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ABSTRACT: Anilines are one of the important chemical feedstocks and are
utilized for the preparation of a variety of pharmaceuticals, agrochemicals,
pigments, and dyes. In this context, the catalytic reduction of nitro
functionality is an industrially vital process for the synthesis of aniline
derivatives. Herein, we report an efficient nanosized bimetallic Pd−Au/TiO2

nanomaterial which is proved to be quite efficient for rapid catalytic
hydrogen transfer reduction of nitroarenes into corresponding amines.
Significantly, the reduction process is successful under solvent-free and mild
green atmospheric conditions. Bimetallic Pd−Au nanoparticles served as the
active center, and TiO2 played as a support in hydrogen transfer from the
source hydrazine monohydrate. Typical results highlighted that the reactions
were very rapid and the products were obtained in good to excellent yields.
Significantly, the process was successful in the presence of a very low amount
catalyst (0.1 mol %). Furthermore, the reaction showed good chemo-
selectivity and compatiblity with double or triple bond, aldehyde, ketone, and ester functionalities on the aromatic ring. Typical
results indicated the true heterogeneous nature of the Pd−Au/TiO2 nanocatalyst, where the catalyst retained the activity,
without loss of its activity.

■ INTRODUCTION

Development of a green protocol for organic transformations is
a great challenge to the synthetic community. A catalyst is a
necessary element of any sustainable development.1 In this
context, development of stable, highly active, recyclable, and
environmentally benign catalysts is highly desirable. Nanoma-
terial-based catalysts act as viaducts between homogeneous
and heterogeneous catalysts and promote the advantages,
namely, selectivity and recyclability.2,3 Therefore, nanocatalysts
play an important role in the development of sustainable
processes.4,5 Noble metal-containing nanomaterials have
attracted a significant consideration because of their unique
physicochemical properties, which exhibit versatile applications
in organic transformations.6−8 It is desirable to have high
dispersion of noble metals such as Pd, Au, Pt, and so forth,
which is an important issue in the field of heterogeneous
catalysis.9 Bimetallic nanomaterials have recently attracted an
extensive consideration because of their enhanced catalytic
properties when compared to monometallic nanoparticles for
several catalytic reactions.10−21

Reduction of nitroarenes to the corresponding aniline
derivatives is essential for various industrial applications such
as the preparation of pharmaceuticals, pigments, agro-
chemicals, dyestuffs, and polymers.22−24 The environmentally
benign and selective reduction of the nitro group with other
easily reducible groups (double or triple bonds and carbonyl
groups) of aromatic derivatives is a challenge. Heterogeneous

catalytic reduction of nitroarenes is rather preferred with
regard to high yields and selectivity over traditional metal-
mediated reductions (iron, zinc, and tin).25 In addition,
heterogeneous catalytic reduction of nitroarenes, particularly,
working under ligand and solvent-free and at milder reaction
conditions is advantageous than those that make use of high
pressure reactors of hydrogen gas,26,27 toxic organic solvents,
ligands, and high temperatures.24,28 The catalytic reduction of
nitroarenes mediated by homogeneous transition-metal cata-
lysts has also been well-established (i.e. Pd,29,30 Ru,31 Rh,32

Ir,33 and Ni34). However, the main limitation of homogeneous
catalysts is recyclability and reusability, whereas the commer-
cially available heterogeneous catalysts (Pd/C) are less
efficient because a high amount of noble metals is required.35

However, the separation of nanocatalysts is difficult because of
its small size.36,37 To overcome this problem, nanoparticles
supported on high surface area materials is often practiced. To
the best of our knowledge, a few reports are accessible for the
combination of bimetallic metals and metal oxide supports for
nitroarenes reduction reactions.16,17

Herein, we report a highly active bimetallic Pd−Au
supported by a TiO2 heterogeneous catalyst, which exhibits
higher activity on the reduction of nitroarenes into anilines.

Received: August 16, 2018
Accepted: September 27, 2018
Published: October 11, 2018

Article

http://pubs.acs.org/journal/acsodfCite This: ACS Omega 2018, 3, 13065−13072

© 2018 American Chemical Society 13065 DOI: 10.1021/acsomega.8b02064
ACS Omega 2018, 3, 13065−13072

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
o
w

n
lo

ad
ed

 v
ia

 1
9
3
.9

3
.1

9
4
.2

2
2
 o

n
 O

ct
o
b
er

 1
2
, 
2
0
1
8
 a

t 
0
7
:3

3
:1

5
 (

U
T

C
).

 
S

ee
 h

tt
p
s:

//
p
u
b
s.

ac
s.

o
rg

/s
h
ar

in
g
g
u
id

el
in

es
 f

o
r 

o
p
ti

o
n
s 

o
n
 h

o
w

 t
o
 l

eg
it

im
at

el
y
 s

h
ar

e 
p
u
b
li

sh
ed

 a
rt

ic
le

s.
 



The catalytic activity of bimetallic Pd−Au/TiO2 has been
studied on hydrogenation of nitroarenes under mild and
solvent-free green atmospheric conditions. The efficacy of the
developed Pd−Au/TiO2 catalyst has been confirmed by
comparing with monometallic Pd/TiO2 and Au/TiO2

catalysts. In addition, chemoselectivity and recyclability of
the Pd−Au/TiO2 catalyst has also been examined.

■ RESULTS AND DISCUSSION

Synthesis of TiO2-Supported Pd Nanoparticles. A
mixture of PdCl2 (0.56 mmol, 100 mg) and NaCl (1.5 mmol,
88 mg) was taken in 10 mL of methanol and stirred
continuously for 24 h at room temperature. It was then
diluted with 40 mL of methanol and stirred for 5 min at room
temperature, and TiO2 nanoparticles (6.26 mmol, 500 mg)
were added into this solution. Further, the resultant mixture
was stirred continuously for 1 h at 60 °C. Finally, the reaction
mixture was cooled to room temperature, and sodium acetate
(9.26 mmol, 0.76 g) and 0.5 mL of hydrazine monohydrate
were added to into the mixture and stirred for 1 h. At the end,
the mixture was centrifuged with methanol, water, and acetone.
It was kept in the oven for drying, followed by grinding to
obtain a fine powder.
Synthesis of TiO2-Supported Pd−Au Nanoparticles. A

mixture of PdCl2 (0.56 mmol, 100 mg), HAuCl4 (0.56 mmol,
190 mg), and NaCl (1.5 mmol, 88 mg) was taken in 10 mL of
methanol and stirred continuously for 24 h at room
temperature. It was then diluted with 40 mL of methanol
and stirred for 5 min at room temperature, and TiO2

nanoparticles (6.26 mmol, 500 mg) were added into this
solution. Further, the resultant mixture was stirred continu-
ously for 1 h at 60 °C. Finally, the reaction mixture was cooled
to room temperature, and sodium acetate (9.26 mmol, 0.76 g)
and 0.5 mL of hydrazine monohydrate were added to into the
mixture and stirred for 1 h. At the end, the mixture was
centrifuged with methanol, water, and acetone and kept in the
oven for drying.
Characterization of As-Prepared Catalysts. X-ray

Diffraction (XRD). The powder XRD patterns of pure TiO2,
Pd/TiO2, and Pd−Au/TiO2 are shown in Figure 1, which
confirmed the formation of the catalysts. By using the JCPDS
no.: 89−4921 (TiO2), 89−4897 (Pd), and 89−3697 (Au), the
presence of the active components is identified. The diffraction
peaks of pure TiO2 showed d-spacing values of 3.509, 2.426,
2.375, 2.328, 1.888, 1.697, 1.662, 1.490, and 1.478 Å
representing (101), (103), (004), (112), (200), (105),

(211), (204), and (116) crystalline planes, respectively.38−40

In a similar manner, the peaks of Pd showed d-spacing values
of 2.245, 1.948, 1.375, and 1.663 Å corresponding to (111),
(200), (220), and (311) crystalline planes, respectively, and
the peaks of Au showed d-spacing values of 2.339, 1.939, 1.439,
1.229, and 1.164 Å representing (111), (200), (220), (311),
and (222) crystalline planes, respectively.41−43

Raman Analysis. The Raman spectra of TiO2, Pd/TiO2,
and Pd−Au/TiO2 indicated Eg, B1g, and A1g peaks. The Eg

peak is due to the symmetrical stretching vibrations of O−Ti−
O, whereas the B1g peak is due to the symmetrical bending
vibrations of O−Ti−O and the A1g peak is due to asymmetric
bending vibrations of O−Ti−O in the TiO2 nanoparticles. In
Figure 2, fresh TiO2 has five Raman active modes in the
vibrational spectrum centered at 143, 196, 395, 514, and 636
cm−1, which are assigned to the Eg, Eg, B1g, A1g, and Eg

symmetries of the anatase phase of TiO2.
44,45 Pd impregnated

on TiO2 showed Raman vibrational modes centered at 152,
205, 237, 268, 330, 401, 562, 617, and 692 cm−1 because of
A1g, B1g, A1g, B3g, B1g, A1g, B3g, A1g, and Ag symmetries of the

Figure 1. XRD pattern of TiO2, Pd/TiO2 and Pd−Au/TiO2.
Figure 2. Raman spectra of TiO2, Pd/TiO2, and Pd−Au/TiO2
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Brookite phase of Pd/TiO2, respectively,
46−55 whereas Pd−Au-

impregnated TiO2 showed the Raman vibrational modes at
149, 264, 401, and 601 cm−1 corresponding to the B1g and two
phonon scattering Eg and A1g modes of the rutile phase of Pd−
Au/TiO2, respectively.

56,57 The phase transformation of TiO2

in Pd/TiO2 and Pd−Au/TiO2 is due to the presence of NaCl
and NaOAc in the synthesis, which favors the anatase−
brookite and anatase−rutile phases of TiO2. With the
introduction of NaCl and NaOAc, the Na+ ions locally stops
the direct closure of titanate layers at their adjacent positions,
which induces the brookite- and rutile-like structures.58,59

XPS Analysis. The valence states of the Pd−Au/TiO2

nanocatalyst were analyzed by X-ray photoelectron spectros-
copy (XPS). The XPS spectra shown in Figure 3 show the
characteristic Pd 3d5/2and Pd 3d3/2 peaks at 339.6 and 335.7
eV, respectively, corresponding to Pd(0).60 The XPS core level
spectra of the Au 4f are shown in Figure 3. The binding
energies (BEs) of Au 4f7/2 and Au 4f5/2 electrons are 83.2 and
86.8 eV, respectively. It is reliable with the reports on gold
metal, which indicate that in Pd−Au/TiO2, Au exists in the
metallic state (Au(0)).61 The valance state of nonstoichio-
metric TiO2 in Pd−Au/TiO2 was confirmed by XPS analysis of
Ti 2p and O 1s peaks coupled with Lorentzian fits shown in
Figure 3.62 The peaks centered at 457.3 and 458.4 eV are due
to Ti2O3 and TiO2 species, respectively.61,63 This is also
supported by the deconvoluted O 1s spectrum, which revealed
the BE of the individual Ti(III) at 531.8 eV (Ti+3−O) and
Ti(IV) at 529.3 eV (Ti+4−O).64

Transmission Electron Microscopy (TEM) Analysis. Figure
4 shows the morphological characteristics of Pd−Au nano-
particles on TiO2 nanoparticles. The average particle size of
Pd−Au nanoparticles is 5 nm, and TiO2 nanoparticles
exhibited a wide range of sizes. We observed from the images
that the the particles mostly have spherical shape.
Catalytic Activity. In an oven-dried 10 mL test tube,

nitroarenes 1 (1 mmol), reductant [hydrazine monohydrate
(0.5 mL)], and Pd−Au/TiO2 nanoparticles (0.1 mol % of Pd−
Au) were added. The resulting neat reaction mixture was
stirred in an open vessel and at room temperature. The

progress of the reaction was monitored by thin-layer
chromatography. After completion of the reaction, the reaction
mixture was diluted with an aqueous NH4Cl solution
(approximately 10 mL) and extracted with ethyl acetate (3
× 3 mL). The organic layers were dried (Na2SO4) and
concentrated under reduced pressure. Purification of the
residue by silica gel column chromatography using petroleum
ether/ethyl acetate as the eluent furnished the corresponding
amines 2, as a solid/viscous yellowish liquid.

Optimization of the Reaction Conditions. In order to
find out the optimal reaction conditions, the hydrogenation of
nitroarenes 1 (1 mmol) in the presence of various catalysts was
studied in various parameters such as the effect of different
conditions, and the results are summarized in Table 1. Initially,
the reaction was carried out on nitrobenzene 1a with hydrazine
monohydrate as the reductant under solvent-free conditions,
with different Zn-based mono/bimetallic catalysts such as
ZnO, Zn0.7Mn0.3O2−δ, and Zn0.7Fe0.3O2−δ (Table 1, entries 1−
3). However, no progress was noticed except for the recovery
of the starting material. The reaction did not show any
progress even with other metal transition-metal oxides
NiFe2O4, CuFe2O4, SnO2, and TiO2 (Table 1, entries 4−7).
On the other hand, the reaction with Pd/C furnished aniline
2a in moderate yields (Table 1, entry 8). Notably, the
reduction reaction in the presence of Pd/TiO2 and Au/TiO2
proved to be efficient and gave product 2a in 82 and 80%
yields, respectively, in shorter reaction times (Table 1, entries 9
& 10). Gratifyingly, the bimetallic Pd−Au/TiO2 nanocatalyst
turned out to be the best and afforded aniline 2a just in 5 min
in excellent yields under mild and solvent-free open vessel
conditions (Table 1, entry 11). The catalytic activity of the
catalyst depends on strong metal−support interaction (SMSI).
The small size metal nanoparticles have more SMSI effect
compared with large size metal nanoparticles.65,66 Therefore,
Pd−Au/TiO2 exhibited high catalytic activity due to small size
of Pd−Au nanoparticles (for particles size see Figure S7).
The reaction was also explored with various solvents, such as

methanol, ethanol, dichloromethane (DCM), ethyl acetate,
and water, as depicted in Table 2. The protic solvents such as

Figure 3. XPS pattern of as-prepared Pd−Au/TiO2 nanomaterials.
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MeOH and EtOH seemed to be good and furnished 2a in very
good yields (Table 2, entries 1 & 2), whereas the solvents
DCM and ethyl acetate were also good (Table 2, entries 3 &
4). Water was also found to be the useful solvent (Table 2,
entry 5). On the other hand, the reaction with other
reductants, such as NaBH4 and H2 balloon, furnished the
product aniline 2a in 76 and 64% yields, respectively (Table 2,
entries 6 & 7).
Further to optimize the reaction with regard to the amount

of hydrazine monohydrate (N2H4·H2O), for the formation of
aniline 2a, it was planned to carry out the reduction on
nitrobenzene 1a with varying amounts of N2H4·H2O. Thus,
the reaction was carried out with 0.1, 0.2, 0.3, 0.4, and 0.5 mL
of hydrazine monohydrate (N2H4·H2O) for 10 min at room
temperature and in an open vessel. However, it was observed
that product yields were less with 0.1, 0.2, 0.3, and 0.4 mL of
N2H4·H2O when compared to that of 0.5 mL of N2H4·H2O
(Table 3, entries 1−5). Therefore, it was concluded that Pd−
Au/TiO2 (0.1 mol %) and N2H4·H2O (0.5 mL) under the mild
open vessel and solvent-free reaction conditions were best for
the formation of aniline 2a reduction (Table 1, entry 11).

With these best conditions in hand (Table 1, entry 11), next,
to check the scope and generality of the method, the
hydrogenation reaction was explored with various nitroarenes
1a−r. Gratifyingly, the reaction was found to be amenable and

Figure 4. TEM images of as-prepared Pd−Au/TiO2.

Table 1. Catalyst Optimization Studies for the Formation of
Aniline 2aa

entry catalyst (mol %) time yield 2a(%)b

1 ZnO (2.5 mol %) 12 h c

2 Zn0.7Mn0.3O2−δ (2.5 mol %) 12 h c

3 Zn0.7Fe0.3O2−δ (2.5 mol %) 12 h c

4 NiFe2O4 (2.5 mol %) 12 h c

5 CuFe2O4 (2.5 mol %) 12 h c

6 SnO2 (2.5 mol %) 12 h c

7 TiO2 (2.5 mol %) 12 h c

8d Pd/C (2.5 mol %) 1 h 46

9 Pd/TiO2 (0.1 mol %) 15 min 82

10 Au/TiO2 (0.1 mol %) 10 min 80

11 Pd−Au/TiO2 (0.1 mol %) 5 min 96
aReaction conditions: nitrobenzene (1 mmol), hydrazine monohy-
drate (0.5 mL), and catalyst. bIsolated yields of product 2a. cStarting
material 1a recovered. dPd/C (palladium on activated charcoal).

Table 2. Solvent & Reductant Optimization Studies for the
Formation of Aniline 2aa

entry reductant solvent yield 2a (%)b

1 N2H4·H2O MeOH 82

2 N2H4·H2O EtOH 85

3 N2H4·H2O DCM 75

4 N2H4·H2O E.A 76

5 N2H4·H2O water 84

6 NaBH4 water 76

7c H2 balloon water 64
aReaction conditions: nitrobenzene (1 mmol), hydrazine monohy-
drate (0.5 mL), NaBH4 (10 mmol), Pd−Au/TiO2 (0.1 mol % of Pd−
Au), and solvent (1 mL). bIsolated yields of product 2a. cClosed
vessel with atmospheric pressure.

Table 3. Optimization with Regard to the Amount of
Reductant for the Formation of Aniline 2aa

entry N2H4·H2O (mL) yield 2a (%)b

1 0.1 65

2 0.2 72

3 0.3 80

4 0.4 85

5 0.5 96
aReaction conditions: nitrobenzene (1 mmol) and Pd−Au/TiO2 (0.1
mol % of Pd−Au). bIsolated yields of product 2a.
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afforded the corresponding amines 2a−i, in good to excellent
yields (Table 4). Significantly, the reaction was completed in a
reasonably short span of time. Interestingly, the reaction was
successful with simple and methyl-substituted nitrobenzenes
1a−c and furnished the reduced anilines 2a−c in excellent
yields (Table 4). However, the reaction with halo-substituted
nitrobenzenes 1c−l (i.e. with Cl, Br, and I) not only reduced
the nitro group but also removed the halide moieties
reductively and thus furnished the products 2a−c in good to
very good yields (Table 4). The reductive removal of halide
groups along with the reduction of nitro functionality is due to
the reactive nature of the catalyst. Quite interestingly, when the
chloride/fluoride functionality belongs to other aromatic of
biaryl nitro compound, the reduction was found to be
chemoselective and gave the corresponding biaryl amines
without affecting the halide moiety (Table 4, 2m−n). Though
the exact reason is not certain at this stage on the selective
reduction of the nitro group, however, this could be due to the
reason that chloride is farther away from the nitro group and
hence may be relatively less reactive. Notably, the reaction was
compatible with benzylic bromo and hydroxyl groups (Table 4,
2o−p). In addition, the reaction was also found to be feasible

with nitroanilines 1q−r and yielded the products 2q−r in good
yields (Table 4).
To further check the compatibility and applicability of the

method, it was aimed to explore the reduction reaction with
other nitroarenes. Thus, the reaction was performed on
aldehyde-, ketone-, ester-, and double and triple bond-
containing nitroarenes 1s−w (Table 5). To our delight, the
method showed excellent compatibility and chemoselectivity
and furnished the corresponding anilines 2s−w without
affecting the aldehyde, ketone, ester, olefin, and alkyne groups
(Table 5). Thus, this reveals the importance of the present
protocol.
It is worth mentioning that the catalyst retains its activity,

which is evident with nearly no loss of activity even after the
fifth reaction cycle (Figure 5). This was done by recovering the
catalyst by centrifugation and washing with ethyl acetate and
acetone, followed by drying in a hot air oven at 60 °C for 12 h.
The recovered Pd−Au/TiO2 nanocatalyst was then subjected
to the next catalytic cycles. The marginal loss of activity after
the fifth cycle (<3%) may be due to loss of some amount of the
catalyst during the recovery of the Pd−Au/TiO2 nanocatalyst.
The catalyst was recycled five times without an appreciable
change in the product 2a yield, under the established

Table 4. Synthesis of Anilines 2a−i from Nitroarenes 1a−ra,b

aReaction conditions: nitrobenzene (1 mmol), hydrazine monohydrate (0.5 mL), and Pd−Au/TiO2 (0.1 mol % of Pd−Au). bIsolated yields of
product 2a−r.

ACS Omega Article

DOI: 10.1021/acsomega.8b02064
ACS Omega 2018, 3, 13065−13072

13069



conditions. Thus, on the basis of the above results, it was
confirmed that the Pd−Au/TiO2 nanocatalyst is stable enough
and can be reused.

■ CONCLUSION

In summary, we did a comparative study with as-synthesized
various nanomaterials among all the catalysts and bimetallic
Pd−Au nanoparticles impregnated on TiO2 were found to
exhibit excellent catalytic activity for various nitroarenes rapid
hydrogenation reactions. On the other hand, this catalyst
exhibits chemoselective nitroarenes hydrogenation under green
atmospheric conditions. The Pd−Au/TiO2 catalyst could be
reused several times without any loss of activity. Typical results
indicated the heterogeneous nature of the catalyst with good
reusability.

■ EXPERIMENTAL SECTION

Instruments Used. Structural characterization of the
catalyst was done on PANalytical, X’pertPRO with Cu Kα-
radiation. Raman spectroscopy also corroborated the various
phases of TiO2 and thus the confirmation of various phases of
TiO2 was done by using Raman spectroscopy. Raman
spectroscopy is analyzed in the Raman shift ranging from 70
to 900 cm−1 at the excitation line of 532 nm at room
temperature. The oxidation state and the elemental composi-
tion of the as-prepared catalyst were confirmed by XPS with a

Table 5. Chemoselective Synthesis of Anilines 2s−w from Nitroarenes 1s−wa,b

aReaction conditions: nitrobenzene (1 mmol), hydrazine monohydrate (0.5 mL), and Pd−Au/TiO2 (0.1 mol % of Pd−Au). bIsolated yields of
product 2s−w.

Figure 5. Recyclability of the Pd−Au/TiO2 nanocatalyst in
nitrobenzene hydrogenation reaction.
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Kratos axis ultra-spectrometer with an Al Kα source at 1498.5
eV, by fixing the emission current and applied a voltage at 10
mA and 15 kV. The weight percentages of metals in the
catalysts were confirmed by X-ray fluorescence spectrometry
and energy-dispersive X-ray spectroscopy. High-resolution
TEM was performed by using a JEOL JEM 2100FX TEM
instrument. 1H & 13C NMR spectra were recorded using a
Bruker AVANCE instrument 400 & 100 MHz, respectively.

■ ASSOCIATED CONTENT
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ga.8b02064.

Details of catalyst synthesis and characterization studies
and 1H,13C NMR spectra of all isolated products (PDF)

■ AUTHOR INFORMATION

Corresponding Authors

*E-mail: gvsatya@iith.ac.in (G.S.).
*E-mail: csubbu@iith.ac.in (C.S.).

ORCID

Gedu Satyanarayana: 0000-0002-6410-5421
Challapalli Subrahmanyam: 0000-0002-2643-3854

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

B.L. would like to thank the University Grant Commission
(UGC), New Delhi, for awarding Junior & Senior Research
Fellowship (JRF & SRF).

■ REFERENCES

(1) Wang, D.; Astruc, D. Fast-growing field of magnetically
recyclable nanocatalysts. Chem. Rev. 2014, 114, 6949−6985.
(2) Jamatia, R.; Gupta, A.; Pal, A. K. Ru-Ferrite-Decorated Graphene
(RuFG): A Sustainable and Efficient Catalyst for Conversion of
Aromatic Aldehydes and Nitriles to Primary Amides in Aqueous
Medium. ACS Sustainable Chem. Eng. 2017, 5, 7604−7612.
(3) Narayana, B. L.; Mukri, B. D.; P, G.; Ch, S. Mn Ion substituted
CeO2Nano spheres for Low Temperature CO Oxidation: The
Promoting Effect of Mn Ions. ChemistrySelect 2016, 1, 3150−3158.
(4) Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.;
Basset, J.-M. Magnetically recoverable nanocatalysts. Chem. Rev. 2011,
111, 3036−3075.
(5) Lakshminarayana, B.; Mahendar, L.; Ghosal, P.; Satyanarayana,
G.; Subrahmanyam, C. Nano-sized Recyclable PdO Supported
Carbon Nanostructures for Heck Reaction: Influence of Carbon
Materials. ChemistrySelect 2017, 2, 2700−2707.
(6) Fountoulaki, S.; Daikopoulou, V.; Gkizis, P. L.; Tamiolakis, I.;
Armatas, G. S.; Lykakis, I. N. Mechanistic Studies of the Reduction of
Nitroarenes by NaBH4 or Hydrosilanes Catalyzed by Supported Gold
Nanoparticles. ACS Catal. 2014, 4, 3504−3511.
(7) Tamiolakis, I.; Fountoulaki, S.; Vordos, N.; Lykakis, I. N.;
Armatas, G. S. Mesoporous Au-TiO2 nanoparticle assemblies as
efficient catalysts for the chemoselective reduction of nitro
compounds. J. Mater. Chem. A 2013, 1, 14311−14319.
(8) Seth, J.; Kona, C. N.; Das, S.; Prasad, B. L. V. A simple method
for the preparation of ultra-small palladium nanoparticles and their
utilization for the hydrogenation of terminal alkyne groups to alkanes.
Nanoscale 2015, 7, 872−876.
(9) Seth, J.; Prasad, B. L. V. Bromide ion mediated modification to
digestive ripening process: Preparation of ultra-small Pd, Pt, Rh and
Ru nanoparticles. Nano Res. 2016, 9, 2007−2017.

(10) Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.;
Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M. Trends in
electrocatalysis on extended and nanoscale Pt-bimetallic alloy
surfaces. Nat. Mater. 2007, 6, 241−247.
(11) Chen, G.; Desinan, S.; Rosei, R.; Rosei, F.; Ma, D. Synthesis of
Ni-Ru Alloy Nanoparticles and Their High Catalytic Activity in
Dehydrogenation of Ammonia Borane. Chem.Eur. J. 2012, 18,
7925−7930.
(12) Stratakis, M.; Garcia, H. Catalysis by supported gold
nanoparticles: beyond aerobic oxidative processes. Chem. Rev. 2012,
112, 4469−4506.
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