3 −1

2

−1
3 0 1

2 0 0 0 1
6 0 −1

2 0 1
6 0

1
6 −1

2 −1
2 1 0 0 1

6 0 −1
2 0 2

3 −1
2

1
6 0 −1 0 1 0 2

3 0 −1 0 1
6 0

2
3 −1

2 −1 0 0 1 2
3 0 −1 0 2

3 −1
2

−1
3 0 0 0 0 0 2

3 0 0 0 −1
3 0

1
6 −1

2 0 0 0 0 −1
3 1 0 0 1

6 −1
2

1
6 0 −1

2 0 0 0 1
6 0 1

2 0 −1
3 0

2
3 −1

2 −1
2 0 0 0 1

6 0 −1
2 1 1

6 −1
2

1
6 0 0 0 0 0 −1

3 0 0 0 1
6 0

2
3 −1

2 0 0 0 0 −1
3 0 0 0 −1

3
1
2




,

D = (18, 0) (A.17)

18. W
(4)
3 (2, 3, 3).

This Cweb has 36 diagrams, one of which is displayed below. This is the biggest

web mixing matrix, the table gives the chosen order of the 36 shuffles of the gluon

attachments, and the corresponding s factors.
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Diagrams Sequences s-factors

C1 {{DCA}, {BE}, {HGF }} 1

C2 {{DCA}, {BE}, {GHF }} 0

C3 {{DCA}, {BE}, {HFG}} 1

C4 {{DCA}, {BE}, {FGH}} 1

C5 {{DCA}, {BE}, {GFH}} 0

C6 {{DCA}, {BE}, {FGH}} 0

C7 {{DCA}, {EB}, {HGF }} 1

C8 {{DCA}, {EB}, {GHF }} 0

C9 {{DCA}, {EB}, {HFG}} 0

C10 {{DCA}, {EB}, {FGH}} 0

C11 {{DCA}, {EB}, {GFH}} 0

C12 {{DCA}, {EB}, {FGH}} 0

C13 {{DAC}, {BE}, {HGF }} 0

C14 {{DAC}, {BE}, {GHF }} 0

C15 {{DAC}, {BE}, {HFG}} 1

C16 {{DAC}, {BE}, {FGH}} 1

C17 {{DAC}, {BE}, {GFH}} 0

C18 {{DAC}, {BE}, {FGH}} 0

C19 {{DAC}, {EB}, {HGF }} 1

C20 {{DAC}, {EB}, {GHF }} 0

C21 {{DAC}, {EB}, {HFG}} 1

C22 {{DAC}, {EB}, {FGH}} 0

C23 {{DAC}, {EB}, {GFH}} 0

C24 {{DAC}, {EB}, {FGH}} 0

C25 {{ADC}, {BE}, {HGF }} 0

C26 {{ADC}, {BE}, {GHF }} 0

C27 {{ADC}, {BE}, {HFG}} 0

C28 {{ADC}, {BE}, {FGH}} 1

C29 {{ADC}, {BE}, {GFH}} 0

C30 {{ADC}, {BE}, {FGH}} 0

C31 {{ADC}, {EB}, {HGF }} 1

C32 {{ADC}, {EB}, {GHF }} 0

C33 {{ADC}, {EB}, {HFG}} 1

C34 {{ADC}, {EB}, {FGH}} 1

C35 {{ADC}, {EB}, {GFH}} 0

C36 {{ADC}, {EB}, {FGH}} 0
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The R matrix is given by

R =




1

6
0 −

1

6
0 0 0 0 0 0 0 0 0 0 0 −

1

6

1

6
0 0 −

1

6
0 1

6
0 0 0 0 0 0 0 0 0 0 0 1

6
−

1

6
0 0

−
1

6

1

3
−

1

6

1

6
0 −

1

6

1

6
−

1

6
0 0 0 0 0 0 −

1

6

1

6
0 0 −

1

6
0 1

6
0 0 0 0 0 0 1

6
0 −

1

6

1

6
−

1

6

1

6
−

1

2
0 1

3

−
1

6
0 1

3
−

1

6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

6
0 −

1

3

1

6
0 0

0 0 −
1

6

1

6
0 0 0 0 0 0 0 0 0 0 1

6
−

1

6
0 0 1

6
0 −

1

6
0 0 0 0 0 0 0 0 0 −

1

6
0 1

6
0 0 0

0 −
1

6
−

1

6
0 1

2
−

1

6

1

6
−

1

6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

6
0 −

1

6
−

1

6

1

3

1

6
−

1

6
−

1

2

1

3

1

6
−

1

6
−

1

6
−

1

6
0 1

3

1

6
−

1

6
0 0 0 0 0 0 1

6
−

1

6
0 0 1

6
0 −

1

6
0 0 0 0 0 0 1

6
0 −

1

6
−

1

2

1

3

1

6

1

6
0 −

1

6

0 0 −
1

6
0 0 0 1

6
0 0 0 0 0 0 0 1

6

1

6
0 0 −

1

6
0 −

1

6
0 0 0 0 0 0 −

1

6
0 0 0 0 1

6
0 0 0

1

6
−

1

6
−

1

6

1

6
0 −

1

6
−

1

6

1

3
0 0 0 0 0 0 1

6

1

6
0 0 −

1

6
0 −

1

6
0 0 0 0 0 0 −

1

2
0 1

3

1

6
−

1

6

1

6

1

6
0 −

1

6

1

6
0 −

1

6
−

1

6
0 0 −

1

3
0 1

2
0 0 0 0 0 −

1

6

1

2
0 0 0 0 1

6
−

1

2
0 0 0 0 0 −

1

6
0 0 1

6
0 −

1

3

1

3
0 0

−
1

6
0 5

6
−

5

6
0 0 1

6
0 −1 1 0 0 0 0 −

1

2

5

6
0 0 1

6
0 1

2
−1 0 0 0 0 0 −

1

6
0 0 −

1

6
0 1

6

1

6
0 0

−
1

6

1

3

1

3
0 −

1

2
−

1

6

1

3
−

2

3
−

1

2
0 1 0 0 0 −

1

6

1

2
0 0 0 0 1

6
−

1

2
0 0 0 0 0 −

1

2
0 1

3
−

1

6

1

3

1

6

1

2
−

1

2
−

1

6

−
1

2

1

3

5

6
−

1

6
0 −

2

3

5

6
−

2

3
−1 0 0 1 0 0 −

1

2

5

6
0 0 1

6
0 1

2
−1 0 0 0 0 0 −

1

2
0 1

3
−

1

2

1

3

1

6

5

6
0 −

2

3

−
1

3
0 0 1

6
0 0 1

6
0 0 0 0 0 1

2
0 1

6
−

1

3
0 0 −

1

6
0 −

1

6
0 0 0 0 0 −

1

2

1

3
0 0 −

1

6
0 1

2
−

1

6
0 0

1

3
−

2

3
0 −

1

6
0 1

3
−

1

6

1

3
0 0 0 0 −

1

2
1 1

6

1

6
0 −

1

2

1

3
−

1

2
−

1

6
0 0 0 0 0 −

1

2

1

2
0 −

1

6
0 −

1

6

1

2
−

1

2
0 1

3

−
1

6
0 0 0 0 0 1

6
0 0 0 0 0 0 0 1

3
0 0 0 0 0 −

1

3
0 0 0 0 0 0 −

1

6
0 0 0 0 0 1

6
0 0

0 0 0 −
1

6
0 0 1

6
0 0 0 0 0 0 0 0 1

3
0 0 −

1

3
0 0 0 0 0 0 0 0 −

1

6
0 0 1

6
0 0 0 0 0

1

2
−

1

6
−

1

2

1

6
−

1

2

1

3
−

1

6

1

3
0 0 0 0 −

1

2
0 5

6
−

1

2
1 −

1

2
0 −

1

2

1

6
0 0 0 0 0 −

1

2

1

2
0 −

1

6

1

6

1

3
0 −

1

6
−

1

2

1

3

1

6
−

1

6
0 0 0 −

1

6
−

1

6

1

3
0 0 0 0 0 0 0 −

1

6
0 1

2

1

6
−

1

2
0 0 0 0 0 0 0 0 0 −

1

6
−

1

6

1

3
0 1

6
0 −

1

6

0 0 0 1

6
0 0 −

1

6
0 0 0 0 0 0 0 0 −

1

3
0 0 1

3
0 0 0 0 0 0 0 0 1

6
0 0 −

1

6
0 0 0 0 0

1

6
−

1

6
0 −

1

6
0 1

3
0 −

1

6
0 0 0 0 0 0 0 1

6
0 −

1

2
−

1

6

1

2
0 0 0 0 0 0 0 −

1

6
0 1

3
0 −

1

6
0 1

6
0 −

1

6

1

6
0 0 0 0 0 −

1

6
0 0 0 0 0 0 0 −

1

3
0 0 0 0 0 1

3
0 0 0 0 0 0 1

6
0 0 0 0 0 −

1

6
0 0

−
1

6
0 1

2
−

1

6
0 0 1

3
0 −

1

2
0 0 0 0 0 −

1

6
−

1

6
0 0 −

1

3
0 1

6

1

2
0 0 0 0 0 1

6
0 0 1

6
0 0 −

1

3
0 0

−
1

6

1

3
0 1

6
−

1

2

1

3

1
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−

1
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−

1

2
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0 0 −

1

2
−

1
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−

1

2

5
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−

1

2
1 0 0 0 0 −
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0 1
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1
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1
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−

1

2

1
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−

1
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−

1
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−
1

2

1

3

1
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0 0 −

1

6

1
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−

1
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−

1
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0 0 0 0 0 −

1
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1
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0 −

1

2

1
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−

1

2

1
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−

1

2
0 1 0 0 0 −

1

6
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−

1

6

1

3
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3
0 −

2

3

1

6
0 1

6
−

1

6
0 0 −

1

6
0 0 0 0 0 −1 0 1

2

1

6
0 0 5

6
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1

2
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6
0 0 −

5

6
0 5

6
−

1

6
0 0

5

6
−

2

3

1
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−

1

2
0 1
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−

1

2

1
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2

1
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6
0 −

1
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2
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1
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1
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1
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1
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,

D = (119, 0) (A.18)

19. W
(4)
3 (2, 2, 4).

This Cweb has 24 diagrams, one of which is displayed below. The table gives the cho-

sen order of the 24 shuffles of the gluon attachments, and the corresponding s factors.
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Diagrams Sequences s-factors

C1 {{DCBA}, {EF}, {HG}} 1

C2 {{DCBA}, {EF}, {GH}} 0

C3 {{DCBA}, {FE}, {HG}} 0

C4 {{DCBA}, {FE}, {GH}} 0

C5 {{DBCA}, {EF}, {HG}} 1

C6 {{DBCA}, {EF}, {GH}} 0

C7 {{DBCA}, {FE}, {HG}} 0

C8 {{DBCA}, {FE}, {GH}} 0

C9 {{BDCA}, {EF}, {HG}} 1

C10 {{BDCA}, {EF}, {GH}} 0

C11 {{BDCA}, {FE}, {HG}} 0

C12 {{BDCA}, {FE}, {GH}} 0

C13 {{DBCA}, {EF}, {HG}} 1

C14 {{DBCA}, {EF}, {GH}} 0

C15 {{DBCA}, {FE}, {HG}} 0

C16 {{DBCA}, {FE}, {GH}} 0

C17 {{BDAC}, {EF}, {HG}} 1

C18 {{BDAC}, {EF}, {GH}} 0

C19 {{BDAC}, {FE}, {HG}} 0

C20 {{BDAC}, {FE}, {GH}} 0

C21 {{BADC}, {EF}, {HG}} 1

C22 {{BADC}, {EF}, {GH}} 0

C23 {{BADC}, {FE}, {HG}} 0

C24 {{BADC}, {FE}, {GH}} 0
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The R matrix is given by

R =
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,

D = (112,0) (A.19)

20. W
(4)
3 (1, 3, 4).

This Cweb has 24 diagrams, one of which is displayed below. The table gives the cho-

sen order of the 24 shuffles of the gluon attachments, and the corresponding s factors.
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Diagrams Sequences s-factors

C1 {{DCBA}, {GFE}} 1

C2 {{DCBA}, {FGE}} 0

C3 {{DCBA}, {GEF}} 0

C4 {{DCBA}, {EGF}} 0

C5 {{DCBA}, {FEG}} 0

C6 {{DCBA}, {EFG}} 0

C7 {{DCAB}, {GFE}} 1

C8 {{DCAB}, {FGE}} 0

C9 {{DCAB}, {GEF}} 0

C10 {{DCAB}, {EGF}} 0

C11 {{DCAB}, {FEG}} 0

C12 {{DCAB}, {EFG}} 0

C13 {{DACB}, {GFE}} 1

C14 {{DACB}, {FGE}} 0

C15 {{DACB}, {GEF}} 0

C16 {{DACB}, {EGF}} 0

C17 {{DACB}, {FEG}} 0

C18 {{DACB}, {EFG}} 0

C19 {{ADCB}, {GFE}} 1

C20 {{ADCB}, {FGE}} 0

C21 {{ADCB}, {GEF}} 0

C22 {{ADCB}, {EGF}} 0

C23 {{ADCB}, {FEG}} 0

C24 {{ADCB}, {EFG}} 0
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The R matrix is given by

R =
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,

D = (113,0) (A.20)
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A.2 Cwebs connecting two Wilson lines

1. W
(1,0,1)
2 (2, 4).

This Cweb has eight diagrams, one of which is displayed below. The table gives the

chosen order of the eight shuffles of the gluon attachments, and the corresponding s

factors.

Diagrams Sequences s-factors

C1 {{BA}, {EDCG}} 0

C2 {{BA}, {EDGC}} 0

C3 {{BA}, {EGDC}} 0

C4 {{BA}, {GEDC}} 1

C5 {{AB}, {EDCG}} 1

C6 {{AB}, {EDGC}} 0

C7 {{AB}, {EGDC}} 0

C8 {{AB}, {GEDC}} 0

The R matrix is given by

R =




1 0 0 −1
2 −1

2 0 0 0

0 1 0 −1
2 −1

2 0 0 0

0 0 1 −1
2 −1

2 0 0 0

0 0 0 1
2 −1

2 0 0 0

0 0 0 −1
2

1
2 0 0 0

0 0 0 −1
2 −1

2 1 0 0

0 0 0 −1
2 −1

2 0 1 0

0 0 0 −1
2 −1

2 0 0 1




, D = (17, 0) . (A.21)

2. W
(1,0,1)
2 (3, 3).

This Cweb has nine diagrams, one of which is displayed below. The table gives the

chosen order of the nine shuffles of the gluon attachments, and the corresponding s

factors.
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Diagrams Sequences s-factors

C1 {{EBA}, {DCF }} 0

C2 {{EBA}, {DFC}} 0

C3 {{EBA}, {FDC}} 1

C4 {{BEA}, {DCF }} 0

C5 {{BEA}, {DFC}} 0

C6 {{BEA}, {FDC}} 0

C7 {{BAE}, {DCF }} 1

C8 {{BAE}, {DFC}} 0

C9 {{BAE}, {FDC}} 0

The R matrix is given by

R =




1 0 −1
2 0 0 0 −1

2 0 0

0 1 −1
2 0 0 0 −1

2 0 0

0 0 1
2 0 0 0 −1

2 0 0

0 0 −1
2 1 0 0 −1

2 0 0

0 0 −1
2 0 1 0 −1

2 0 0

0 0 −1
2 0 0 1 −1

2 0 0

0 0 −1
2 0 0 0 1

2 0 0

0 0 −1
2 0 0 0 −1

2 1 0

0 0 −1
2 0 0 0 −1

2 0 1




, D = (18, 0) . (A.22)

3. W
(0,2)
2 (2, 4).

This Cweb has six diagrams, one of which is displayed below. The table gives the

chosen order of the six shuffles of the gluon attachments, and the corresponding s

factors.

Diagrams Sequences s-factors

C1 {{BA}, {FEDC}} 1

C2 {{BA}, {FDEC}} 0

C3 {{BA}, {DFEC}} 0

C4 {{BA}, {FDCE}} 0

C5 {{BA}, {DFCE}} 0

C6 {{BA}, {DCFE}} 0
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The R matrix is given by

R =




0 0 0 0 0 0

−1 1 0 0 0 0

−1 0 1 0 0 0

−1 0 0 1 0 0

−1 0 0 0 1 0

−1 0 0 0 0 1




, D = (15, 0) . (A.23)

4. W
(0,2)
2 (3, 3).

This Cweb has nine diagrams, one of which is displayed below. The table gives the

chosen order of the nine shuffles of the gluon attachments, and the corresponding s

factors.

Diagrams Sequences s-factors

C1 {{CBA}, {FED}} 1

C2 {{CBA}, {FDE}} 0

C3 {{CBA}, {DFE}} 0

C4 {{BCA}, {FED}} 0

C5 {{BCA}, {FDE}} 0

C6 {{BCA}, {DFE}} 0

C7 {{BAC}, {FED}} 0

C8 {{BAC}, {FDE}} 0

C9 {{BAC}, {DFE}} 1

The R matrix is given by

R =




1
2 0 0 0 0 0 0 0 −1

2

−1
2 1 0 0 0 0 0 0 −1

2

−1
2 0 1 0 0 0 0 0 −1

2

−1
2 0 0 1 0 0 0 0 −1

2

−1
2 0 0 0 1 0 0 0 −1

2

−1
2 0 0 0 0 1 0 0 −1

2

−1
2 0 0 0 0 0 1 0 −1

2

−1
2 0 0 0 0 0 0 1 −1

2

−1
2 0 0 0 0 0 0 0 1

2




, D = (18, 0) . (A.24)
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5. W
(2,1)
2 (3, 4).

This Cweb has thirty six diagrams, one of which is displayed below. The table gives

the chosen order of the 36 shuffles of the gluon attachments, and the corresponding

s factors.

Diagrams Sequences s-factors

C1 {{EBA}, {FDCG}} 0

C2 {{EBA}, {DFCG}} 0

C3 {{EBA}, {DCFG}} 0

C4 {{EBA}, {FDGC}} 0

C5 {{EBA}, {DFGC}} 0

C6 {{EBA}, {FGDC}} 0

C7 {{EBA}, {GFDC}} 0

C8 {{EBA}, {DGFC}} 0

C9 {{EBA}, {GDFC}} 0

C10 {{EBA}, {DCGF }} 0

C11 {{EBA}, {DGCF }} 0

C12 {{EBA}, {GDCF }} 1

C13 {{BEA}, {FDCG}} 0

C14 {{BEA}, {DFCG}} 0

C15 {{BEA}, {DCFG}} 0

C16 {{BEA}, {FDGC}} 0

C17 {{BEA}, {DFGC}} 0

C18 {{BEA}, {FGDC}} 0

C19 {{BEA}, {GFDC}} 0

C20 {{BEA}, {DGFC}} 0

C21 {{BEA}, {GDFC}} 0

C22 {{BEA}, {DCGF }} 1

C23 {{BEA}, {DGCF }} 0

C24 {{BEA}, {GDCF }} 0

C25 {{EAB}, {FDCG}} 0

C26 {{EAB}, {DFCG}} 0

C27 {{EAB}, {DCFG}} 0

C28 {{EAB}, {FDGC}} 0

C29 {{EAB}, {DFGC}} 0

C30 {{EAB}, {FGDC}} 0

C31 {{EAB}, {GFDC}} 1

C32 {{EAB}, {DGFC}} 0

C33 {{EAB}, {GDFC}} 0

C34 {{EAB}, {DCGF }} 0

C35 {{EAB}, {DGCF }} 0

C36 {{EAB}, {GDCF }} 0
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The R matrix is given by

R =




1 0 0 0 0 0 − 1
2

0 0 − 1
2

0 2
3

0 0 − 1
2

0 0 0 0 0 0 2
3

0 − 1
2

0 0 0 0 0 − 1
2

2
3

0 0 0 0 − 1
2

0 1 0 0 0 0 0 0 − 1
2

− 1
2

0 2
3

0 0 − 1
2

0 0 0 0 0 0 2
3

− 1
2

0 0 0 0 0 0 − 1
2

2
3

0 0 0 0 − 1
2

0 0 1 0 0 0 0 0 0 − 1
2

0 1
6

0 0 − 1
2

0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 − 1
2

2
3

0 0 0 0 − 1
2

0 0 0 1 0 0 − 1
2

0 0 0 − 1
2

2
3

0 0 − 1
2

0 0 0 0 0 0 2
3

0 − 1
2

0 0 0 0 0 − 1
2

2
3

0 − 1
2

0 0 0

0 0 0 0 1 0 0 0 − 1
2

0 − 1
2

2
3

0 0 − 1
2

0 0 0 0 0 0 2
3

− 1
2

0 0 0 0 0 0 − 1
2

2
3

0 − 1
2

0 0 0

0 0 0 0 0 1 − 1
2

0 0 0 0 1
6

0 0 − 1
2

0 0 0 0 0 0 2
3

0 − 1
2

0 0 0 0 0 − 1
2

1
6

0 0 0 0 0

0 0 0 0 0 0 1
2

0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 1
6

0 − 1
2

0 0 0 0 0 0 − 1
3

0 0 0 0 0

0 0 0 0 0 0 0 1 − 1
2

0 − 1
2

2
3

0 0 0 0 0 0 0 0 0 1
6

− 1
2

0 0 0 0 0 0 0 1
6

0 − 1
2

0 0 0

0 0 0 0 0 0 0 0 1
2

0 0 1
6

0 0 0 0 0 0 0 0 0 1
6

− 1
2

0 0 0 0 0 0 0 − 1
3

0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
2

0 1
6

0 0 0 0 0 0 0 0 0 − 1
3

0 0 0 0 0 0 0 0 1
6

0 0 0 0 − 1
2

0 0 0 0 0 0 0 0 0 0 1
2

1
6

0 0 0 0 0 0 0 0 0 − 1
3

0 0 0 0 0 0 0 0 1
6

0 − 1
2

0 0 0

0 0 0 0 0 0 0 0 0 0 0 2
3

0 0 0 0 0 0 0 0 0 − 1
3

0 0 0 0 0 0 0 0 − 1
3

0 0 0 0 0

0 0 0 0 0 0 − 1
2

0 0 0 0 1
6

1 0 − 1
2

0 0 0 0 0 0 1
6

0 − 1
2

0 0 0 0 0 − 1
2

2
3

0 0 0 0 0

0 0 0 0 0 0 0 0 − 1
2

0 0 1
6

0 1 − 1
2

0 0 0 0 0 0 1
6

− 1
2

0 0 0 0 0 0 − 1
2

2
3

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 − 1
3

0 0 1
2

0 0 0 0 0 0 − 1
3

0 0 0 0 0 0 0 − 1
2

2
3

0 0 0 0 0

0 0 0 0 0 0 − 1
2

0 − 1
2

0 0 2
3

0 0 − 1
2

1 0 0 0 0 0 2
3

− 1
2

− 1
2

0 0 0 0 0 − 1
2

2
3

0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 2
3

0 0 − 1
2

0 1 0 0 0 0 2
3

−1 0 0 0 0 0 0 − 1
2

2
3

0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 2
3

0 0 − 1
2

0 0 1 0 0 0 2
3

0 −1 0 0 0 0 0 − 1
2

2
3

0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 2
3

0 0 0 0 0 0 1 0 0 1
6

0 −1 0 0 0 0 0 0 1
6

0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 2
3

0 0 0 0 0 0 0 1 0 1
6

−1 0 0 0 0 0 0 0 1
6

0 0 0 0 0

0 0 0 0 0 0 − 1
2

0 − 1
2

0 0 2
3

0 0 0 0 0 0 0 0 1 1
6

− 1
2

− 1
2

0 0 0 0 0 0 1
6

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 − 1
3

0 0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 1
6

0 0 0 0 0

0 0 0 0 0 0 0 0 − 1
2

0 0 1
6

0 0 0 0 0 0 0 0 0 − 1
3

1
2

0 0 0 0 0 0 0 1
6

0 0 0 0 0

0 0 0 0 0 0 − 1
2

0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 − 1
3

0 1
2

0 0 0 0 0 0 1
6

0 0 0 0 0

0 0 0 0 0 0 0 0 0 − 1
2

0 1
6

0 0 − 1
2

0 0 0 0 0 0 2
3

0 0 1 0 0 0 0 − 1
2

1
6

0 0 0 0 − 1
2

0 0 0 0 0 0 0 0 0 − 1
2

− 1
2

2
3

0 0 − 1
2

0 0 0 0 0 0 2
3

0 0 0 1 0 0 0 − 1
2

2
3

0 − 1
2

0 0 − 1
2

0 0 0 0 0 0 0 0 0 −1 0 2
3

0 0 − 1
2

0 0 0 0 0 0 2
3

0 0 0 0 1 0 0 − 1
2

2
3

0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 − 1
2

1
6

0 0 − 1
2

0 0 0 0 0 0 2
3

0 0 0 0 0 1 0 − 1
2

1
6

0 − 1
2

0 0 0

0 0 0 0 0 0 0 0 0 0 −1 2
3

0 0 − 1
2

0 0 0 0 0 0 2
3

0 0 0 0 0 0 1 − 1
2

2
3

0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 − 1
3

0 0 − 1
2

0 0 0 0 0 0 2
3

0 0 0 0 0 0 0 1
2

− 1
3

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 − 1
3

0 0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 1
6

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 2
3

0 0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 1
6

1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 − 1
2

1
6

0 0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 − 1
3

0 1
2

0 0 0

0 0 0 0 0 0 0 0 0 −1 0 2
3

0 0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 1
6

0 0 1 0 −1

0 0 0 0 0 0 0 0 0 − 1
2

− 1
2

2
3

0 0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 1
6

0 − 1
2

0 1 − 1
2

0 0 0 0 0 0 0 0 0 − 1
2

0 1
6

0 0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 − 1
3

0 0 0 0 1
2




,

D = (129,0) (A.25)

6. W
(4)
2 (4, 4).

This Cweb has 24 diagrams, one of which is displayed below. The table gives the

chosen order of the 24 shuffles of the gluon attachments, and the corresponding s

factors.
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Diagrams Sequences s-factors

C1 {{EFGH}, {DCBA}} 1

C2 {{EFGH}, {CDBA}} 0

C3 {{EFGH}, {DBCA}} 0

C4 {{EFGH}, {BDCA}} 0

C5 {{EFGH}, {CBDA}} 0

C6 {{EFGH}, {BCDA}} 0

C7 {{EFGH}, {DCAB}} 0

C8 {{EFGH}, {CDAB}} 0

C9 {{EFGH}, {DACB}} 0

C10 {{EFGH}, {ADCB}} 0

C11 {{EFGH}, {CADB}} 0

C12 {{EFGH}, {ACDB}} 0

C13 {{EFGH}, {DBAC}} 0

C14 {{EFGH}, {BDAC}} 0

C15 {{EFGH}, {DABC}} 0

C16 {{EFGH}, {ADBC}} 0

C17 {{EFGH}, {BADC}} 0

C18 {{EFGH}, {ABDC}} 0

C19 {{EFGH}, {CBAD}} 0

C20 {{EFGH}, {BCAD}} 0

C21 {{EFGH}, {CABD}} 0

C22 {{EFGH}, {ACBD}} 0

C23 {{EFGH}, {BACD}} 0

C24 {{EFGH}, {ABCD}} 0
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The R matrix is given by

R =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
6 −1

3 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1
3

2
3 0 0 0 −1

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −2
3

1
3

1
2 0 0 1

3 0 −1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −2
3

1
3 0 1

2 0 1
3 0 0 0 0 0 −1

2 0 0 0 0 0 0 0 0 0 0 0

0 −1 1
2 0 0 1

2
1
2 0 0 0 0 0 0 0 −1

2 0 0 0 0 0 0 0 0 0

0 1
6 −1

3 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
3 −2

3 0 0 0 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
3

1
3 −1

2 0 0 −2
3 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1
2 2 −3

2 0 0 1
2 0 −3

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 −1
2 −1

2 0 1 −1 −1
2 0 1 0 −1

2 0 0 0 0 0 0 0 0 0 0 0

−2 7
6

13
6 −1 0 −1

2
5
3 −1 −1 0 0 1 0 0 −1

2 0 0 0 0 0 0 0 0 0

0 1
3

1
3 0 −1

2 0 −2
3 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 −1
2 −1

2 0 1 −1 −1
2 0 0 0 −1

2 1 0 0 0 0 0 0 0 0 0 0

0 1
2

1
2 0 0 −1

2 −1 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0

−2 5
3

13
6 −1 0 −1

2
7
6 −1 −1 0 0 0 0 0 −1

2 1 0 0 0 0 0 0 0 0

−3 8
3

8
3 −1 −1 0 8

3 −2 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0

−4 17
6

10
3 −1 0 −1 17

6 −2 −1 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0

−1 1
2 2 0 −3

2 0 1
2 0 0 0 0 0 −3

2 0 0 0 0 0 1 0 0 0 0 0

−2 7
6

13
6 0 −1 −1

2
5
3 −1 0 0 0 0 −1 0 −1

2 0 0 0 0 1 0 0 0 0

−2 5
3

13
6 0 −1 −1

2
7
6 −1 0 0 0 0 −1 0 −1

2 0 0 0 0 0 1 0 0 0

−4 17
6

10
3 −1

2 −1
2 −1 17

6 −2 −1
2 0 0 0 −1

2 0 −1 0 0 0 0 0 0 1 0 0

−4 17
6

10
3 0 −1 −1 17

6 −2 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 1 0

−6 4 4 0 0 −2 4 −3 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 1




,

D = (117, 0) (A.26)

This completes our listing of all Cwebs with a perturbative expansion starting at O(g8),

and connecting two and three Wilson lines.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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