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Abstract: In recent years, noncontact measurements of vital signs using cameras received a great

amount of interest. However, some questions are unanswered: (i) Which vital sign is monitored using

what type of camera? (ii) What is the performance and which factors affect it? (iii) Which health issues

are addressed by camera-based techniques? Following the preferred reporting items for systematic

reviews and meta-analyses (PRISMA) statement, we conduct a systematic review of continuous

camera-based vital sign monitoring using Scopus, PubMed, and the Association for Computing

Machinery (ACM) databases. We consider articles that were published between January 2018 and

April 2021 in the English language. We include five vital signs: heart rate (HR), respiratory rate (RR),

blood pressure (BP), body skin temperature (BST), and oxygen saturation (SpO2). In total, we retrieve

905 articles and screened them regarding title, abstract, and full text. One hundred and four articles

remained: 60, 20, 6, 2, and 1 of the articles focus on HR, RR, BP, BST, and SpO2, respectively, and 15 on

multiple vital signs. HR and RR can be measured using red, green, and blue (RGB) and near-infrared

(NIR) as well as far-infrared (FIR) cameras. So far, BP and SpO2 are monitored with RGB cameras

only, whereas BST is derived from FIR cameras only. Under ideal conditions, the root mean squared

error is around 2.60 bpm, 2.22 cpm, 6.91 mm Hg, 4.88 mm Hg, and 0.86 ◦C for HR, RR, systolic BP,

diastolic BP, and BST, respectively. The estimated error for SpO2 is less than 1%, but it increases

with movements of the subject and the camera-subject distance. Camera-based remote monitoring

mainly explores intensive care, post-anaesthesia care, and sleep monitoring, but also explores special

diseases such as heart failure. The monitored targets are newborn and pediatric patients, geriatric

patients, athletes (e.g., exercising, cycling), and vehicle drivers. Camera-based techniques monitor

HR, RR, and BST in static conditions within acceptable ranges for certain applications. The research

gaps are large and heterogeneous populations, real-time scenarios, moving subjects, and accuracy of

BP and SpO2 monitoring.

Keywords: camera; vital sign; heart rate; respiratory rate; body temperature; oxygen saturation;

blood pressure; noncontact; contactless; continuous monitoring; remote health care

1. Introduction

Physiological processes of the human body are associated with electrical, chemical,
kinematic, and acoustic changes [1]. Although their measurement may not provide direct
physiological evaluation or diagnosis, they yield valuable information regarding human
activities and physiology [2]. This information is particularly useful in monitoring the
cardiovascular system [3]. Several authors such as Lu et al., have comprehensively investi-
gated electrophysiological signals such as electrocardiography (ECG) or optical signals such
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as photoplethysmography (PPG) to record vital signs [4]. Commonly, the four primary vital
signs are heart rate (HR), respiratory rate (RR), blood pressure (BP), and body temperature
(BT), and oxygen saturation (SpO2) is usually referred to as the fifth vital sign [5,6].

Vital signs offer information on the cardiovascular and respiratory systems [7]. The
HR measures the number of heart contractions per minute and is usually given in beats
per minute (bpm). The respiratory cycle includes inhalation and exhalation, and the RR is
typically measured in cycles per minute (cpm) [8]. The maximum pressure exerted in the
arteries during cardiac contraction is known as systolic BP, whereas the minimum pressure
during cardiac relaxation is described as diastolic BP [9]. BT is a measurement of the body’s
capacity to produce and release heat and is an early indicator of illness [10]. SpO2 measures
the relative concentration of oxygenated hemoglobin with respect to the total amount of
hemoglobin, and it is an essential physiological parameter to assess the oxygen supply
to the human body [11,12]. These vital signs are monitored routinely in clinical practice
using contact-based technology such as ECG recorders, respiratory belts, finger pulse
oximeters, sphygmomanometers, and thermometers [5,13,14]. However, contact-based
measures are obtrusive and may result in skin irritations. For instance, wet ECG electrodes
need replacement after 48 h. Therefore, noncontact and unobtrusive vital sign monitoring
is an emerging field of research [14]. For example, capacitive coupled ECG can be used
to measure the electrical activity of the heart in an indirect way. It is recorded without
physical contact to the skin through clothing and can be integrated into chairs, beds, or
driver seats [15]. However, capacitive ECG is strongly affected by movement artifacts,
coupling impedance fluctuation, and electromagnetic interference [16]. On the other hand,
camera-based techniques are the focus of current research [13,17].

Image recording systems are inexpensive, broadly available, and easily combined with
the increasing processing power of microcomputer systems. Utilizing a camera, Wu et al.,
firstly obtained dermal perfusion changes from the skin surface [18]. The underlying idea
of image recording is similar to that of detecting the amplitude of finger pulse. Due to
the contraction and relaxation phases of the human heart, the blood travels throughout
the vascular system. It can be detected in every part of the body to different degrees.
These pulsatile blood flow causes subtle changes in the skin color that is detected by
image recording devices [18–20]. It is also referred as the color-based approach. Another
approach is to measure the cyclic motions of the body caused by cardiorespiratory activity.
It is known as the motion-based approach or ballistocardiography (BCG) [21,22]. The use
of image or video data might offer noninvasive and unobtrusive measurement of vital
signs [7,13].

Camera-based monitoring is applicable in clinical and nonclinical settings. In clinical
settings, target groups include geriatric patients [23], newborns [24–28], patients in intensive
care units (ICU) [29], patients undergoing magnetic resonance imaging [30], or patients
before, during, and after surgery [31]. Noncontact measurement reduces the risk of infection
and increases the patient comfort [23] and does not disturb the patient, which is important
not only for detecting sleep disorders (e.g., apnea) but also for hypertension, heart failure,
and arrhythmia [32–34]. Nonclinical applications are in-home [33] or in-vehicle monitoring (e.g.,
driver) [35,36], activity monitoring (e.g., fitness) [37], biometric authentication [38], and
stress detection [39,40]. Such applications are integrated conveniently, affordably, and safely
into daily life. In addition to physiological monitoring, psychological conditions can also be
evaluated, for example in the car, to prevent accidents [35,36,41]. In addition, camera-based
vital sign monitoring with mobile phones supports telehealth in rural regions, where clinics
and specialized medical equipment are scarce [42,43].

The majority of work focus imaging PPG (iPPG, PPGi, PPGI), which is also
named camera-based PPG, remote PPG (rPPG), distance PPG, noncontact PPG, or video
PPG [15,19,23,44–47]. Classically, rPPG also stands for reflective PPG [15,48]. In the fol-
lowing, we therefore use iPPG for all image-based PPG measures. The HR and the HR
variability (HRV) as well as the pulse rate (PR) and its variability (PRV) derive from ECG-
based as well as PPG-based measures, respectively. Several authors such as Bánhalmi et al.,



Sensors 2022, 22, 4097 3 of 37

confirmed the good correlations between HRV and PRV [49]. Therefore, we use the term
HR and HRV to address both of the techniques.

iPPG measures subtle skin color variations or cyclic movements of the body to estimate
HR, RR, BP, BST, or SpO2. However, the field of camera-based vital sign measurement
comprises not only red–green–blue (RGB, wavelength: 350–740 nm) receptors [7,50] but
also infrared cameras, usually in near-infrared (NIR, 740–1000 nm) [51–53], and far-infrared
(FIR, >1 µm) [15,25,29,34]. They measure the absorbance, reflectance, or transmission of
light [43]. For instance, RGB cameras capture the reemitted light after passing through
various skin tissues, while hemoglobin and melanin change the optical skin properties.
The captured light may reflect the cardiac-related parameters that can be derived from
variations of the intensity pixels in images. In addition, the respiratory-based component is
based on the detection of periodic chest movements caused by the lungs volume changes
while breathing. This method is reliable, safe, and affordable as it does not require special
equipment, and it is used for long-term monitoring [21,54]. However, it is inapplicable in
dark or low-light conditions [55].

FIR is also known as thermal imaging or infrared thermography [15,56,57]. It detects
the temperature fluctuations around the nostril area as the temperature during inhalation
and exhalation is similar to that of the external environment and the human body, respec-
tively [15,32]. The cyclical ejection of blood from the heart to the head, through the carotid
arteries and thoracic aorta, which results in periodic vertical motions of the head, may be
used to monitor HR through utilization of FIR [57]. In addition, body skin temperature
(BST) is a noncontact and noninvasive method of measuring the temperature continuously
by the detection of infrared radiation emitted from the body. It can be monitored using
FIR. FIR measures this infrared radiation, which results in estimating BST [58]. Therefore,
it is suitable during the night in applications such as sleep monitoring, neonates, or ICU
monitoring [25,59]. In addition, it has an advantage under varying illumination conditions
and can help with privacy concerns [32]. However, most of the FIR cameras are high-end
products and expensive [27], whereas consumer-accessible FIR cameras are challenged by
low pixel resolution and sampling rates [60]. The NIR camera overcomes such issues.

NIR cameras work similar to RGB cameras, but they can also operate at night and in
dark conditions if infrared (IR) lamps illuminate the scene [53,61]. Operation without visible
illumination is advantageous for applications such as driver monitoring [36] and sleep
studies [52,53,62]. The drawback of NIR cameras is the lower absorption by hemoglobin and
a lower signal-to-noise ratio (SNR) [36,41]. However, camera-based vital sign monitoring
faces many challenges associated with the hardware, motion artifacts, variability of natural
illumination, skin variance, and the camera-subject distance. These factors negatively affect
the accuracy of vital sign measurements [59].

In recent years, several iPPG review articles focus on HR measurement [50,63–65].
Zaunseder et al., focused on HR and HRV, as well as other derivable parameters including
pulse transit time (PTT) and pulse wave velocity to remotely examine the peripheral
vascular system [66]. Addison et al., explored RR measurements using depth cameras [67].
Maurya et al., analyzed noncontact RR monitoring of newborn using RGB-, IR-, and
radar-based modalities [28]. Rehouma et al., comprehensively surveyed RR measurements
using noncontact sensors, including cameras [68]. Khanam et al., reviewed motion- and
color-based methods and focus on motion artefacts, illumination and distance variations,
different sensors and acquisition settings, and demographic parameters [69]. Recently,
Steinman et al., highlighted BP measurements utilizing smartphone technologies and video
cameras [70]. Haford et al., presented an interesting review of demographic parameters,
camera parameters, study design, and obtained accuracy on the reported vital signs such
as HR, RR, SpO2, and BP [71]. Antink et al., provided an overview of camera-based
measurements of vital signs using RGB and IR cameras [13]. However, existing reviews
disregard how the vital signs are extracted from the camera frames. Most review articles
focused on either HR or RR measurement using RGB cameras. Only a few considered BP,
BST, and SpO2.
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To fill this gap, we present a complete review of recent advances in camera-based
techniques for all five vital signs. We further aim to identify challenges of existing works,
get insight in how to address these challenges, and identify future research prospects. In
particular, we want to answer the following research questions:

1. Which vital sign is monitored using what type of camera?
2. What is the performance and which factors affect it?
3. Which health issues are addressed by camera-based techniques?

2. Methods

We performed the literature review according to the preferred reporting items for
systematic reviews and meta-analyses (PRISMA) workflow [72].

2.1. Selecting Databases

In previous work, we have identified PubMed, Scopus, and the Association for Comput-
ing Machinery (ACM) digital libraries as most relevant [73]. We searched these databases for
articles published in the English language between January 2018 and April 2021.

2.2. Composing the Search Query

Our main purpose is to retrieve the relevant literature on measuring the vital signs
continuously, without contact, and remotely using different camera modalities. We devel-
oped the search string using relevant terms (Appendices A.1–A.3 for PubMed, Scopus, and
ACM, respectively). Relevant terms address the

• Sensor technology: camera, video, image, RGB, infrared, thermal, thermography;
• Sensor setting: remote, noncontact, contactless, contact-free, touchless, vision-based;
• Biosignal: biosignal, biomedical signal, physiological signal, cardiorespiratory signal,

heart rate, heartbeat, pulse rate, respiratory rate, breathing rate, blood pressure, body
temperature, oxygen saturation; and the

• Modality: photoplethysmogra* (to include photoplethysmogram, photoplethysmo-
graph, and photoplethysmography).

2.3. Inclusion and Exclusion Criteria

We include and exclude articles according to:

• Inclusion criteria

a. English language
b. Human research
c. Journal, Conference

• Exclusion criteria

a. Review, systematic review, survey

From the retrieved articles, we first eliminated duplicates. The selection process
consists of three stages: title, abstract, and full-text screening. In title screening stage, we
removed work focusing on aspects not associated with vital sign measurement (e.g., face
detection without vital signs monitoring and facial expression analysis) and work using
other sensors (e.g., spectroscopy, radars). Subsequently, we performed the same selection
process to the abstracts and to the full text. After literature analysis, we identified population
parameters (e.g., age, number of subjects, subjects’ skin tone), camera parameters (e.g.,
camera, frame rate, resolution), applied algorithms, performance metrics, and predicted
vital signs.

3. Results

Figure 1 depicts the PRISMA workflow and the results of the literature screening.
A total of 1031 articles were found; from those, 124 duplicates were removed. The titles and
abstract of the remaining 905 articles were screened and 781 were considered irrelevant.
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Subsequently, the full texts were examined with 19 being found to be irrelevant for this
review and one full-text was inaccessible. To that end, we include 104 articles, all of which
met the following eligibility criteria:

• Optical image (RGB, NIR, or FIR)
• Extraction of vital sign (HR, RR, BP, BST, or SpO2)
• Comparison to ground truth

•
•
•

 

Figure 1. PRISMA diagram of literature screening.

Each year delivered 20 to 35 records. Researchers mainly focused on HR and RR,
followed by BP, BST, and SpO2 (Table 1). The following subsections presents the results of
the literature review. They are organized in the following order: data acquisition, image
processing, signal processing, and performance metrics (Figure 2). At first, video or image
data from smartphones, webcams, or digital cameras is acquired with synchronously
obtained ground truth (Section 3.1). Existing datasets are also used (Section 3.2). As shown
in Section 3.3, image processing techniques are then employed to detect the region of
interest (ROI) and the raw signal is extracted from the ROI. In Section 3.4, we discuss
signal processing techniques, mainly deep learning (DL) approaches, to remove motion
and illumination artifacts. After optional data fusion (Section 3.5), the vital sign is extracted
from the signal (Section 3.6) and compared to the ground truth using performance metrics
(Section 3.7).
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Table 1. Number n of articles from the considered years: January 2018 to April 2021.

Article Year HR RR BP BST SpO2 Multiple Total

2018 25 2 1 1 0 7 36
2019 14 9 3 0 0 3 29
2020 16 5 2 1 0 3 27
2021 5 4 0 0 1 2 12

Total 60 20 6 2 1 15 104

  

–

Figure 2. General flow diagram of vital sign measurements from video/image data.

3.1. Data Acquisition

The data used in the analyzed articles was acquired in indoor (e.g., laboratory, hospital,
home), or outdoor environments (e.g., in-car). Twenty articles used videos from existing
datasets [52,59,74–87]. In the following, we describe the main findings regarding study
design, hardware setup, and ground truth (Figure 3) that is presented in Table S1.

3.1.1. Study Design

The study design covers aspects from study population, namely number of subjects, age,
gender, skin color, and the various types of settings. Researchers mainly recruited volunteers.
Frequent populations were healthy [12,37,39,46,51,60,88–97], ICU patients [29,98–100], neonates
or infants [24,25,60,98,99,101,102]. The majority of the articles obtained the data on their
own (Figure 4). Number of subjects was mostly between 10 and 30.

Regarding the age, study subjects were between 18 and 85 years old [53,60,90,103–107],
while newborns aged from a few days up to 40 weeks [24–26,98,99,102,108,109] with dif-
ferent gender. Thirty-two articles reported their skin color. The Fitzpatrick scale (I to VI) was
most commonly used to determine the skin color of subjects (8 articles) [43,60,92,101,110,111].
Visually resemble colors like white, pale, yellow, brown, or black skin reported in
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six papers [20,87,95,112,113]. In 18 papers, the subjects’ country of origin or geographical
locations were indirectly used as skin color indicators [24,39,51,59,75,85,90,98,99,104,109,114].

 

–
–

–
–

18 papers, the subjects’ country of origin 

Figure 3. Data acquisition according to study design, hardware, and ground truth.

–
–

–
–

18 papers, the subjects’ country of origin 

 

Figure 4. Distribution of subject information including obtained data, number of subjects, participant

type and available (A) and not available (NA) info of skin tone.

3.1.2. Hardware Setup

In the reviewed articles, RGB, NIR, FIR, or a combination of RGB with NIR or FIR
camera were used (Figure 5). RGB cameras such as smartphone cameras [43,49,104,115],
webcams [20,95,116,117], or digital cameras [56,78,102,108] were utilized often, due to their
low costs and easy availability. Further, most researchers use single RGB camera, followed
by combination of cameras.

Several parameters affect the image quality of cameras, such as spectrum range, sensor
hardware, frame rate, frame resolution, or camera–subject distance. Frame rate ranges
from 1 frame per second (fps) to 500 fps. For fast moving subjects, frame rates of 100 fps to
500 fps were employed [45,49,118,119], however 10–30 fps was used often. Rapczynski et al.,
reported that higher frame rates do not contribute more information but increase demands
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for storage space, transmission, and computation instead [59,80]. Applied resolutions vary
greatly, ranging from 2080 px, down to 47 px. Although different ranges of resolutions are
observed in articles, a resolution of 320 pixels (px) × 240 px is sufficient to recover a signal
with an adequate SNR [120]. However, the 480 px to 720 px range widely used.

  

–

–

T based on the author’s 

Figure 5. Distribution of hardware parameters, namely camera type, frame rate, resolution (r), and

camera-subject distance.

In addition, environmental (e.g., illumination, temperature) and behavioral (e.g., body
movement) parameters impact the image quality [117]. For charge coupled devices (CCD)
cameras, illumination is one of the key parameters that is provided by sunlight through
windows [59,95], ambient illumination from ceiling fluorescent lights [46,87,101,102,107,110,121],
phone flash lights [12,43,49], uniform white light [37,122,123] or combination of ambient
light and sunlight through windows [81,86,109].

Figure 6 shows the conceptual semantic relationship between camera images and vital
signs. The majority of articles was estimated the HR by utilizing RGB images. Similar to HR,
RR measurements were calculated using both RGB, NIR and FIR images. Measurements of
BP and SpO2 were extracted from RGB images. FIR images were used to calculate BST only.
None of the research used RGB images to estimate BST based on the author’s knowledge.

 

devices to record the vital sign’s ground truth 

–

Figure 6. Chord diagram of conceptual semantics between camera and vital sign.
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3.1.3. Ground Truth

In addition to the camera-based modalities, all research employed typically assess-
able or commonly available measurement devices to record the vital sign’s ground truth
(Figure 7). Fifty-five articles used manual palpation (e.g., radial artery), ECG, or pulse
oximeters to record the HR [39,49,86,95,102,107,110,112]. Sixteen articles utilized manually
counting (e.g., visual inspection), respiratory belt, pressure sensors, or polysomnography
to calculate the RR [32,51,60,89,94,105,106,124,125]. Six articles measured BP by utiliz-
ing manual sphygmomanometers or a blood pressure cuff [37,113,119,123,126]. Two and
one articles used clinical thermometers and pulse oximeter that delivers the reference for BT
and SpO2, respectively [61,127]. Nine articles utilized patient monitor, or wrist-based wear-
able devices to track vital signs (e.g., Philips patient monitor) [20,25,93,99,102,108,128–130] and
fifteen articles delivered multiple vital signs measurements [43,51,53,57,94,106,122,131,132].

devices to record the vital sign’s ground truth 

–

 

Figure 7. Distribution of ground truth.

3.2. Existing Datasets

Publicly available datasets (Table 2) have been recorded while the subjects are watch-
ing video stimuli [133], watching music videos [134], playing a stressful game [135], moving
their face (e.g., speaking, slow and fast rotation) [136], using various illuminations [137,138] and
during driving [41]. Different cameras captured the ROI in the VIPL_HR [137], TokyoTech
Remote PPG [118] and MERL-Rice near infrared pulse dataset (MR-NIRP) [41]. All experi-
ments were conducted in an indoor setting except MR-NIRP. The frame rate varies between
20 fps and 60 fps. However, the majority of the databases captures video with RGB cameras
at a frame rate of 30 fps. Along with camera-based modalities, typical clinical parameters
such as HR, RR, BT, and SpO2 were obtained. All databases are available upon the approval
of the end user license agreement except publicly accessible MR-NIRP database.

3.3. Image Processing

Once the video data is available, it is fed into a typical pipeline for image-based vital
sign measurements (Figure 2). Usually, image processing contains ROI detection, tracking,
enhancement, color decomposition, and raw signal extraction.

3.3.1. ROI Detection

Depending on the parameter of interest, the ROIs differ. For instance, the ROI for HR
measurements is the location of the facial artery (e.g., cheeks) [46,59,79,151], while RR often
is extracted from the nasal or torso region [29,31,91,128,152]. The orbital region and the
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full frame are the preferred ROIs to calculate the BST [61,100,127,132]. Forehead, forearm,
palm, and cheeks are included to measure BP [37,113,119,126].

Table 2. Existing databases.

Database
No. of

Subjects
Camera

Type
Camera Detail

Frame Rate
(fps)

Resolution
(px × px)

Ground Truth

MAHNOB
-HCI

[133,139]
27 RGB

Allied Vision Stingray
F-046C; F-046B

60 780 × 580 ECG

DEAP
[134,140]

22 RGB Sony DCR-HC27E 50 720 × 576
PPG, Respiration,

EEG, EOG,
EMG, GSR, BT

FAVIP
[83,141]

15 RGB
Samsung galaxy S3 and

iPhone 3GS
30 1280 × 720 Pulse oximeter

UBFC-RPPG
[135,142,143]

42 RGB Logitech C920 HD pro 30 640 × 480 Pulse oximeter

PURE [136,144] 10 RGB evo274CVGE 30 640 × 480
Finger pulse

oximeter

Pulse from face
[78,145]

13 RGB Nikon D5300 camera 50 1280 × 720
Two Mio Alpha

II wrist heart
rate monitors

VIPL_HR
[137,146]

107

RGB Logitech C310 25 960 × 720

CONTEC CMS60C
blood volume
pulse recorder

NIR
Realsense F200

30 640 × 480

RGB 30 1920 × 1080

RGB HUAWEI P9 smart phone 30 1920 × 1080

COHFACE
[138,147]

40 RGB Logitech HD C525 20 640 × 480
Blood volume
pulse sensor,

respiratory belt

MMSE-HR
[80,148]

40 RGB, IR
Di3D dynamic imaging

system, FLIR A655sc

25 1040 × 1392 Biopac MP150
system—BP, HR50 640 × 480

TokyoTech
Remote PPG

[118,149]
9 RGB, NIR

Prototype RGB-NIR
camera

300 640 × 480 Contact PPG sensor

MR-NIRP
[41,150]

18 RGB, NIR
FLIR Grasshopper3, Point

Grey Grasshopper
30 640 × 640

Finger pulse
oximeter

Figure 8 depicts the workflow of the HR vital signs measurement from different camera
images. These articles considered the face [83,85,87], forehead [20,43,46,102], cheeks [75,79,132,153],
nose [40,94,109], chin [40], and palm [37]. Furthermore, four articles partitioned the entire
frame or face into sub-ROIs and select the most reliable sub-ROI [27,77,91,119]. Having
more capillaries and being unaffected by facial expression, the forehead and the cheeks are
most commonly extracted as ROI [38,95,110,130,151,154].

Different algorithms identify the ROI either manually [29,57,101,102,105,111,125,128,152]
or automatically, where the Viola–Jones algorithm is used most frequently (Table 3). In
addition to the listed articles, four articles employ the discriminative response map fitting
algorithm to locate the face landmark points [77,87,107,153]. Addison et al., detected a seed
point on the forehead and the skin around it and performed a flood fill for each frame that
recursively aggregates all adjacent skin pixels within the preset tolerances [110]. Recently,
neural-network-based ROI detection has gained increased attention and yielded higher
accuracy compared to conventional approaches [78,155].
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–

 

– –

Figure 8. Comprehensive work flow from various camera images to HR vital sign (Note: FF: full frame,

VJ: Viola Jones algorithm, HoG: Histogram of oriented gradients; CNN: convolutional neural network;

ManualD: manual ROI detection, NoD: no ROI detection, OtherD: Other ROI detection, ManualT:

manual ROI tracking, KLT: Kanade–Lucas–Tomasi; KCF: kernel correlation filter; featT: feature tracking,

OtherT: other ROI tracking, NoT: no ROI tracking, BSS: blind source separation algorithms, otherSP:

other signal processing, ML: Machine learning FD: frequency domain, TD: time domain).

3.3.2. ROI Tracking

ROI extraction can be done by detecting the ROI in all frames or by identifying ROI in
the first frame and tracking over all frames [20]. Sixteen research teams used the Kanade–
Lucas–Tomasi algorithm [29,31,36,59,60,76,85,89,107,122]. It is also effectively tracks the
ROI in NIR images [156]. Alternate tracking using kernel correlation filters show false
detections in out of sight targets [75,109,157,158]. Liu et al., employed the compressive
tracking algorithm to detect multiple subjects [114]. Hochhausen et al., and Pavlidis et al.,
utilized the particle filter-based object tracking algorithm in thermal images, but this
method requires a multicore computer system [132,152,159].

3.3.3. Image Enhancement

Enhancement of low-resolution images improves the resulting vital signs. For instance,
subtle color changes in the ROI are difficult to measure reliably. The temporal magnification
approach relies basically on two main types: Lagrange and Euler [98]. The Lagrange
technique tracks the mobility of each pixel, whereas the Eulerian approach splits the image
into grid elements and tracks the movement of pixels [98,162]. So far, eight research teams
utilized Eulerian video magnification to magnify the subtle movements [24,125]. Moya-
Albor et al., applied the Hermite transform-based Eulerian video magnification technique
with improved accuracy [97]. Furthermore, Kwasniewska et al., and Yu et al., introduced
the super resolution-based deep neural network to improve the performance of vital sign



Sensors 2022, 22, 4097 12 of 37

estimation of hallucinated thermal image [125] and the spatiotemporal video enhancement
network, respectively [163].

Table 3. Automatic detection of ROI by utilizing various classical and DL methods.

Algorithms Description Advantage Disadvantage

Viola–Jones
[18,75,81,83,87,93,106,115,129,153]

It utilizes Haar-like
features and Adaboost
algorithm to construct
a cascade classifier.

It works well on full,
frontal, and well-lit facts.

It suffers from faces in
a crowd, face rotation,
inclined or angled faces,
expression variations,
and low image resolution.

Histogram of oriented Gradients
[86,151,160]

It constructs the feature by
calculating the gradient
direction histogram on the
local area of the image.

Fast running speed
and identifies 68 facial
landmark points.

It may be influenced by
light intensity and detection
and inaccurate location of
feature points on profile.

Multitask cascaded
convolutional neural network [154]

It is a convolutional-neural-
network (CNN)-based
framework, which consists
of three stages for joint face
detection and alignment.

Accurate face detection,
less affected by light
intensity and direction.

It may provide sophisticated
models and calculation, which
may result in a slow running
speed; only five feature
points can be tracked.

Single shot multibox detector
[78]

It is a fast convolutional
neural network to detect
faces using a single
neural network.

Fast processing speed
and multiscale feature
map is adopted.

The robustness of the
network to small object
detection may not too high.

You look only once
[100,161]

It is one stage detector
based on object detection.

Fastest object detection
algorithm. It utilizes full
image as context
information which is
possible to achieve
real-time requirements.

It requires
a graphics-processing-based
computational machine. It
may be relatively sensitive
to the scale of the object.

Template matching
[51,61,106]

It matches the image by
providing a base template
which to compare.

Relatively easier to
implement and use.

Not suitable for complex
templates, no face in the
frame, or occlusion of face.

3.3.4. Color Channel Decomposition

Depending on the color space, channel decomposition separates colors or intensity and
illumination. Most commonly, researchers use RGB; hue saturation value (HSV); and luminance,
chroma blue, chroma red (YCbCr). Sixty-five articles explored RGB channels [37,95,104,110].
Green channel contains more information related to cardiac pulse [38,104,130]. Pai et al.,
mentioned the intensity of red and blue channels to eliminate illumination variations [164].
Only two articles regarded the red channel [115,151].

The HSV color space has been explored by three research teams [43,114,130]. HSV
does not require color normalization and is robust to illumination variations [154]. Sanyal
& Nundy explored the hue channel to measure the fluctuations associated with skin
color changes and used for iPPG signal extraction [43,114]. Bánhalmi et al., examined
luma component from YCbCr [49]. Ryu et al., combined chroma blue and chroma red
channels providing a high SNR [142]. YCbCr and HSV-based skin-representing pixels have
been simply compared with a threshold [81,98,116,154]. In addition, Li et al., Rapczynsk
et al., and Barbieri et al., employed the Conaire’s method [85], skin probability-based
approach [80], and a decision tree classifier [92] to segment the skin pixels, respectively.

3.3.5. Raw Signal Extraction

Averaging the ROI in each frame extract the one-dimensional iPPG signal that results
in reduction of quantization noise [54,142,164]. The majority of research (94 articles) articles
spatially averaged to obtain one-dimensional signal [29,46,59,60,79,107,109,115,152]. On



Sensors 2022, 22, 4097 13 of 37

the other hand, several studies such as Zhu et al., utilized feature points to track the cyclic
motions of the ROI [165].

3.4. Signal Processing

Signal processing usually conducts the preprocessing of the raw signal and vital sign extraction.

3.4.1. Preprocessing

Obtained from spatial averaging of ROI pixels, the vital signs’ raw signals comprise
noise from subject movement, facial expression, illumination variation, and dynamic
environments. Hence, before extracting vital signs, the raw signals need appropriate
pre-processing (Table 4).

Table 4. Preprocessing using different filtering methods.

Filtering Description

Detrending filter
[89,92,99,113,130,153,154,160]

It removes the trend in signal

Moving average filter
[29,55,116,125,126,132,154,166]

It smooths a signal and
suppresses high frequency noise

Band-pass filter
[52,75,80,95,98,109,116,122,126,132,152,167]

It eliminates the frequency components
outside the bandwidth range

The critical parameter of a band-pass is its bandwidth. According to the Association for
the Advancement of Medical Instrumentation (AAMI), the bandwidth should be in between
30 bpm to 200 bpm for HR studies in human adults [168]. However, HR varies depending
on a variety of factors including age, exercise, medications, and medical conditions [6].
Therefore, different filter bandwidth settings have been applied such as, 0.3–6 Hz [92],
0.6–2.8 Hz [93], 0.6–3 Hz [114], 0.75–3 Hz [59], 0.5–4 Hz [110], 0.7–4 Hz [79,130,160],
0.65–4 Hz [116], 0.83–3.17 Hz [122], and 0.8–2.2 Hz [43]. Since infants under the age
of one year have a higher HR than adults, ranging from 110 to 160 bpm [98,169], research
on infants reported frequencies of 1.83–2.67 Hz [108], 1.3–5 Hz [109], and 1.67–3.33 Hz [101].

The RR of adult lies between 12 cpm and 20 cpm [170,171]. The RR varies with factors
such as age, exercise, and respiratory problems. The researchers have considered the
frequency ranges of 0.05–1.5 Hz [32], 0.18–0.5 Hz [43], 0.05–2 Hz [105], and 0.1–5 Hz [89].
Similar to HR, infants have a higher RR than adults, ranging from 40–60 cpm [27]. The
bandwidths of RR were in the range of 0.1–3 Hz [27], 0.5–1 Hz [108], and 0.2–2 Hz [102].
Band-pass filters in BP studies have the bandwidths of 0.7–2 Hz [37] and 0–6 Hz [172].
With respect to SpO2, researchers have used a bandwidth of 1.67–3.33 Hz [101] and
0.5–5 Hz [12].

Although motion artifacts are a key problem while sleeping as well as in infant stud-
ies, only a few articles address this problem. Benedetto et al., removed motion artifacts
manually [39]. Eight studies identified body motion threshold-based [32,37,90,95,115,153,173].
Lorato et al., applied a gross motion detector to remove torso and chest motions [26]. In
neonates, Rossol et al., used a motion history image algorithm [24].

3.4.2. Vital Sign Extraction

According to the various vital signs, researchers conduct several techniques to extract
the vital signs from the raw signals.

Heart Rate

The video-extracted signal is composed of a component representing the blood volume
pulse as well as a noise component. The dimensionality reduction is commonly categorized
as blind source separation (BSS), such as independent component analysis (ICA) and princi-
pal component analysis (PCA), model-based methods, and DL, that is employed to extract
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pulse related information [168] (Table 5). BSS extracts the source signals without previous
knowledge. Further, ICA may require more computation to separate the components [174].
To overcome this problem, the variants of ICA, namely FastICA [154], viterbi decoding-
based ICA [83], project_ICA [174], and joint BSS along with ensemble empirical mode
decomposition [157] are used by Zheng et al., Raseena & Ghosh, Qi et al., and Lee et al., re-
spectively. On the other hand, Lewandowska et al., employed a PCA in 2012 [175]. Barbieri
et al., reported result on the zero-phase component analysis, a variant of PCA, to find the
peaks with more precision [92,162]. However, according to Huang et al., BSS-based meth-
ods leave the skin color information unutilized [168]. Chrominance (CHROM)-based [162]
and plane-orthogonal-to-skin (POS) are traditional model-based methods. It provides more
stable under complicated and nonstationary circumstances [168].

Table 5. Various algorithms for HR extraction.

Signal Processing Techniques Characterization

ICA [176,177]
It decomposes the signal and extracts
independent components of pulse
information from temporal RGB traces.

PCA [51,53,175,178]
It utilizes a statistical technique to
obtain uncorrelated components
from RGB traces [151].

GREEN [38,104,130]

In blood, hemoglobin and oxyhemoglobin
absorb light of 520–580 nm, which is in the
range of the camera’s green filter [38,104,130].
Hemoglobin absorbs green light in sufficient
depth [81]. Therefore, the green channel is
reported to have more information
compared to blue or red channels [179].

CHROM [162]

A linear combination of chrominance signals
with the assumption of skin color necessitates
a priori knowledge and eliminates motion
artifacts but it may fail if pulse and
specular signals are same [59].

POS [116]
It projects the RGB-derived signals onto
a plane orthogonal to the temporally
normalized skin tone component.

Spatial subspace rotation [162,180]

It utilizes the subspace of skin pixels and
rotation measurements for extracting cardiac
pulse information but it may require complete
continuous sequence of camera frames
to recover the pulse wave [120].

Kernel density ICA [59]
It does not require a prior assumption of
probability distributions of hidden sources
and so-called semi-BSS method.

Recently, DL techniques gained a great amount of interest which are categorized
as non-end-to-end and end-to-end. Non-end-to-end techniques apply DL either in im-
age or in signal processing [181]. Hsu et al., employed CNN to extract HR by applying
two-dimensional time–frequency representation [78,145]. Qiu et al., utilized spatial de-
composition and temporal filtering to extract feature images and cascaded them with
a CNN [75]. Moya-Albor et al., trained CNN by feeding magnifications from a Hermite
transform [97]. On the other hand, end-to-end learn features on their own to generate
the vital sign that is employed by a few works and described as follows: Yu et al., used
spatiotemporal video enhancement networks and the rPPGNet to implement end-to-end
HR extraction without utilizing classical algorithms [163]. Huang et al., demonstrated
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two dimensional convolutional along with long short-term memory to extract HR [182].
Further, Perepelkina et al., utilized HeartTrack that is constructed by a CNN [121].

In addition to HR, other cardiac-based metrics, such as HRV and interbeat interval
(IBI), are used to assess physical and mental health in daily activities [40,164]. The sym-
pathetic nervous system, which regulates blood vessel diameter, is inversely correlated
to HRV [172]. HRV calculates the variations between the heart beats, whereas IBI mea-
sures the time interval between the two consecutive heart beats [56,104]. According to the
joint Task Force of the European Society of Cardiology and the North American Society
of Pacing and Electrophysiology, the HRV may be evaluated either in the time or in the
frequency domain [104,183]. Typical parameters in the time domain are standard deviation
of interbeat intervals, root mean square of successive differences in interbeat intervals,
proportion of successive normal-to-normal that differ by more than 50 ms, and mean of PP
interval [40,93,104,118]. Frequency domain features are very low frequency components,
low frequency components, high frequency components, and the ratio of low frequency
to high frequency [92,104]. These features are analyzed statistically. Typically, researchers
perform filtering or decomposition of the signal before extracting these features in the time
or frequency domains [85,92,95,117,118].

Respiratory Rate

RGB cameras detect the RR from breathing motion, whereas IR cameras identify
both temperature fluctuations caused by breaths and motion [57,131]. FIR camera res-
olution varies strongly (Table 6). In RGB images, dimensionality reduction methods,
namely PCA, zero-phase component analysis and POS, were applied by Zhu et al. [53],
Iozza et al. [89], and Chen et al. [56], respectively. Recently, Schrumpf et al., utilized empiri-
cal mode decomposition to extract the respiratory related component from intensity-based
signal. It decomposes the signal into numerous intrinsic mode components and identifies
the relevant component using power spectral density [91].

Table 6. Studies using RR by utilizing camera-based approaches.

Ref.
Camera

Type
Camera
Details

Frame
Rate (fps)

Resolution
(px × px)

ROI Ground Truth Results

[152] FIR
Infratec

VarioCAM
HD head

30 1024 × 768 Nose
Philips IntelliVue

MP30 monitor

Correlation
coefficient (CC):

0.607 upon arrival,
0.849 upon
discharge

[29] FIR
Optrics
PI 450

80 382 × 288 Nose Manual counting
CC: near

distance: 0.960;
far distance: 0.508;

[27] FIR
InfraTec

VarioCAM
HD head

30 1024 × 768

Full frame
and split

into
sub-ROI

Adults:
Respiratory
belt, Infants:
Dräger M540

patient monitor

Root mean square
error (RMSE):
healthy adults:

(sit still:
0.31 ± 0.09 cpm,

stimulated
breathing:

3.27 ± 0.72 cpm),
infants:

4.15 ± 1.44 cpm

[125] FIR FLIR SC3000 30 320 × 240

Nostril area
and mouth,

nose and
cheeks

enclosed

Subject finger
flexion (upward–

inhalation,
downward–
exhalation)

RMSE: 3.40 cpm
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Table 6. Cont.

Ref.
Camera

Type
Camera
Details

Frame
Rate (fps)

Resolution
(px × px)

ROI Ground Truth Results

[94] FIR
Optrics
PI-450

27 382 × 288 Nose Manual
RMSE: stay still:

3.81 cpm,
moving: 6.20 cpm

[25] FIR

FLIR
Lepton 2.5,

FLIR
lepton 3.5

8.7
60 × 80;

120 × 160
Full frame

Philips MX700
patient monitor

Mean absolute
error (MAE):

2.07 cpm

[32] FIR

Seek Thermal
Compact
PRO for
iPhone

17 640 × 480

Highest
temperature

point and
around it

Respiration belt
RMSE:

1.82 ± 0.75 cpm

[128] FIR FLIR T450sc 30 - Nose
GE healthcare

patient monitor,
visual inspection

CC: 0.95

[57] FIR
Infratec

ImageIR 9300
50 1024 × 768 Nose

piezo
plethysmography,
IntelliVue MP70
patient monitor

RMSE:
0.71 ± 0.30 cpm

[31] FIR FLIR T-420 10 320 × 240 Nostril
Respiratory

volume monitor
CC: 0.86

before sedation

[131]
RGB;
FIR

Dual camera
DFK23U618;
FLIR A315

15
640 × 480;
320 × 240

Nose and
mouth

Respiration
effort belt

CC: 0.87;
RMSE: 1.73 cpm

[106]
RGB;
FIR

Dual camera
DFK23U618;
FLIR A315

15
640 × 480;
320 × 240

Nasal area
Respiratory
effort belt

RMSE: standing:
1.44 cpm, seated

position with body
movement:
2.52 cpm

[166] RGB, FIR
MAG62
thermal
imager

10 640 × 480
Nostril
region

Sleep respiratory
monitor

Coefficient of
determination:

0.905

[60]
NIR;
FIR

NIR:
see3cam_CU40,

FIR: FLIR
lepton

version 3.5

15; 8.7
336 × 190,
160 × 120

Chest,
Nostril

Respiratory belt RMSE: 4.44 cpm

[26]
RGB;
FIR

RGB: IDS
UI-2220SE;
FIR: FLIR
Lepton 2.5

20; 8.7
576 × 768;

60 × 80
Full frame

Philips
patient monitor

MAE: 5.36 cpm

[124] RGB
Point Grey
Flea 3 GigE

- 648 × 488 Chest Polysomnography

Mean error: non
magnified:
0.874 cpm;
magnified:
0.67 cpm

[24] RGB IP camera 10 320 × 180 Full frame
ECG impedance
pneumography

CC: 0.948;
RMSE: 6.36 cpm
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Table 6. Cont.

Ref.
Camera

Type
Camera
Details

Frame
Rate (fps)

Resolution
(px × px)

ROI Ground Truth Results

[184] RGB
IDS

uEye-2220
20 – Torso Capnography

All clothing
styles and

respiratory patters
(CC: 0.90–1.00)
except winter

coat-slow-deep
scenario (CC:0.84)

[108] RGB
Digital
camera

24/30
1920 × 1080
/1280 × 720

Abdominal
area

Dräguer
NICU monitor

CC: 0.86

[91] RGB
IDS

UI-3160CP
120 1920 × 1080 Face Upper chest signal

Error: −0.25 to
0.5 cpm

[53] NIR
Point Grey
Firefly MV

USB 2.0
30 640 × 480 Full frame

PSG, ECG,
Inductance

plethysmography

CC: 0.80; RMSE:
2.10 ± 1.64 cpm;

MAE:
0.82 ± 0.89 cpm

[102] RGB
Nikon D610,

D5300
30 1920 × 1080

Abdominal
area

Philips intellivue
monitor

Limits of
agreement:

−22 to 23.6 cpm

[105] RGB CCD camera 30 1280 × 720
Jugular
notch

Differential digital
pressure sensor

MAE: 0.39 cpm;
Limits of

agreements: (slim
fit: ±0.98 cpm,

loose fit:
±1.07 cpm)

[43] RGB
Smartphone

LG G2
30 - Forehead

Visual inspection,
Pulse oximeter,

Heart rate monitor

RMSE: hue:
3.88 cpm;

Green: 5.68 cpm

[89] RGB

Logitech
C922/

GigE Sony
XCG-C30C

60
1280 × 720/
659 × 494

Forehead,
nose,

cheeks
Respiratory belt

Relative error < 2%
and inter quartile

range < 5%

[51] NIR
Monochromatic

infrared
camera

62 640 × 240

Neck area
with chin
and upper

chest

Chest belt
CC: 0.99; RMSE:

0.70 cpm

[99] RGB
JAI 3-CCD
AT-200CL

20 1620 × 1236 Skin
Philips

patient monitor
MAE: 3.5 cpm

[52] NIR

Thermal
imager

MAG62,
Avigilon H4
HD Dome

- 640 × 480 Chest Manual

Coefficient of
determination:
dataset 1: 0.92,
dataset 2: 0.87

[185] RGB
Smartphone
Galaxy S9+

240 1920 × 1080
Abdomen
or waist

area
Manual counting Accuracy 99.09%

[56] RGB
Canon
camera

- -
Cheeks

enclosed
PPG sensor,

Respiratory belt
RMSE: 2.16 cpm

RR was monitored using thermal camera in fifteen articles. In this, eleven articles
showed that inhaling and exhaling at regular intervals causes a proportional decrease and
increase of the temperature around the nasal cavities, respectively, which can be converted
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into RR [29,31,60,94,125,128,152]. Three articles investigated periodic motions of chest in
the full frame [25–27].

Blood Pressure

A common approach of calculating BP is to extract waveform-related features such
as temporal, areas, amplitude, and derivative features by utilizing systolic and diastolic
peaks [46,88]. Sugita et al., extracted the fluctuations of BP waveform from palm ROI [37,186].
However, such indirect methods cannot observe the BP absolutely. The PTT is a valuable
metric for tracking variations in BP throughout regular activities [186]. It is possible to
obtain by calculating the time taken for an arterial pulse to travel along an arterial segment
by monitoring at two different sites on a blood vessel [111,119]. It can be seen from the
difference between vessels near and far from the heart. Shirbani et al., measured the PTT
between the forehead and left-hand ROI of the iPPG signal [111]. The time difference
from two ROIs codes the blood pressure [186]. On the other hand, studies employed the
signal processing techniques to extract hemoglobin related signal features that are used to
estimate BP. Zhou et al., applied ICA and peak detection to identify the peak and valley of
the wave in order to estimate the systolic BP and diastolic BP respectively [113].

Stimulus (e.g., food, exercise activities) has an impact on the sympathetic nervous
system and elevates the BP [122,126]. Zhou et al., conducted the test during rest condi-
tion [113]. Sugita et al., and Takahashi et al., conducted the experiment during exercise
activities (e.g., squat exercise) [37,119]. Vasoconstriction is the narrowing (constriction) of
blood vessels by small muscles in their walls, which was stimulated by Oiwa et al., via
cold temperature [126]. These experiments conducted in laboratory settings, used facial or
hand/palm ROIs. We have not identified any study in a real-world setting.

Body Skin Temperature

Six articles acquired thermal videos to measure BST by obtaining the highest tem-
perature of forehead [61,132], or the entire frame [94,100,127,131]. Dagdanpurev et al.,
employed the K-nearest neighbor algorithm to differ healthy and infected patients [127].
We did not find any method to derive BST from RGB.

Oxygen Saturation

Forehead and hand backside are common ROIs to measure SpO2 from RGB images.
Classically, the SpO2 is calculated from the ratio of absorbance at red and blue channels
(ratio-to-ratio). It is based on the effective blood volume and the hemoglobin concentra-
tion [12]. However effective blood volume can be influenced by peripheral vasoconstriction,
local temperature, or cardiac index. To overcome this problem, Sun et al., explored multiple
linear regression models [12]. Wieler et al., extracted the oxygen desaturation from the
facial region of the forehead in neonates [101]. From this region, red and blue channels
obtained to calculate the peak-to-trough ratio of two wavelengths. It corresponds to the
maximum and minimum absorption of oxygen in blood and is an indirect measure of
peripheral SpO2 [101].

3.5. Data Fusion

To overcome limitations by a singular data source, some articles fuse data from dif-
ferent sources. We differ image-based and signal-based fusion that uses several video
sources and combines the data already on a frame-based level and after the raw sig-
nals have been extracted separately from the different videos, respectively. For example,
Lorato et al., merged multiple thermal camera images into a single image before comput-
ing RR and automatically detect the core pixel that corresponds to the respiration [25].
Villarroel et al., combined patient detection and skin segmentation from an optical flow net-
work [99]. Kurihara et al., combined RGB and NIR face patches to estimate the HR, which
is helpful in dark environments and eliminate background illumination [187]. McDuff et al.,
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delivered an intriguing investigation that involved the use of nine distinct cameras with
diverse angles for HR estimation [120].

On the other hand, Kado et al., used histogram fusion to select suitable face patch pairs
in HR measurements, based on thresholding [55]. Pereira et al., explored three different
sensor fusion strategies: median frequency of all valid ROIs, highest signal quality index,
and Bayesian fusion [27]. Scebba et al., introduced a signal quality-based fusion approach
to calculate the RR by determining the signal quality of various respiratory signals such as
thermal airflow and respiratory induced motion. They also used S2 fusion, a combination
of signal quality-based fusion with apnea detection to obtain the RR [60]. Fujita et al.,
implemented a CNN to select the spectrum from a set of multiple obtained ROI from
a single frame [159].

In summary, fusion-based techniques can significantly improve the robustness of vital
sign monitoring, despite the motion and illumination problems in real-time situations [15].
For instance, sensor fusion techniques that employ multiple cameras positioned at different
angles can reliably track the ROI of the subject and compensate motion artifacts (e.g., head
turn). A combination of RGB and NIR cameras for day and night environments is helpful
in low light applications [187]. Furthermore, signal fusion might allow single camera
approaches to assess multiple ROIs simultaneously.

3.6. Vital Sign Estimation

The conversion of the signal into a vital sign can be done in the time (34 studies) or in
the frequency domain (59 studies). In the time domain, peak detection has diffusely been
applied to obtain the IBI from which vital signs are computed. Peak detection may reduce
the error by averaging all the IBI over the video duration [32,40,77,105,115,116,118,151]. In
the frequency domain, a global or windowed (short-time) Fourier transform may identify
the peaks with maximum power, which then are simply turned into a rate of a vital
sign [59,60,78,82,94,117,122,130].

3.7. Performance Assessment

3.7.1. Performance Metrics

The mean error and its standard deviation, MAE, mean relative error, mean of error
rate percentage, limits of agreement, RMSE, CC, and correlation of determination assess
the performance of the various algorithms.

Heart Rate

Figure 9 depicts the various conditions investigated in HR measurements. Studies
conducted in static conditions resulted in low RMSE [49,95,107,111,114,130]. Dynamic
conditions such as subject movement, speaking, facial expressions, and exercise activities
provided less reliable results [82,87,107,130,156] (Figure 9a). HR measurements perform
at various distances 0.15–3 m throughout the studies (Figure 9b). Less than 1 m yielded
satisfactory results but the RMSE increased with larger distances between the subject and
the camera [59,87]. Outliers are due to movements [94]. Five research teams particularly
investigated on distance variance [59,83,87,156,188]. For instance, Zhang et al., studied
40–80 cm and reported that 60 cm provides the optimal performance [156].

Similarly, varying the intensity of the illumination causes a different result. At static
conditions, light intensities of 150 lux and 300 lux yielded RMSEs of 5.56 bpm and 5.58 bpm,
respectively. Dynamic conditions, such as rotation, mixed action, four feet walk, reached
RMSEs of 8.09 bpm, 9.96 bpm, 8.60 bpm at 150 lux and 7.36 bpm, 9.88 bpm, and 7.72 bpm
at 300 lux respectively [130]. Hassan et al., varied intensity levels such as 340–380 lux,
430–470 lux, and 510–550 lux to check the impact on HR estimation, which resulted in
20.27 bpm, 16.86 bpm, and 13.98 bpm, respectively [87]. Hence, it shows that increasing
the illumination reduces the error in RGB. Low-light (1 lux) and bright illumination (184 lux)
conditions by utilizing NIR light resulted in RMSE of 1.06 bpm and 0.86 bpm [51].
Zhang et al., varied the intensity levels for the driving condition between 0 lux and
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80 lux and demonstrated with webcam and NIR video. The performance deteriorated if
the intensity level is less than 20 lux in webcam video, whereas NIR video provides better
result even at 2 lux. Zheng et al., also reported the optimal illumination at 40 lux for normal
driving situations [156]. However, drastic illumination changes might occur during driving
due to the streetlamps and headlights [36]. In summary, HR measurement using RGB
cameras suffer from darkness, whereas NIR cameras yield better results.

–

–

–
– –

 

 

(a) (b) 

Figure 9. (a) RMSE of HR in static and dynamic conditions and, (b) varying distance between the

subject and camera.

Variation of skin tone (e.g., fair, brown, black) also influences the performance. Under
static condition, the RMSE for fair skin was 0.07 bpm [95]. On the contrary, the RMSE
for fair skin with limited subject movement condition is 17.75 bpm [87]. Song et al.,
investigate Asian subjects at 1 m distance and 2704 px × 1520 px, reaching 1.50 bpm
in static condition [59]. The Chinese subject group attains an RMSE of 2.77 bpm with
minor mobility [114]. The RMSE of 17.10 bpm reaches with brown skin and minimal
physical activity [87]. For dark skin, participants in stationary state yielded an RMSE of
16.49 bpm [87]. Addison et al., reports the RMSE of 1.74 bpm, 2.32 bpm, 1.88 bpm, 2.04 bpm,
2.89 bpm, and 2.43 bpm on the Fitzpatrick scales I to VI, respectively [110]. From these
studies, we can conclude that increased melanin concentration lowers the performance of
HR estimation.

Respiratory Rate

Researchers measured the RR in different conditions: normal and simulated breathing
with controlled frequency [27,60,89,91], different clothing [105], and different camera-
subject distances [29,52]. Studies conducted in stay-still situations yielded better results
(Table 6) [27,29,105,124,128,152]. In RGB images, Chen et al. [56] and Sanyal & Nundy [43]
performed a steady state with minimal movement and yielded an RMSE of 2.16 cpm, and
3.88 cpm, respectively. In NIR images of sleeping subjects, Zhu et al. achieved an RMSE of
2.10 cpm [53]. Chen et al., utilized NIR in a still state with varying illumination and reached
an RMSE of 0.70 cpm [51]. In a regular setting, Pereira et al. [27], Negishi et al., [106],
Kwasniewska et al. [125], and Cosar et al. [94] used thermal images and obtained an RMSE
of 0.31 cpm, 1.44 cpm, 3.40 cpm, and 3.81 cpm, respectively. In contrast, movements lower
the performance down to 2.52 cpm and 6.20 cpm as shown by Negishi et al. [106] and
Cosar et al. [94], respectively. From all these findings, the median RMSE is 2.1 cpm and
3.9 cpm for distances d ≤ 1m and d > 1 m, respectively (Figure 10). Hence, RMSE grows
with increasing distance in the same way as HR does [29].
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and 3.9 cpm for distances d ≤ 1m and d > 1 m, respectively (

 

–

–
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Figure 10. RMSE of RR estimation with varying distance.

Real time applications for neonatal care involve both HR and RR measurements [24–27].
HR measurements of inactive infants achieved a RMSE of 1.1 bpm [109]. However, infant
studies provided larger limits of agreement due to motion and unconsciously swinging
hands in HR and RR measurements [24,98,102,108].

Blood Pressure

Zhou et al., reported RMSE of systolic and diastolic BP without movement in
a distance of 60 cm as 6.91 mmHg and 4.88 mmHg, respectively [113]. Additionally,
they varied distances (30–90 cm) and illumination (75 to 500 lux). Substantial inaccura-
cies arise when the distance is large and the ambient light is bright or faint. Zhou et al.,
reported best results with a light intensity of 150–200 lux and a camera-subject distance of
50–60 cm [113]. Sugita et al., achieved RMSE of 25.7 mm Hg during cycling exercise [37].
Studies with food stimuli (e.g., chocolates) [122] and cold stimuli [88,126] further affected BP.

Body Skin Temperature

Dagdanpurev et al., reported significant results between healthy subjects and infected
patients and a correlation of 0.82 during steady state [127]. Cosar et al., obtained an RMSE
of 0.86 ◦C and 0.88 ◦C in steady state and moving conditions, respectively [94].

Oxygen Saturation

Sun et al., explored the peripheral SpO2 in healthy adults using smartphone cameras
and a ROI from the back of hand [12]. They reported estimated errors less than 1%.
Wieler et al., investigated the oxygen desaturation on healthy newborns with an RGB-based
approach and reported 75% sensitivity and 20% positive predictive value [101].

3.7.2. Factors Affecting the Performance

Facial hair and skin tone variation have a strong effect on vital sign estimation
(Figure 11) [128]. In this, darker skin tones have a higher melanin concentration [87,111],
which absorbs a large amount of incoming light, causes the signal to attenuate, and
weaken the measured iPPG signals [104,164]. In addition, makeup weakens the pulse
signal [96,120].

Disregarding the camera type, camera parameters such as resolution and frame rate
always have a tradeoff [120]. If the image resolution is too low, quantization noise interferes
the iPPG signal, that is difficult to reduce by spatial averaging in video frames. Although
resolution is high, pixels within ROI may be insufficient at far recording distance [59].
Hence, increased camera-subject distance reduces the performance (Figure 9b). According
to Nyquist theorem, a frame rate of 8 fps is required to acquire the data with a HR of 240 bpm
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and a RR of 90 cpm. However, studies most commonly used the frame rate of 30 fps for
vital sign estimation.
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Figure 11. Factors affecting the vital signs performance.

Meanwhile, as the amount of light received by the camera sensor decreases, the
signal strength of the iPPG pulse also drops. As a result, the impact of video quality,
particularly the seldom used ultrahigh definition must be studied at different camera-
subject distances with diverse angles [59]. Motion artifacts are an important factor, too.
Several techniques (e.g., ICA, CHROM) significantly reduce such artifacts but it may
suffer from head orientation, fast moving, partially covered ROI, and emotions in real-
time [41,82,87,168].

Last but not least, environmental parameters such as illumination and outside tem-
perature influence the accuracy of iPPG. Sunlight or artificial light are the most prevalent
sources. Sunlight provides almost white light and reliable measurements. In contrast,
artificial light results in noisy measures [117,189]. High illuminations yield better perfor-
mance [87,130]. However, fluctuations in illumination such as obtained in a driving vehicle
are most difficult to handle and may also occur in indoor environments [45,117].

3.8. Applications

iPPG is used in a variety of environments including clinical and nonclinical settings. Clin-
ically, iPPG performs general health examinations on a regular or continuous basis [35,99,104].
Additionally, it is applied to patients in critical care units, the post-anesthesia care units, dur-
ing surgery [29,31,128], and to newborns [25,27,98,99,101,102,108,109] as well as geriatric
patients [23].

Nonclinical settings include in-home [33] and in-vehicle health monitoring [35], ex-
ercise tracking [190], sleep monitoring [53], and stress monitoring [40]. Home-based
vital signs monitoring is extremely helpful in the current pandemic situation due to lim-
ited hospital space and facilities [33]. It is also useful for monitoring individuals of all
ages, particularly geriatric patients [23] and newborns [102,108,109]. In the automotive
area, physiological and psychological condition of the driver are monitored to avoid acci-
dents [35,156,168]. Huang et al., additionally monitor vital signs of vehicle passengers [168].

Although fitness is beneficial to health, too excessive activities might have serious
consequences. Hence, it is critical to monitor the physiological status during exercises [49],
such as stationary cycling [37]. Sleep monitoring addresses the vital signs as well as its
abnormalities, such as sleep apnea and heart disease [32,60,93]. In addition, stress and
anxiety monitoring avoids panic attack and accidents during driving [40].
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4. Discussion

We perceive that work done in this field within the short period of this review
(January 2018–April 2021) is significant and it may open up new research directions. We
also believe that noncontact vital sign monitoring has gained increased attention among
researchers and physicians during the current pandemic situation. We limited to image-
based techniques for the scope of this review and excluded non-image-based noncontact
techniques. This section discusses on the review’s limitations and responses to the research
questions. Further, we comprehensively explain the research gaps in these fields as well as
future research directions.

4.1. Limitations

In this paper, we have reviewed the state-of-the-art in vital sign monitoring using
cameras. We searched PubMed, Scopus, and ACM databases for relevant articles that have
been published during the last three years. We have screened 1031 articles and included 104.
There might be other sources that deliver further relevant articles. Although we carefully
selected our search terms (Appendix A), we meanwhile observed that our search cannot
be reproduced anymore. The number of returns today differs from that of April 2021, as
in particular Scopus has obviously updated its entries including more articles. This may
be due to late record submissions to the databases or electronic first publication styles.
We might have missed relevant articles due to the selection of our search strings. So, this
review may not cover the complete literature.

4.2. Research Questions

We now answer our research questions:

1. Which vital sign is monitored using what type of camera? Using RGB cameras, the iPPG
signal is extracted from a ROI in the video frames to monitor HR, SpO2, and BP based
on color intensity changes, whereas RR is monitored based on body motion. NIR
cameras measure the HR and RR as similar to RGB. In addition, thermal cameras
extract HR, and RR based on periodic motions of the torso area, breathe airflow, or
vertical movement of the face, whereas BST is obtained from the highest temperature
of the ROI (Figure 6).

2. What is the performance and which factor affects it? Static conditions avoid physical
movement in well-controlled environments. Here, error rates are less than 5 bpm and
3 cpm for HR and RR, respectively (Figure 9a). The performance suffers considerably
from body motion and face expressions and is further lowered if the camera-subject
distance is more than 1 m (Figures 9b and 10). In addition, changes in illumination
considerably impacts the performance. Low light illumination decreases accuracy.
These effects are quantified using several metrics (e.g., MAE, RMSE, CC).

3. Which health issues are addressed by camera-based techniques? The working horses’ applica-
tions are ICU patients, neonatal, and geriatric monitoring as well as daily monitoring
at home and hospital, during driving, and while performing exercises. Further, since
March 2020, the COVID-19 pandemic is ongoing globally. As the virus affects the
lungs, noncontact SpO2 monitoring is a valuable alternative to contact-based methods,
as it avoids transmission of the virus. HR, RR, and BST can also be monitored to keep
the best track of subject’s health. It is also further useful for monitoring vital signs in
a noncontact way during other pandemic situations.

4.3. Research Gaps and Future Research Directions

In the following, we discuss the future of camera-based health monitoring and if
camera-based approaches could eventually replace contact-based modalities in the clinical
environment. First, the number of vital signs is limited with the vast majority of studies
focusing on HR, RR, and BP [28,50,66,191]. Other measures are arterial stiffness and distal
pulse reflection [88]. So far, BST cannot be measured using RGB cameras. Additionally,
there is difference between body core temperature (BCT), BT, and BST. BCT refers to
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the temperature of the internal tissues of the body (e.g., pulmonary artery). Due to the
balance of heat generation, absorption and loss, BCT maintains at constant temperature [58].
However, it can only be measured invasively by utilizing catheters. BT is a contact-based
technique that utilizes sensors at various locations of the body (e.g., oral, axillary, rectal),
which makes it difficult to use for infants or children. Body mass index, age, and the
metabolic rate impact BT [192]. BST is an indicator of skin blood flow that may reflects the
temperature of the body [58]. Current studies focus on BST estimation to measure core
temperature from facial regions utilizing FIR imaging. However, physical activities and
environmental factors differ the measure from the medically more relevant BCT. Obtaining
BCT from the facial region using FIR is still under research, and machine learning might
help here.

Although the research on iPPG is relatively recent, it has rapidly spread from the
laboratory to everyday environments research. As a substitute of conventional contact-
based techniques, iPPG will be able to assess almost all physiological measurements
that contact PPG provides. However, it remains under research due to various reasons
that is discussed below in detail. Until now, only stationary studies in well-controlled
settings yield reliable vital signs. The performance degrades significantly if the illumination
varies, the subject has darker skin tone or is in motion, or if camera–subject distance is too
large. In this, RGB images with proper illumination provide better signal performance,
whereas, NIR cameras have a lower SNR due to the lower absorption of hemoglobin [41].
However, a few studies recently concentrated on NIR camera-based vital sign monitoring
owing to the advantages of functioning in dark conditions (e.g., sleep monitoring, driver
monitoring) [34,41,93]. Even though, it is not explored widely. Future research on NIR
cameras might yield a path for camera-based vital sign monitoring in all light conditions.

We further are concerned that most studies and existing databases use a small number
of participants (n = 10–30) and homogeneous groups (e.g., same skin group or particular
geographical location). In addition, there might be bias in age and gender due to changes
in the skin properties. There is no work focusing exclusively on healthy elder subjects or
children above age of two. Hence, further studies are required to effectively evaluate the
influence of age and gender. Most of the studies disregard skin colors although the melanin
concentration has a strong impact on the measurements. Developing robust algorithms
using DL might help here. Furthermore, the majority of the studies was conducted in
indoor environments and obtained reliable results. Outdoor environments, on the other
hand, can result in large amounts of noise, making it difficult to monitor vital signs [36,168].
This limits the translation into clinical practice and real-time environments. Though the
techniques need further improvement before being used in clinical medicine, home-based
indoor applications can be explored already [193]. Future research is required to focus on
resolving the issues by tuning these parameters, namely camera–subject distance, camera
parameters, and illumination, in various indoor and outdoor environments to obtain the
best possible results that might improve the robustness in practical applications (Figure 12).
As of today, subject and camera parameters are not mentioned in most of the article.
Researchers need to improve and follow existing guidelines such as STARE-HI [194].

On the other hand, a few studies have shown to yield stable results even under non-
stationary conditions [75,76,115,121,157,190]. However, most of the studies suffer from
motion artifacts due to the dynamic situations. Although a band-pass filter extracts an inter-
ested frequency region, utilization of motion artifact-based algorithms will help to reduce
the error. But only a few studies employed them so far [24,26,37,49,89,190]. In addition,
the conventional signal processing methods, such as parametric-based BSS method and
model-based methods, reported in several articles to recover the pulse signal, may fail due
to lack of previous knowledge and assumption of skin tone vectors, respectively. However,
nonparametric-based fast kernel density-ICA called semi-BSS, presented by Song et al., is
reported to have promising results with varied resolution and camera–subject distance [59].
Although DL-based approaches have significant potential, they are still in the early stages of
research for iPPG. However, end-to-end DL networks as demonstrated by Perepelkina et al.,
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and Yu et al., could be a potential approach which have been shown to outperform classical
signal processing techniques [121,163]. In the future, semi-BSS-based techniques and DL
networks could be employed to overcome the classical signal processing methods.

–

–

 

Figure 12. The framework of main research gaps and future directions. In this, red color boxes

represent the research gaps, and green color boxes refer to future research directions.

The majority of the articles relied on a single camera-based physiological monitoring,
either RGB or IR. However, single cameras cannot persistently acquire the frames due
to head or body posture variations or presence of obstacles. This might lead to missing
observations or loss of data. Thereby, multi-camera-based researches could be able to
overcome this challenge with the help of fusion techniques [120]. Studies such as Liu et al.,
detect HR from multiple people by employing a single camera frame and yield promising
results [114]. Hence, combining these two methods, multi–camera and multi-person-based
vital sign monitoring could be extended with the help of surveillance camera in hospital, in-
home, and workspace environments. Our group recently explored these measurements for
continuous health monitoring in indoor with the help of convolutional neural network [195].
In addition, camera-based monitoring can extract multiple vital signs (Table 1). It could be
included in multi-camera and multi-person measurements. Future research might focus
on these techniques in real-world scenarios to develop more practical applications with
sufficient reliability. This can also be developed into optical-sensors-based devices and
smartphone-based or webcam-based applications that might results in continuous vital
signs monitoring or periodic measurement [196,197]. In addition, in the last 20 years, the
world has frequently faced a great number of pandemic situations such as SARS in 2002,
swine flu in 2009, Ebola in 2014, and now the coronavirus in 2020. So, the current situation
urgently requires developing towards noncontact and unobtrusive vital signs monitoring
devices without virus transmission. It might be helpful in the pandemic situation for
noncontact monitoring of vital signs and for people under home quarantine.
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Our review demonstrated a wide variety of clinical and nonclinical applications, in-
cluding smart homes and smart cars, which allow for continuous monitoring of vital signs
in everyday life [33,35]. In the smart home, camera-based monitoring of vital signs can be
combined with gait analysis, fall detection, and sleep monitoring. This could minimize costs
and improve out-of-hospital treatments. To reach these application areas, further develop-
ments are required. The technology needs robustness in dynamic settings and be able to
cope with movement, facial expression, varying illumination, and different camera-subject
distance. Furthermore, it requires the development of robust algorithms [87]. Nonetheless,
future research should be directed toward mobile health (mHealth) applications to provide
users a timely and consistent feedback of their health status [158]. mHealth must perform
without hardware attachment and provide user-friendly interfaces. Due to the increasing
number of smartphone users and continuously improved smartphone sensor technology
(e.g., camera), we expect that many studies of this review transform into smartphone
applications and serve in telemedicine.

5. Conclusions

Camera-based techniques monitor vital signs unobtrusively. This review provides
an overview of data acquisition technology (hardware), image and signal processing (soft-
ware), accuracy, and application areas. As of today, HR and RR are reliably monitored
using RGB cameras in controlled settings only, but other vital signs are still lacking robust
and sufficiently precise systems. Subject, camera, setting, and environmental parameters
have a significant impact on the accuracy. To overcome these effects, robust algorithms
based on advanced signal processing or DL are urgently needed. Additionally, fusion-
based approaches (e.g., multiple ROI or multiple cameras) bear the potential of enhancing
reliability. Different ranges of hardware and software parameter can be investigated to obtain
the best possible results for various environments. With respect to the COVID-19 pandemic,
a potential application could be to deploy cameras for smart-home-based health monitor-
ing of subjects undergoing quarantine. Recently, the U.S. Food and Drug Administration
(FDA) approved smart phone applications for therapy e.g., for tinnitus [198]. In light of
this development, smartphone camera-based vital sign monitoring could also be part of
digital health. We call for collaboration across the world to collect publicly available dataset
of large diversity and size as a basis to make camera-based vital signs monitoring suffi-
ciently robust to be translated into smartphone apps and regularly used in future mHealth
and telemedicine.
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Abbreviations

The following abbreviations are used in the manuscript:

ECG Electrocardiography

PPG Photoplethysmography

HR Heart rate

RR Respiratory rate

BP Blood pressure

BT Body temperature

SpO2 Oxygen saturation

bpm beats per minute

cpm cycles per minute

BCG ballistocardiography

ICU Intensive care units

iPPG Imaging PPG

rPPG Remote PPG

HRV HR variability

PR Pulse rate

PRV Pulse rate variability

RGB Red–green–blue

NIR Near-infrared

FIR Far-infrared

BST Body skin temperature

IR Infrared

px pixels

SNR Signal-to-noise ratio

PRISMA Preferred reporting items for systematic reviews and meta-analyses

ACM Association for Computing Machinery

ROI region of interest

fps frame per second

MR-NIRP MERL-Rice near infrared pulse dataset

CCD Charge coupled devices

EULA End user license agreement

HSV Hue saturation value

YCbCr luminance, chroma blue, chroma red

AAMI Association for the Advancement of Medical Instrumentation

BSS Blind source separation

ICA Independent component analysis

PCA Principal component analysis

DL Deep learning

CHROM Chrominance model

POS Plane-orthogonal-to-skin

IBI Interbeat interval

PTT Pulse transit time

MAE Mean absolute error

RMSE Root mean square error

CC Correlation coefficient

BCT Body core temperature

mHealth Mobile health

FDA Food and Drugs Administration

Appendix A. Searching String

Appendix A.1. PubMed

(“RGB”[Title] OR “infrared”[Title] OR “thermal”[Title] OR “thermography”[Title]
OR “camera”[Title] OR “video”[Title] OR “image”[Title] OR “imaging”[Title] OR “re-
mote”[Title] OR “non contact”[Title] OR “non-contact”[Title] OR “touchless”[Title] OR
“contactless”[Title] OR “contact-free”[Title] OR “vision-based”[Title])
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AND

(“biosignal”[Title] OR “bio signal”[Title] OR “biomedical signal”[Title] OR “physiologi-
cal”[Title] OR “cardiorespiratory signal”[Title] OR “cardiorespiratory signals”[Title] OR
“ppg”[Title] OR “photoplethysmograph”[Title] OR “photoplethysmography”[Title] OR
“photoplethysmogram”[Title] OR “vital sign”[Title] OR “vital signs”[Title] OR “respi-
ration”[Title] OR “respiratory”[Title] OR “breathing”[Title] OR “heart rate”[Title] OR
“pulse rate”[Title] OR “heart beat”[Title] OR “body temperature”[Title] OR “oxygen satura-
tion”[Title] OR “blood pressure”[Title] OR “face”[Title] OR “facial”[Title])

AND

(“processing”[Title] OR “analytics”[Title] OR “analysis”[Title] OR “analyse”[Title] OR
“analysing”[Title] OR “analyze”[Title] OR “analyzing”[Title] OR “measure”[Title] OR
“measurement”[Title] OR “measuring”[Title] OR “sensing”[Title] OR “monitor”[Title] OR
“monitoring”[Title] OR “estimation”[Title] OR “estimate”[Title] OR “estimating”[Title] OR
“quantification”[Title] OR “identification”[Title] OR “recognition”[Title] OR “detect”[Title]
OR “detection”[Title] OR “detecting”[Title] OR “tracking”[Title] OR “feature map”[Title]
OR “feature maps”[Title])

NOT

(review[pt] OR systematic review[pt] OR survey[pt])

AND

(english[la])

AND

(“2018/01/01”[DP]: “2021/04/30” [DP])

Appendix A.2. Scopus

TITLE((“RGB” OR “infrared” OR “thermal” OR “thermography” OR “camera” OR
“video” OR “image” OR “imaging” OR “remote” OR “non contact” OR “non-contact” OR
“touchless” OR “contactless” OR “contact-free” OR “vision-based”)

AND

(“biosignal” OR “bio signal” OR “biomedical signal” OR “physiological” OR “cardiorespi-
ratory signal” OR “cardiorespiratory signals” OR “ppg” OR “photoplethysmograph” OR
“photoplethysmography” OR “photoplethysmogram” OR “vital sign” OR “vital signs” OR
“respiration” OR “respiratory” OR “breathing” OR “heart rate” OR “pulse rate” OR “heart
beat” OR “body temperature” OR “oxygen saturation” OR “blood pressure” OR “face” OR
“facial”)

AND

(“processing” OR “analytics” OR “analysis” OR “analyse” OR “analysing” OR “analyze”
OR “analyzing” OR “measure” OR “measurement” OR “measuring” OR “sensing” OR
“monitor” OR “monitoring” OR “estimation” OR “estimate” OR “estimating” OR “quantifi-
cation” OR “identification” OR “recognition” OR “detect” OR “detection” OR “detecting”
OR “tracking” OR “feature map” OR “feature maps”))

AND

PUBDATETXT(“January 2021” OR “February 2021” OR “March 2021” OR “April 2021” OR
“January 2020” OR “February 2020” OR “March 2020” OR “April 2020” OR “May 2020” OR
“June 2020” OR “July 2020” OR “August 2020” OR “September 2020” OR “October 2020”
OR “November 2020” OR “December 2020” OR “January 2019” OR “February 2019” OR
“March 2019” OR “April 2019” OR “May 2019” OR “June 2019” OR “July 2019” OR “August
2019” OR “September 2019” OR “October 2019” OR “November 2019” OR “December 2019”
OR “January 2018” OR “February 2018” OR “March 2018” OR “April 2018” OR “May 2018”
OR “June 2018” OR “July 2018” OR “August 2018” OR “September 2018” OR “October
2018” OR “November 2018” OR “December 2018”)
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AND NOT

(“review” OR “survey”)

AND

(LIMIT-TO (LANGUAGE, “English”))

AND

(LIMIT-TO (PUBSTAGE, “final”))

AND

(LIMIT-TO (SUBJAREA, “MEDI”) OR LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO
(SUBJAREA, “NEUR”) OR LIMIT-TO (SUBJAREA, “COMP”) OR LIMIT-TO (SUBJAREA,
“HEAL”) OR LIMIT-TO (SUBJAREA, “MULT”))

Appendix A.3. ACM

Title: ((“RGB” OR “infrared” OR “thermal” OR “thermography” OR “camera” OR
“video” OR “image” OR “imaging” OR “remote” OR “non contact” OR “non-contact” OR
“touchless” OR “contactless” OR “contact-free” OR “vision-based”)

AND

(“biosignal” OR “bio signal” OR “biomedical signal” OR “physiological” OR “cardiorespi-
ratory signal” OR “cardiorespiratory signals” OR “ppg” OR “photoplethysmograph” OR
“photoplethysmography” OR “photoplethysmogram” OR “vital sign” OR “vital signs” OR
“respiration” OR “respiratory” OR “breathing” OR “heart rate” OR “pulse rate” OR “heart
beat” OR “body temperature” OR “oxygen saturation” OR “blood pressure” OR “face”
OR “facial”)

AND

(“processing” OR “analytics” OR “analysis” OR “analyse” OR “analysing” OR “analyze”
OR “analyzing” OR “measure” OR “measurement” OR “measuring” OR “sensing” OR
“monitor” OR “monitoring” OR “estimation” OR “estimate” OR “estimating” OR “quantifi-
cation” OR “identification” OR “recognition” OR “detect” OR “detection” OR “detecting”
OR “tracking” OR “feature map” OR “feature maps”))

NOT

“review” NOT “survey”

AND

2018:2021
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