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Abstract

The nature of dark matter (DM) particles and the mechanism that provides their measured relic abun-

dance are currently unknown. In this paper we investigate inert scalar and vector like fermion doublet DM

candidates with a charge asymmetry in the dark sector, which is generated by the same mechanism that pro-

vides the baryon asymmetry, namely baryogenesis-via-leptogenesis induced by decays of scalar triplets. At

the same time the model gives rise to neutrino masses in the ballpark of oscillation experiments via type II

seesaw. We discuss possible sources of depletion of asymmetry in the DM and visible sectors and solve the

relevant Boltzmann equations for quasi-equilibrium decay of triplet scalars. A Monte-Carlo-Markov-Chain

analysis is performed for the whole parameter space. The survival of the asymmetry in the dark sector leads

to inelastic scattering off nuclei. We then apply Bayesian statistic to infer the model parameters favoured by

the current experimental data, in particular the DAMA annual modulation and XENON100 exclusion limit.

The latter strongly disfavours asymmetric scalar doublet DM of mass O(TeV) as required by DM–DM

oscillations, while an asymmetric vector like fermion doublet DM with mass around 100 GeV is a good

candidate for DAMA annual modulation yet satisfying the constraints from XENON100 data.

 2011 Elsevier B.V. All rights reserved.

1. Introduction

The existence of dark matter (DM) is supported by strong gravitational evidences, i.e. from

galaxy rotation curves, lensing and large scale structures. This implies that the DM particle

should be electrically neutral, massive and stable on cosmological time scales. However its in-
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Fig. 1. A pictorial depiction of triplet scalar � partial decay giving rise to common origin of asymmetries in the lepton

and DM sectors.

trinsic properties are largely unknown and lead to physics beyond the Standard Model (SM),

based on the gauge group SU(3)C × SU(2)L × U(1)Y . On the contrary, its relic abundance,

ΩDM ∼ 0.23, is well measured by the WMAP satellite [1]. However, the mechanism that pro-

vides its relic abundance is not yet established. Another issue concerning SM is the origin of tiny

amount of visible matter in the Universe which is in the form of baryons with Ωb ∼ 0.04, that

could be arising from a baryon asymmetry nB/nγ ∼ 6.15 × 10−10, as established by WMAP

combined with the big-bang nucleosynthesis (BBN) measurements.

In the standard cosmological picture the early Universe has gone through a period of inflation

and then reheated to a temperature at least larger than the epoch of BBN. Therefore the observed

baryon asymmetry of the Universe (BAU) and the DM component must have been generated in

the thermal bath after reheating. If the reheating temperature is less than electroweak (EW) scale

(O(100) GeV), then it is difficult to generate both DM and BAU [2]. On the other hand, if the

reheating temperature is larger than the EW scale, then a handful of mechanisms are available

which can give rise to required BAU, while leaving a large temperature window for creating ΩDM

from the DM species, which is set by freeze-out, a rather independent mechanism with respect to

the dynamics of generating BAU. Indeed in most of the cosmological model, the energy density

of baryons and of DM are independently determined.

The fact that the energy density of DM is about a factor of 5 with respect to the baryonic one

could be a hint that both sectors share a common origin and the present relic density of WIMP is

also generated by an asymmetry. Over the years a large number of possibilities for asymmetric

DM have been proposed [3–38]. The most stringent constraint on asymmetric DM candidate

comes from neutron stars and white dwarfs in globular cluster, which exclude asymmetric scalar

DM below 16 GeV [39,40].

In this paper we consider a relatively heavy asymmetric scalar doublet DM (SDDM) whose

stability is provided by a remnant Z2 flavour symmetry inspired by the Inert Doublet Model [41–

45]. Indeed the asymmetry in this model is rather natural: in the limit in which the number

violating coupling of DM to Higgs goes to zero the Z2 symmetry that protect the DM is ele-

vated to a global U(1)PQ Peccei–Quinn symmetry. We show that the observed relic abundance

of SDDM and BAU originate naturally in a type II seesaw scenario [46–51], as pictorially de-

picted in Fig. 1. To accomplish the unification of asymmetries we extended the SM to include

a SU(2)L scalar triplet � and an inert scalar doublet χ . The partial decay width: � → LL,

where L is the SU(2)L lepton doublet, and � → χχ then induce the asymmetry simultaneously

in both sectors. The lepton asymmetry is then transferred to a baryon asymmetry through the
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sphaleron transitions. In the low energy effective theory the induced vacuum expectation value

(vev) of the same Higgs triplet gives rise to sub-eV Majorana masses, as required by oscillations

experiments [52–54], to the three active neutrinos through the lepton number violating inter-

action �LL + �†HH , where H is the SM Higgs. Thus a triple unification of neutrino mass,

asymmetric DM and baryon asymmetry of the Universe is achieved in a type-II seesaw scenario.

We show that in case of a SDDM χ0, the neutral component of the inert scalar doublet χ ,

the asymmetry in the DM sector gets washed out below EW phase transition by fast oscillations

between χ0 and its complex conjugate field χ0. This sets a limit of the mass scale of χ0 to

be Mχ0 � 2 TeV, so that the DM freezes out before oscillations begin to occur. Such heavy

asymmetric SDDM are quite natural to explain positron anomalies at PAMELA and FermiLAT,

while suppressing non-observation of antiproton fluxes [55]. The small number violating quartic

coupling λ5 of χ (see Section 2.2) to the SM Higgs naturally provides O(keV) mass splitting

between DM particle and its excited state leading to inelastic interaction of detector nuclei and

DM. Indeed by definition during inelastic scattering a DM particle that scatters off a nucleus

produces a heavier state. It has been introduced by [56] for reconciling the annual modulation

at DAMA [57] experiment and the null results at other experiments, e.g. [58–66]. Here we re-

investigate [67] the compatibility of the SDDM, explaining the DAMA signal with the most

recent exclusion bounds of CDMS-II [68], CRESST-II [69] and XENON100 [70]. The SDDM

appears to be strongly constrained by the new XENON100 data.

In analogy to SDDM, we discuss a similar model where the DM candidate is given by a vector

like fermionic doublet, odd under a Z2 flavour symmetry, with mass O(100) GeV, and hence to

be called fermion doublet DM (FDDM). It will arise that the asymmetric inelastic FDDM is

appropriate to explain the high precision annual modulation at DAMA while satisfying the latest

constraint from XENON100 experiment. In that case the small mass splitting arises through a

small Majorana mass of the dark fermion doublet given by the triplet �.

The outline of the paper is as follows. The next section presents the particle physics content

of the scalar triplet model which achieve a triple unification of neutrino mass, asymmetric in-

ert doublet (scalar and fermion) DM and the observed BAU. After briefly commenting about

the neutrino mass we describe the most general scalar potential for triplet scalar, SDDM and

SM Higgs. We also address the issue of generating asymmetries in case of a vector like FDDM

model. In Section 3 we broadly discuss the constraints on asymmetric doublet scalar and fermion

dark matter. In Section 4 the asymmetries in the baryonic and DM sector are computed and possi-

ble wash-out mechanisms are discussed. The Boltzmann equations are solved numerically using

Monte-Carlo–Markov-Chain (MCMC) techniques with CP asymmetries and branching fractions

as free parameters of the theory. Section 5 presents the constraints for inelastic scattering on the

model parameter space from the current direct search experiments, using Bayesian inference and

marginalising over the velocity distribution of the DM particles. We then come to the concluding

remarks in Section 6. The technical details about Bayesian analysis and MCMC are left to Ap-

pendix A. In Appendix B we show the results of the analysis of inelastic scattering in the case of

the standard Maxwellian halo and fixed astrophysical parameters.

2. Scalar triplet model providing darko-lepto-genesis with non-zero neutrino masses

It is known that the bilinear L-violating coupling (�L = 2) of scalar triplet to lepton and Higgs

leads to neutrino mass via type II seesaw. Moreover, the out-of-equilibrium decay of triplets

through the same coupling can give rise to lepton asymmetry in the early Universe [71,72]. Here

the additional decay of scalar triplets to a pair of inert scalar doublets (χ ) or a pair of vector like
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inert fermion doublets (ψ ) simultaneously explain the asymmetries in visible and dark sector. In

our convention the scalar triplet is defined as � = (�++,�+,�0), with hypercharge Y = 1.

2.1. Triplet seesaw and non-zero neutrino masses

Since the lepton number is a conserved quantum number within the SM, the masses of neu-

trinos are exactly zero up to all orders in perturbation theory. On the other hand, oscillation

experiments confirm that the neutrinos are massive, however small, and hence they mix among

themselves. This non-trivial result can be minimally explained by incorporating a heavy triplet

scalar � to the SM of particle physics. The lepton number violating (�L = 2) interaction of �

with SM fields is given by the Lagrangian:

L ⊃ M2
��†� + 1√

2

[

μH �†HH + fαβ�LαLβ + h.c.
]

, (2.1)

where H and L are the SM Higgs and lepton doublets respectively. After the EW phase transition

� acquires a small induced vev, given by

〈�〉 = −μH

v2

√
2M2

�

, (2.2)

where v = 〈H 〉 = 246 GeV. The vev of � is required to satisfy

ρ ≡ M2
W

M2
Z cos2 θ

= 1 + 2x2

1 + 4x2
≈ 1, (2.3)

where x = 〈�〉/v. The above constraint implies that 〈�〉 < O(1) GeV. The trilinear coupling

�LL then give rise to Majorana mass matrix for three flavours of light neutrinos as:

(Mν)αβ =
√

2fαβ〈�〉 = fαβ

(−μH v2

M2
�

)

. (2.4)

Hence for 〈�〉 < O(1) GeV a wide range of allowed values of fαβ gives rise to required neutrino

masses. For fαβ ≈ O(1), the required value of 〈�〉 satisfying neutrino masses can be obtained

by choosing μH ∼ M� ∼ 1012 GeV. This implies that the scale of lepton number violation is

very high. However, in presence of an extra scalar triplet the lepton number violating scale can

be brought down to TeV scales without finetuning, so that its dilepton signatures can be studied

at LHC [73–75].

2.2. Inelastic SDDM in triplet seesaw model

We now extend the Lagrangian (2.1) by including a Inert scalar doublet χ ≡ (χ+χ0)T and

impose a Z2 symmetry under which χ is odd while all other fields are even. As a result χ does

not couple to SM fermions and hence serve as a candidate of DM. The interactions between �,

χ and H can be given by the scalar potential:

V (�,H,χ) = M2
��†� + λ�

(

�†�
)2 + M2

H H †H + λH

(

H †H
)2

+ M2
χχ†χ + λχ

(

χ†χ
)2 +

[

μH �†HH + μχ�†χχ + h.c.
]

+ λ3|H |2|χ |2 + λ4

∣

∣H †χ
∣

∣

2 + λ5

2

[(

H †χ
)2 + h.c.

]

, (2.5)
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where we have neglected the quartic terms involving �–H–χ as those are not relevant for our dis-

cussion since the vev of � is small. The vacuum stability of the potential requires λ�, λH , λχ > 0

and λL ≡ λ3 + λ4 − |λ5| > −2
√

λχλH . We further assume that M2
χ > 0, so that χ does not de-

velop any vev. This is required in order to distinguish the visible matter from DM given by the

neutral component of the doublet χ . Hence the true vacuum of the potential is given by:

〈H 〉 = v; 〈χ〉 = 0 and 〈�〉 = u. (2.6)

Since � is heavy, its vev is small as demonstrated by Eq. (2.2) and hence does not play any role

in the low energy dynamics. Therefore, in what follows we neglect the dynamics of � in low

energy phenomena. The perturbative expansion of the fields around the minimum is:

H =
(

0
v+h√

2

)

and χ =
(

χ+
S+iA√

2

)

. (2.7)

Thus the low energy spectrum of the theory constitutes two charged scalars χ±, two real scalars

h, S and a pseudo scalar A, whose masses are given by:

M2
χ± = M2

χ + λ3
v2

2
,

M2
h = 2λH v2,

M2
S = M2

χ + (λ3 + λ4 + λ5)
v2

2
,

M2
A = M2

χ + (λ3 + λ4 − λ5)
v2

2
. (2.8)

Depending on the sign of λ5, either S or A constitutes the DM. Let us assume that λ5 is negative

and hence S is the lightest scalar particle. The next to lightest scalar particle is then A. The mass

splitting between them is given by

�M2 ≡ M2
S − M2

A = λ5v
2. (2.9)

From which we can deduce the coupling

λ5 = 2MSδ

v2
, (2.10)

where δ = MS − MA. This plays a key role in the direct searches of DM as we will discuss

later. Notice that in the limit λ5 → 0 in the scalar potential (2.5), there is no mass splitting

between S and A and the two degrees of freedom can be re-expressed as χ0 and its complex

conjugate χ̄0. In this limit we discuss the asymmetry between χ0 and χ̄0 via the decay of the

triplet �. We then derive upper bound on DM number violating processes, namely χχ → H †H †

involving the coupling λ5. The smallness of λ5 can be attributed to the breaking of a global U(1)L
symmetry under which χ carries a lepton number +1. Indeed in the absence of μH �†HH

and λ5(H
†χ)2 + h.c. terms in the Lagrangian, there is a global U(1)L symmetry. The other

parameters μH and μχ , which involves in the DM number violating processes χχ → � → HH

and χχ → H → f̄ f , f being the SM fermion, are not necessarily to be small as these processes

are suppressed by the large mass scale of �.
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2.3. Inelastic FDDM in triplet seesaw model

Let us replace the inert scalar doublet χ by a vector like fermion doublet ψ ≡ (ψDM,ψ−)

of hypercharge Y = −1/2. With the same Z2 symmetry, under which ψ is odd, the neutral

component of ψ i.e. ψDM can be a candidate of DM. The relevant Lagrangian including the

triplet scalar � is:

−L ⊃ M2
��†� + MDψψ + 1√

2

[

μH �†HH + fαβ�LαLβ + g�ψψ + h.c.
]

, (2.11)

where MD ∼ O(100) GeV is the Dirac mass of ψ . The bilinear DM coupling �ψψ can be

re-expressed as:

1√
2
g�ψψ ≡ 1√

2
gψciτ2�ψ

= −1

2
g
[
√

2
(

ψc
−ψ−�++)

+
(

ψc
−ψDM + ψc

DMψ−
)

�+

−
√

2
(

ψc
DMψDM�0

)]

, (2.12)

where we have used the matrix form of the triplet scalar:

� =
(

�+√
2

�++

�0 −�+√
2

)

. (2.13)

After EW symmetry breaking the neutral component of � acquires an induced vev and hence

give rise a small Majorana mass to ψ , m =
√

2g〈�0〉.
Therefore the Dirac spinor ψDM can be written as sum of two Majorana spinors (ψDM)L and

(ψDM)R . The Lagrangian for the DM mass becomes:

−LDMmass = MD

[

(ψDM)L(ψDM)R + (ψDM)R(ψDM)L
]

+ m
[

(ψDM)cL(ψDM)L + (ψDM)cR(ψDM)R
]

. (2.14)

This implies there is a 2 × 2 mass matrix for the DM in the basis {(ψDM)L, (ψDM)R}. By di-

agonalising it two mass eigenstates (ψDM)1 and (ψDM)2 arise, with masses Mψ1 = MD − m

and Mψ2 = MD + m. Thus the mass difference between the two states δ = 2m ∼ O(100) keV

is required by the direct search experiments. We will come back to this issue while discussing

inelastic scattering of DM with nucleons. Note that in this case the inelastic scattering of DM

with nucleons (i.e. (ψDM)1N → (ψDM)2N ) via SM Z-exchange dominates to elastic scattering,

as in the case of the scalar candidate.

Now we will briefly comment about the dark matter asymmetry. Similar to the decay of � →
χχ , the decay of � → ψψ will produce an asymmetry in the dark sector. Since ψ is odd under

a Z2 flavor symmetry, it will not couple to any other SM fields and hence the asymmetry will

remain in ψDM for ever, namely in this case there are no strong wash-out processes.

2.4. Sub-eV neutrino mass versus keV Majorana mass of FDDM

Notice that in case of FDDM, the induced vev of � introduces two mass scales. One is the

Majorana mass of neutrinos, i.e. Mν =
√

2f 〈�0〉 ∼ O(1) eV and other is the Majorana mass of

DM, i.e. m =
√

2g〈�0〉 ∼ O(100) keV. This implies a hierarchy between the two couplings f

(third term in Eq. (2.11)) and g (fourth term in Eq. (2.11)) of the order of O(105) in order to

explain the triple unification of neutrino mass, asymmetric DM and BAU.
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3. Constraints on asymmetric inert doublet (scalar and fermion) DM

3.1. Constraints on SDDM from oscillation

In case of SDDM the two states χ0 and its complex conjugate χ̄0 can be written in terms of

the mass eigenstates S and A:

|χ0〉 = 1√
2
(S + iA),

|χ̄0〉 = 1√
2
(S − iA). (3.1)

The state |χ0〉 at any space–time point (x, t) is given by

∣

∣φ(x, t)
〉

= 1√
2

[

e−i(ES t−kSx)|S〉 + ie+i(EAt−kAx)|A〉
]

, (3.2)

where ES =
√

k2
S + M2

S and EA =
√

k2
A + M2

A are the energy of S and A respectively. The prob-

ability of |χ0〉 oscillating into |χ̄0〉 is then given by

P|χ0〉→|χ̄0〉 =
∣

∣

〈

χ̄0

∣

∣φ(x, t)
〉∣

∣

2
. (3.3)

Using Eqs. (3.1) and (3.2) the probability of oscillation takes the form:

P|χ0〉→|χ̄0〉 = 1

4

[

2 − e−i[(ES−EA)t−(kA−kS )x] − e+i[(ES−EA)t−(kA−kS )x]]. (3.4)

Above the EW phase transition there is no mass splitting between the two mass eigenstates S

and A, therefore MS = MA, ES = EA and kS = kA. As a result from Eq. (3.4) the probability of

oscillation is null:

P|χ0〉→|χ̄0〉 = 0. (3.5)

Below the EW phase transition the DM number violating term λ5
2 ((H †χ)2 + h.c.) produce

a mass splitting between the two mass eigenstates S and A. From Eq. (3.4) the probability of

oscillation becomes:

P|χ0〉→|χ̄0〉 ≃ 1

2

[

1 − cos

(

�M2(t − tEW)

2E

)]

, (3.6)

where we have assumed ES ∼ EA ∼ E, which is a good approximation for a small mass splitting.

In the following we will consider a mass splitting of O(keV), which implies λ5 ∼ 10−7. We

also normalise the time of evolution from the time of EW phase transition, so that at t = tEW,

P|χ0〉→|χ̄0〉 = 0. Below EW phase transition the time of oscillation from χ0 to χ̄0 can be estimated

as

t − tEW = 2Eπ

�M2
. (3.7)

In the relativistic limit the energy of the DM particle E ∼ T , where T is the temperature of the

thermal bath. Hence the oscillation time can be given as:

t − tEW ∼
(

4 × 10−10 s
)

(

T

100 GeV

)(

keV2

�M2

)

. (3.8)
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On the other hand, in the non-relativistic limit the energy of the DM particle E ∼ MS . Thus for

MS ∼ 100 GeV, the time of oscillation is again similar to relativistic case. This implies that χ0

oscillates rapidly to χ̄0. In this case if χ0 is in thermal equilibrium then during each oscillation

there is a leakage of asymmetry through the annihilation channel χ0χ̄0 → SM particles. Alter-

natively to keep the generated asymmetry intact χ0 should freeze-out before it oscillate to χ̄0. In

other words, the mass of χ0 should be given by

Mχ0 � xf TEW, (3.9)

where xf ∼ 20, which determines the epoch of freeze-out. From the above equation we see that

to get an asymmetric SDDM one should have Mχ0 � 2 TeV.

3.2. Constraints from collider

Since the DM (scalar or fermion) is a doublet under the SM gauge group, it couples to the Z

boson. As a result they can change the invisible decay width of the later unless the mass of DM is

greater than half of Z-boson mass. This gives a lower bound on the mass scale of either SDDM

or FDDM to be � 45 GeV [76].

4. Developing asymmetries in the lepton and DM sectors

If the triplet � is heavy enough as required by the seesaw, then it can go out-of-equilibrium

even if the gauge couplings are O(1) [71,72,77,78]. In such a case the out-of-equilibrium decays

of � → LL and � → χχ(ψψ) produce asymmetries in visible and dark sectors respectively.

The CP asymmetry for the two sectors arise via the interference of tree-level decay and self-

energy correction diagrams as shown in Figs. 2 and 3 respectively, for the scalar DM case, but

totally analogous for the fermionic doublet.

Considering the inert scalar doublet as a reference for the scalar potential, from Figs. 2 and 3

we see that the CP asymmetry requires at least two triplet scalars. Hence in presence of their

interactions, the diagonal mass M2
� in Eq. (2.5) is replaced by:

1

2
�†

a

(

M
2
+
)

ab
�b + 1

2

(

�∗
a

)†(
M

2
−
)

ab
�∗

b, (4.1)

and the trilinear couplings μH �†HH + μχ�†χχ + h.c. in the scalar potential (2.5) become:

∑

a=1,2

μaH �†HH + μaχ�†χχ + h.c. (4.2)

In Eq. (4.1), the mass matrix is given by:

M
2
± =

(

M2
1 − iC11 −iC±

12

−iC±
21 M2

2 − iC22

)

, (4.3)

where

C+
ab = ΓabMb = 1

8π

(

μaH μ∗
bH + μaχμ∗

bχ + MaMb

∑

αβ

f ∗
aαβfbαβ

)

, (4.4)

with C−
ab = Γ ∗

abMb , and Caa = ΓaaMa . Solving the mass matrix (4.3) one gets two mass eigen-

states ξ+
1,2 = A+

1,2�1 +B+
1,2�2 with masses M1 and M2. The complex conjugate of ξ+

1,2 are given
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Fig. 2. Tree-level and self-energy correction diagrams for the production of CP asymmetry in leptogenesis.

Fig. 3. Tree-level and self-energy correction diagrams for the production of CP asymmetry in generating asymmetric DM.

by ξ−
1,2 = A−

1,2�1 + B−
1,2�2. Note that ξ+ and ξ− states are not CP eigenstates and hence their

decay can give rise to CP asymmetry. We assume that there is no asymmetry, either in the visible

sector or in the dark sector, at a temperature above the mass scale of the triplets. The asymmetries

are generated in a thermal bath by the decay of these triplets. If we further assume that the mass

of ξ±
1 is much less than the mass of ξ±

2 then the final asymmetries in visible and dark sectors will

be given by the decay of ξ±
1 as:

ǫL = 2
[

Br
(

ξ−
1 → ℓℓ

)

− Br
(

ξ+
1 → ℓcℓc

)]

≡ ǫvis,

ǫχ = 2
[

Br
(

ξ−
1 → χ0χ0

)

− Br
(

ξ+
1 → χ∗

0 χ∗
0

)]

≡ ǫdark, (4.5)

where the front factor 2 takes into account of two similar particles are produced per decay. From

Figs. 2 and 3, the asymmetries are estimated to be:

ǫL =
Im

(

μ1χμ∗
2χ

[

1 + μ1H μ∗
2H

μ1χμ∗
2χ

]
∑

αβ f1αβf ∗
2αβ

)

8π2(M2
2 − M2

1 )

[

M1

Γ1

]

, (4.6)

and

ǫχ =
Im

(

μ1χμ∗
2χ

[μ1H μ∗
2H

M2
1

+ ∑

αβ f1αβf ∗
2αβ

])

8π2(M2
2 − M2

1 )

[

M1

Γ1

]

, (4.7)

where Γ1 ≡ Γ11.

In a thermal bath these asymmetries evolve as the Universe expands and settle to a final value

as soon the relevant processes go out of equilibrium, i.e.

Γi ≡ ni

〈

σi |v|
〉

≪ H(T ), (4.8)
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where H(T ) is the Hubble scale of expansion. As a result the Yields in both sectors can be

written as:

YL ≡ nL

s
= ǫLXξηL,

Yχ ≡ nχ

s
= ǫχXξηχ , (4.9)

where Xξ = nξ−
1
/s ≡ nξ+

1
/s, s = 2(π2/45)g∗T 3 is the entropy density and ηL, ηχ are the effi-

ciency factors, which take into account the depletion of asymmetries due to the number violating

processes involving χ , L and H (this holds also for the fermionic inert doublet, hence we can

replace χ → DM label). At a temperature above the EW phase transition a part of the lepton

asymmetry gets converted to the baryon asymmetry via the SU(2)L sphaleron processes. As a

result the baryon asymmetry [79] is:

YB = − 8n + 4m

14n + 9m
YL = −SDMYL, (4.10)

where n is the number of generation and m is the number of scalar doublets, leading to SDM =
0.53,0.55 for scalar DM and fermionic DM respectively.

As introduced in Section 2.2, in the case of the scalar doublet DM, the asymmetry may

strongly washed out, if kinematically allowed, by the DM number violating processes: χχ →
� → HH , χχ → H †H † (contact annihilation through λ5 coupling) and χχ → H → f̄ f . The

reduced cross-section for the former process is given by:

σ̂ (χχ → � → HH) = 1

8π

|μχ |2|μH |2
(ŝ − M2

1 )2
, (4.11)

where ŝ is the centre of mass energy for the process: χχ → � → HH . Below the mass scale of

the triplet this process is strongly suppressed. On the other hand, in case of the contact annihila-

tion of χ ’s the reduced cross-section is given by

σ̂χ = λ2
5

32π
. (4.12)

As a result the reaction rate is given by Γχ = (γχ/n
eq
χ ), where the reaction density is

γχ = T

64π4

∞
∫

ŝmin

dŝ
√

ŝK1

(

√
ŝ

T

)

σ̂χ , (4.13)

and the equilibrium number density of χ is

n
eq
χ =

gdofM
2
χT

2π2
K2

(

Mχ

T

)

, (4.14)

where gdof is the internal degrees of freedom and ŝ is the usual Mandelstam variable for the center

of mass energy. In Eqs. (4.13) and (4.14), K1 and K2 are modified Bessel functions. In Fig. 4

we compare the rate of the process χχ → H †H † with the Hubble rate by taking three values

of λ5. We see that for λ5 � 10−5 (blue dotted line), the scattering rate remains out-of-equilibrium

through out the epoch. For larger values of λ5 the scattering process comes to equilibrium at late

epoch. At around z ≡ M1/T ≈ 107, which implies Mχ/T = (Mχ/M1)z ≈ 1, the scattering rate

of the process sharply drops as it is expected and does not depend on the value of λ5. This
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Fig. 4. The scattering rate of the process χχ → H †H † for different values of λ5 is compared with the Hubble expansion

rate. For illustration purpose we have used Mχ = 2 TeV and M1 = 1010 GeV.

argument also holds in case of the process χχ → H → f̄ f . However, the rate of the scattering

is further suppressed by the mass scale of Higgs.

Returning to the general case of doublet DM, both scalar and fermion, from Eqs. (4.9)

and (4.10) the DM to baryon ratio is given by:

ΩDM

ΩB

= 1

SDM

mDM

mp

ǫDM

ǫL

ηDM

ηL

, (4.15)

where mp ∼ 1 GeV is the proton mass. From this equation it is clear that the dependence of

ηDM/ηL on the mass of DM goes as 1/mDM. Hence for a O(100) GeV scale DM, the required

efficiency factor for DM is two orders of magnitude less than the case of lepton provided that

the CP asymmetries are equal on both sectors (see the end of Section 4.2). For example, from

Eqs. (4.6) and (4.7) we notice that the CP asymmetries are identically equal if:

μ1χμ∗
2χ

M2
1

=
∑

α,β

f1αβf ∗
2αβ . (4.16)

In what follows, Section 4.2, we solve numerically the relevant Boltzmann equations for

quasi-equilibrium evolution of triplet scalars, presented in Section 4.1, to show that the parame-

ter space of the theory fulfils the criteria ΩDM ∼ 5ΩB and the observed BAU, while allowing a

broad range of asymmetric DM masses.

4.1. Boltzmann equations for quasi-equilibrium evolution of triplet scalars

If the triplet (ξ±
1 ) decay occurs in a quasi-equilibrium state then the detailed of ηχ and ηL

depends on the dynamics of the processes occurring in the thermal bath and can be obtained by
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solving the relevant Boltzmann equations [80,81]. In our case the additional decay channel of the

scalar triplet into DM particles is included.

At first the number density of ξ±
1 particles changes due to their decay (ξ±

1 → LL, HH , χχ

or ψψ ) and gauge annihilation (ξ−
1 ξ+

1 → L̄L, H †H , χ†χ(ψ̄ψ), WμWμ, BμBμ), where Wμ

and Bμ are the SU(2)L and U(1)Y gauge bosons respectively. If we assume that the masses of

the components of the triplet are same before EW symmetry breaking then it is fairly general to

use the dimensionless variables z = M1/T and Xξ = nξ−
1
/s ≡ nξ+

1
/s. The Boltzmann equation

for the evolution of ξ±
1 density is then given by:

dXξ1

dz
= − ΓD

zH(z)

(

Xξ1 − X
eq
ξ1

)

− ΓA

zH(z)

(

X2
ξ1

− X
eq
ξ1

2

X
eq
ξ1

)

, (4.17)

where

ΓD = Γ1
K1(z)

K2(z)
, ΓA = γA

n
eq
ξ1

and H(z) = H(T = M1)

z2
, (4.18)

and γA’s are the scattering densities, described in Eqs. (4.20). The temperature independent decay

rate of ξ1 can be written as a function of the neutrino mass:

Γ1 = 1

8π

|mν |M2
1

〈H 〉2
√

BLBH

, (4.19)

where BL and BH are the branching fractions in the decay channels: ξ1 → LL and ξ1 → HH .

Note that we have re-expressed the total decay rate Γ1(fDM, fH , fL,M1), where fDM ≡ μχ/M1

for SDDM and g for FDDM and fH ≡ μH /M1, as Γ1(mν,BL,BH ,M1). In the following we

set mν = 0.05 eV and therefore the total decay rate depends only on three variables, namely BL,

BH and M1. This makes a crucial decision in setting up the final asymmetry as we will show in

Section 4.2.

For the gauge annihilation processes, the scattering densities are given by:

γ
(

ξ+
1 ξ−

1 → f̄ f
)

= M4
1 (6g4

2 + 5g4
Y )

128π5z

∞
∫

xmin

dx
√

xK1(z
√

x)r3 ,

γ
(

ξ+
1 ξ−

1 → H †H
)

= M4
1 (g4

2 + g4
Y /2)

512π5z

∞
∫

xmin

dx
√

xK1(z
√

x)r3,

γ
(

ξ+
1 ξ−

1 → χ†χ
)

= M4
1 (g4

2 + g4
Y /2)

512π5z

∞
∫

xmin

dx
√

xK1(z
√

x)r3,

γ
(

ξ+
1 ξ−

1 → W aW b
)

= M4
1g4

2

64π5z

∞
∫

xmin

dx
√

xK1(z
√

x)

[

r

(

5 + 34

x

)

− 24

x2
(x − 1) ln

(

1 + r

1 − r

)]

,

γ
(

ξ+
1 ξ−

1 → BB
)

= 3M4
1g4

Y

128π5z

∞
∫

xmin

dx
√

xK1(z
√

x)

[

r

(

1 + 4

x

)

− 4

x2
(x − 2) ln

(

1 + r

1 − r

)]

,

(4.20)
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where r = √
1 − 4/x and x = ŝ/M2

1 . In case of FDDM, the process corresponding to ξ+
1 ξ−

1 →
χ†χ is given by:

γ
(

ξ+
1 ξ−

1 → ψ̄ψ
)

= M4
1 (6g4

2 + 5g4
Y )

128π5z

∞
∫

xmin

dx
√

xK1(z
√

x)r3. (4.21)

Since ξ±
1 are charged particles there is an evolution of the asymmetry: Yξ1 = (nξ−

1
− nξ+

1
)/s

due to the decay and inverse decay of ξ±
1 particles. The evolution of Yξ1 is described by the

Boltzmann equation:

dYξ1

dz
= − ΓD

zH(z)
Yξ1 +

∑

j

Γ
j

ID

zH(z)
2BjYj , (4.22)

where Yj = (nj − nj̄ )/s, with j = L,H,χ(ψ) and

Γ
j

ID = ΓD

X
eq
ξ1

X
eq
j

and Bj = Γj

Γ1
, (4.23)

where Xj = nj/s. The evolution of the asymmetries Yj is given by the Boltzmann equation:

dYj

dz
= 2

{

ΓD

zH(z)

[

ǫj

(

Xξ1 − X
eq
ξ1

)]

+ Bj

(

ΓD

zH(z)
Yξ1 − Γ

j

ID

zH(z)
2Yj

)

−
∑

k

Γ k
S

zH(z)

X
eq
ξ1

X
eq
k

2Yk

}

, (4.24)

where ΓS = γS/n
eq

ξ−
1

is the scattering rate involving the number violating processes, such as

χχ → ξ → HH , LL → ξ → HH . The front factor in Eq. (4.24) takes into account of the two

similar particles produced in each decay.

Solving the Boltzmann equations (4.17), (4.22) and (4.24) we can get the lepton (YL) and dark

matter (YDM) asymmetries. Note that because of the conservation of hypercharge the Boltzmann

equations (4.17), (4.22) and (4.24) satisfy the relation: 2Yξ + ∑

j Yj = 0. This implies:

Yξ = −1

2

∑

j

Yj . (4.25)

We will follow a phenomenological approach and calculate the ratio of efficiency factors ηDM

and ηL (and hence also the individual efficiency) solving the set of coupled equations (4.17),

(4.22) and (4.24). As usual the efficiency factor for the species i = L,H,DM is defined as:

ηi = Yi

ǫiXξ |T ≫M1

. (4.26)

The free parameters of the model are the CP asymmetries ǫi for all the species, the dark matter

mass mDM and the triplet mass M1. However in the remaining of the paper we will focus on heavy

triplet, M1 ∼ 1010 GeV, which has been shown to lead to successful leptogenesis [80,81] for a

wide range of CP asymmetries and branching ratios. In addition the following constraints apply:
∑

j

ǫj = 0,
∑

j

Bj = 1 and |ǫj | � 2Bj . (4.27)
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The first and third conditions ensure that all amplitudes are physical and the total amount of

CP violation cannot exceed 100% in each channel, while the second condition simply demands

unitarity of the model. The number of free parameters therefore drops to 5, which we choose to

be: ǫL, ǫDM, BL, BDM and mDM. The numerical procedure and the results are described in the

next section.

4.2. Numerical solutions of the Boltzmann equations

In principle for unlimited computational power one could use a griding method to explore the

whole parameter space and to localise the hypervolume that satisfies Eq. (4.15). For the problem

under scrutiny we have a 5-dimensional space: MCMC technique is well suited in this case since

it numerically scales linearly with the number of dimension instead of exponentially. We follow

the approach presented in [82].1

Defining a probability measure over the full parameter space allows to use Bayesian inference

to assess the posterior probability distribution of all the parameters to get asymmetry in the

dark sector as well as in the lepton sector, which gives rise to observed BAU. The details about

Bayesian statistical methods and the implementation of the MCMC are given in Appendix A,

while for detailed reviews we refer to e.g. [84,85]. The important point that has to be underlined

is that through Bayes’ theorem:

P (θ |X)dθ ∝ L(X|θ) · π(θ)dθ, (4.28)

the posterior probability density function (pdf) P (θ |X) for the model parameter θ , given the

data X, is proportional to the likelihood of the experiment times the prior belief in our model

π(θ) and is sampled directly by the MCMC elements.

The likelihood function L(X|θ) denotes the probability of the data X given some theoretical

prediction θ and plays a central role in Bayesian inference. Both the abundances of dark matter

ΩDM and baryonic matter Ωb are variables normally distributed around their mean values given

by WMAP measurements [1]: ΩDM ≡ Ω̄DM ± σDM = 0.227 ± 0.014 and Ωb ≡ Ω̄b ± σb =
0.0456 ± 0.0016. Since we are interested in the ratio of the dark to baryonic matter, Eq. (4.15),

we define the likelihood as the probability distribution of the model parameter to satisfy that

ratio. The likelihood is therefore well described by the so-called ratio distribution [86], which is

constructed as the distribution of the ratio of variables normally distributed with non-zero mean.

Calling r = ΩDM/Ωb ≡ f (mDM, ǫi,Bi), the likelihood reads:

Lratio = 1√
2πσbσDM

b(r)c(r)

a(r)3
Φ

(

b(r)

a(r)

)

+ exp(−1/2(Ω̄2
DM/σ 2

DM + Ω̄2
b/σ 2

b ))

a(r)2πσbσDM
, (4.29)

with:

a(r) =
√

z2

σ 2
DM

+ 1

σ 2
b

,

b(r) = Ω̄DM

σ 2
DM

r + Ω̄b

σ 2
b

,

1 MCMC technique has been applied for scanning hybrid inflationary parameter space [82] and for investigating the

multi-dimensional parameter space of supersymmetric theories, e.g. [83].
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Fig. 5. Left: Likelihood function Lratio given by the ratio distribution, as a function of r ≡ ΩDM/Ωb . Right: Logarithm

of the ratio likelihood (red line) and logarithm of a Gaussian distribution (dashed gray curve). Both curve have the same

variance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

c(r) = exp

(

1

2

b(r)2

a(r)2
− 1

2

(

Ω̄2
DM

σ 2
DM

+ Ω̄2
b

σ 2
b

))

,

Φ(u) = Erf

(

u√
2

)

, (4.30)

with Erf being the error function. The shape of the likelihood function is depicted in Fig. 5, where

it can be seen that the peak is at around r ∼ 5 as it is expected. In the right plot we show that

the ratio distribution is slightly skewed with respect to a Gaussian distribution (gray dashed line)

with the same variance.

In addition the baryon asymmetry should satisfy the constraints from WMAP:

ηb =
(

nb

nγ

)∣

∣

∣

∣

0

= η̄b ± σηb = (6.15 ± 0.25) × 10−10, (4.31)

where ηb = 7.02 × SDMYL, and the density of photon and baryons are computed at present time.

The baryon asymmetry is described by a Gaussian distribution:

LL ∝ exp

(

− (ηb − η̄b)
2

2σ 2
ηb

)

. (4.32)

Summarising, the logarithm of the total likelihood is given by the sum of Eqs. (4.29) and (4.32):

ln Lasym = ln Lratio + ln LL. (4.33)

MCMC techniques require a prior assumption on the probability distribution of the parame-

ters, namely on π(θ). In the absence of theoretical constraints on the model parameter there are

a priori no constraints on these quantities. We therefore focus on the regions singled out by suc-

cessful triplet leptogenesis in [80,81], that is values of the CP asymmetries ranging from 10−9 to

1 and branching ratios from 1 to 10−5. In order not to support a particular scale we choose flat

prior on the log distribution for each parameters, as described in Table 1. The dark matter mass is

let free to vary between 1 GeV up to 10 TeV (even though masses below 50 GeV are excluded by

LEPII). As it is known, if the data are not informative enough a dependence on the prior choice

is left in the posterior pdf.
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Table 1

MCMC parameters and priors for the CP

asymmetries, branching ratios and mDM . All

priors are uniform over the indicated range.

MCMC parameter Prior

log(mDM/GeV) 0→5

log(ǫL) −9→0

log(ǫDM) −9→0

log(BL) −5→0

log(BDM) −5→0

Fig. 6. Left: 1D posterior pdf for the DM mass mDM . Right: 2D credible regions at 68% and 95% C.L. in the

{mDM, ηDM/ηL}-plane. The vertical dot-dashed blue line denotes the bound from LEPII, while the red dashed vertical

line marks the bound from χ0–χ̄0 oscillations for SDDM. All of other parameters in each plane have been marginalised

over. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

We present in the following the results of the Bayesian inference for the case of the asymmet-

ric inert scalar doublet dark matter (SDDM).

In the left panel of Fig. 6 we show the 1D posterior pdf for mDM, while all other parameters

are marginalised over. We see that all the mass range from 1 GeV up to ∼ 4 TeV can lead

to successful leptogenesis, namely YL ∼ 10−10 and an asymmetric dark matter satisfying the

ratio Eq. (4.15). The vertical blue line denotes the bound from the Z decay width and masses

below 50 GeV are excluded, while the region on the left of the red vertical line is excluded

by χ0–χ̄0 oscillations. As one can see from the posterior pdf the most favoured region is at

mDM ∼ 10 GeV, while there are candidates at 100 GeV with smaller statistical significance.

With even less probability but still viable are candidates at TeV, which is the range of interest

for SDDM. On the right panel of Fig. 6 the 68% and 95% credible region are shown in the

{mDM, ηDM/ηL}-plane. From there we see that for DM mass up to around 500 GeV, the preferred

values of the ratio ηDM/ηL remains constant to be around 10–50 as these are easily compensated

by the small CP asymmetry ratio ǫDM/ǫL. However, for DM masses above O(TeV), ǫDM/ǫL
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Fig. 7. Left: 2D posterior pdf in the {BDM, ηDM/ηL}-plane. Right: Same as left in the {BL, ηDM/ηL}-plane. The credible

regions are given at 68% and 95% C.L. All of other parameters in each plane have been marginalised over.

Fig. 8. Left: 2D posterior pdf in the {ηDM, ηL}-plane. Central: 2D posterior pdf in the {BDM, ηDM}-plane. Right: Same

as left in the {BL, ηL}-plane. The credible regions are given at 68% and 90% C.L. All of other parameters in each plane

have been marginalised over.

is not sufficiently small to compensate with large ηDM/ηL and therefore, the preferred values

of ηDM/ηL remains to be around unity. Alternatively for a given DM mass, smaller values of

ηDM/ηL are allowed at 95% C.L. for ǫDM/ǫL > 1.

The above preferred values of the parameter space can be understood from the Boltzmann

equation (4.24) in which the input parameters are the CP asymmetries and the branching ratios.

Having chosen a mass of the scalar triplet of 1010 GeV the dominant processes that regulate

the Boltzmann equations are the decay and inverse decay, and fundamental quantities are the

branching ratios. In Fig. 7 we show the correlation of ηDM/ηL versus BDM and BL respectively

in the left and right panels, within the 68% and 95 % credible regions. We see that large efficiency

ratio ηDM/ηL is preferred when BL → 1 and small BDM → 10−5. This is because larger the

value of BL (which implies smaller is the BDM as
∑

i Bi = 1 with i = L,H,DM) the larger

is the washout due to inverse decay and hence leads to small ηL. On the contrary smaller is

the BDM the washout effect is small due to inverse decay and hence large ηDM. Note that in
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Fig. 9. Left: Absolute value for the Yield of leptons (cyan solid), DM (dotted magenta), Higgs (dashed black), ξ asym-

metry (solid red) plus scalar triplet abundancy (black solid), for a successful point with mDM = 86 GeV, BL = 0.09,

BDM = 4.1 × 10−4 , ǫL = 2.6 × 10−6 , ǫDM = 1.1 × 10−8 which leads to r ≡ ΩDM/Ωb = 4.75, YL = 1.7 × 10−10

and ηDM/ηL = 6.53. Right: Same as left for mDM = 2 TeV, BL = 9.5 × 10−3, BDM = 2.6 × 10−5 , ǫL = 7 × 10−7 ,

ǫDM = 1.2 × 10−9 , ΩDM/Ωb = 5.4 and YL = 1.6 × 10−10 and ηDM/ηL = 0.86. The |Yi | are rescaled in terms of CP

asymmetries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

either case the production of asymmetry is proportional to Γ1 ∝ 1/
√

BLBH . Therefore when BL

approaches towards 10−5 the asymmetry (YL) as well as the efficiency (ηL) get increased. On the

other hand, when BDM approaches towards 1, which implies small BL, the asymmetry YDM gets

increased but efficiency gets decreased. These behaviours of ηDM and ηL can be confirmed from

Fig. 8 where we have shown the 2D credible regions at 68% and 95% C.L. The extreme left one,

which constitutes the summary of middle and right ones, reveals that a successful asymmetric

dark matter and lepton asymmetry can be generated with small ηL and large ηDM. In other words,

large BL and small BDM are required in favour of the observed BAU and asymmetric dark matter.

For sake of reference we report the preferred values of the input CP asymmetries. The pre-

ferred values range between 10−9–10−2 for ǫDM, respectively to BDM = 10−5–0.5. A more

tighter range is selected in the case of the lepton CP asymmetry: 10−8–10−5 again for BL rang-

ing from its extremal values. We remark in addition that for large BDM and small BL and masses

around 50 GeV, the CP asymmetry in the DM sector can be larger by an order of magnitude with

respect to ǫL to compensate the small value of ηDM/ηL.

Regarding the inert fermionic doublet DM (FDDM) candidate, the discussion is very similar.

We have verified that there are no substantial differences in the selected 1D and 2D credible

regions as the Boltzmann equations are same in both cases. A small difference comes from the

internal degrees of freedom which makes the equilibrium value of a FDDM different from a

SDDM. Therefore, in case of FDDM, the allowed mass range goes up to a few TeV starting from

50 GeV as shown in Fig. 6.

In Fig. 9 we show the behaviour of the Yields for leptons, Higgs, DM, scalar triplet and Xξ for

two particular points. The first point in the parameter space is shown in the left panel, which leads

to a successful model for FDDM with a mass of ∼ 86 GeV, r ∼ 4.8 and YL = 1.7 × 10−10. The

second point in the parameter space is depicted in the right panel and accounts for a SDDM with
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Fig. 10. Left: 1D posterior pdf (black solid line) for the DM mass mDM. The vertical dot-dashed blue line denotes the

bound from LEPII. Middle: 2D credible regions at 68% and 95% C.L. in the {mDM, ηDM/ηL}-plane. Right: Same as

middle in the {BDM,BL}-plane. All of other parameters in each plane have been marginalised over. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)

mDM ∼ 2 TeV, r ∼ 5.3 and successful baryon asymmetry, YL = 1.6 × 10−10. The details about

the parameters are given in the caption. These two points are representative of the behaviour

discussed above. In particular, for the left panel the branching ratios are BL = 0.09 and BDM =
4.1 × 10−4, which implies small ηL and large ηDM. Therefore, the ratio of ηDM/ηL is maximum

and can be confirmed from Fig. 7. For the figure in right panel the branching ratios are both small

BL = 9 × 10−3 and BDM = 3 × 10−5, which implies ηDM and ηL are comparable. As a result

the ratio ηDM/ηL ∼ 0.9 and the large DM mass is compensated by the very small CP asymmetry

ratio. This behaviour can be confirmed from Fig. 7.

For checking the consistencies, we have investigated the behaviour of efficiency factors in

case of equal CP asymmetries in DM and lepton channels. There are two interesting results that

come out from the MCMC run, shown in Fig. 10. In the left panel the 1D posterior pdf for the DM

mass is depicted. We note that equal asymmetries lead to a upper bound to the asymmetric dark

matter mass of O(50) GeV and can be applied to the case of FDDM. This is some how expected

because the ratio of CP asymmetries cannot compensate the increasing DM mass and therefore

around 100 GeV there are no more candidate which can fulfil the DM to baryon requirement.

This can be seen from the central panel where the 2D credible regions in the {mDM, ηDM/ηL}-
plane are shown: the ratio of efficiency drops very rapidly as soon the DM mass increases. As a

consequence we found the known results of a light DM mass, around 10 GeV, being favoured.

In the right panel the 2D credible regions are shown in the BL–BDM plane. We see that the

preferred branching ratios are similar in magnitude as expected and therefore the efficiencies are

comparable. In other words the preferred ratio ηDM/ηL � 0.1 for mDM � 50 GeV.

5. Inelastic scattering and asymmetric DM

In this section we briefly recall the definition of event rate in a detector and discuss the fea-

tures of inelastic scattering. For each experiments we describe the likelihood functions used in

the data analysis and the choice of priors. In the case of direct detection signals, the only free

parameters of the model are mDM and the mass splitting δ. For details on the experimental set up

and Bayesian inference we refers to Appendix A and [87].
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5.1. Experiment description, likelihoods and priors

The direct detection experiments aim to detect or set limits on nuclear recoils arising from

the scattering of DM particles off target nuclei. The energy ER transferred during the collision

between the incident particle with mass mDM and the nucleus with mass MN is of the order of

the keV for a mean DM velocity of v/c ∼ 10−3 in the Galactic halo. The differential spectrum

for such recoils, measured in events per day/kg/keV, is given by

dR

dER

= ρ⊙
mDM

dσ

dER

η(ER, t), (5.1)

where dσ/dER encodes all the particle and nuclear physics factors, ρ⊙ ≡ ρDM(R⊙) is the DM

density at the Sun position and η(ER, t) is the mean inverse velocity of the incoming particles

that can deposit a given recoil energy ER :

η(ER, t) =
∫

vmin

d3�v f (�v(t))

v
, (5.2)

where the velocity �v is taken with respect to the Earth frame. The quantity vmin is the minimum

velocity needed to lead to a recoil inside the detector:

vmin = c

√

1

2MN ER

(

MN ER

μn

+ δ

)

, (5.3)

where μn the WIMP–nucleus reduced mass and MN is the nucleon mass. δ denotes the mass

splitting between the DM particle and the excited state, therefore proportional to λ5 in case of

SDDM and Majorana mass in case of FDDM. The value required by preserving the asymmetry,

λ5 ∼ 10−7 leads precisely to δ ∼ 100 keV, the right order of magnitude for inelastic scattering

in case of SDDM. On the other hand, in case of FDDM, δ ∼ m, the Majorana mass of FDDM.

The total event rate per unit detector mass is obtained integrating Eq. (5.1) in a given energy

bin [E1,E2],

R(t) =
E2
∫

E1

dER ǫ(ER)
dR

dER

, (5.4)

where ǫ is the energy dependent efficiency of the detector. The expected number of event ob-

served in a detector is given by:

S = MdetT R(t), (5.5)

where Mdet is the detector mass and T is the exposure time.

For some detectors, like scintillators, the recoiling nucleus may loose energy by collisions

with other nuclei, hence in form of heat, or through collisions with electrons, which create scin-

tillation light. The observed energy released in scintillation light (typically expressed in keVee)

is related to the nuclei recoil energy through the quenching factor q , Escint = qER .

The particle physics cross-section for coherent inelastic scattering SN → AN , mediated by

the Z exchange on t -channel, is parameterised as:
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dσ

dER

= MN

2μ2
n

G2
F

2πf 2
n

(

(A − Z)fn + Zfp

)2
F 2(ER)

= MN

2μ2
n

G2
F

2π

(

A + Z
(

4 sin2 θW − 1
))2

F 2(ER), (5.6)

where Z and A are respectively the number of protons and the atomic number of the element, GF

is the Fermi constant and sin2 θW is the Weinberg angle. For SU(2)L doublets with hypercharge

1/2 the couplings to proton and neutron are different, i.e. fn �= fp in contrast to the standard elas-

tic scattering. We note that the cross-section is no longer a free parameter. The nuclei form factor

F 2(ER) characterises the loss of coherence for non-zero momentum transfer and is described as

the Helm factor [88,89].

Regarding η(ER, t) in Eq. (5.2), we consider the velocity distributions generated by a cored

isothermal and the NFW [90] density profile marginalised over the astrophysical variables

(v0, vesc and ρ⊙), while the standard Maxwellian halo is presented in Appendix B for sake of

reference. Given a DM density profile and assuming equilibrium between gravitational attractive

force and pressure, a corresponding velocity distribution arises from the Eddington formula [91].

We consider these two DM density profiles because they lead to velocity distributions that differ

mainly in the selected mean and escape velocity values [87], which are fundamental quantities

in inelastic scattering. Indeed the splitting factor δ in Eq. (5.3) means that only the very high

velocity particles will have enough energy to produce a recoil in the detector. This can be seen

re-expressing it in terms of target and DM masses

(

v

c

)2

>
2δ(MN + mDM)

mDMMN

. (5.7)

In addition experiments with heavy nuclei will have a large sensitivity to the high tail of the veloc-

ity distribution. We therefore discuss the DAMA experiment because of the Iodine, CRESST-II

on W and XENON100. The Germanium is more sensitive to particle of mass of the order of 50–

70 GeV but we consider the dedicated analysis for inelastic scattering [68]. We do not consider

the CoGeNT [92] experiment since only very light DM can account for its excess. We do not

consider Zeplin-III [93] since it has analogous sensitivity than CRESST-II.

5.1.1. CRESST-II

CRESST is a cryogenic experiment running at the Laboratori Nazionali del Gran Sasso. The

33 detector modules are made by CaWO4 crystal, each of a mass of 333 g. In this analysis we

consider the second run of CRESST, carried out in 2007 and in particular the data on Tung-

sten [69]. These data are obtained with two detector modules, leading to a total exposure of

30.6 kg days on W after cuts, in the energy range of 10–40 keV. Three events have been seen,

which are compatible with the expected background, mainly from neutrons, of ∼ 0.063 kg days.

We therefore use a background value B = 3 with σB = 10% of B . The likelihood is described

by the Poisson probability of seeing three events for a given theoretical prediction S and a given

background B:

ln LCresst(3|S,B) = −(S + B) + 3 ln(S + B). (5.8)

The effective likelihood we used in the analysis is marginalised numerically over the background:

ln L
eff
Cresst =

∞
∫

0

dB ln LCresst(3|S,B)p(B), (5.9)
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where p(B) is the probability function of the background, modelled as a Gaussian distribution.

The invariant 90S% confidence level, based on the S-signal, corresponds to �χ2 ∼ 3.34.

5.1.2. CDMS on Germanium

The CDMS Collaboration has published a dedicated analysis for inelastic DM [68], which we

use for constructing the likelihood of the experiment. The total exposure is 969 kg days and the

energy range is from 10 keV up to 150 keV. From �E1 = 10–25 keV 8 events has been found,

with an expected background of 5.88+2.33
−1.75, while in the remaining energy range, �E1 = 25–150,

3 events survive all the cuts and have an expected background of 0.93+0.58
−0.36. The background

accounts for all surface events and cosmogenic particles. For the detector efficiency we used the

red dotted curve presented in Fig. 5 of [68].

The total likelihood is the sum of the contribution from the two energy range �E1 and �E2.

Each partial likelihood follows the Poisson distribution:

ln LCDMS(11|S,B) = ln L�E1(8|S,B) + ln L�E2(3|S,B), (5.10)

with

ln L�E1(8|S,B) = −(S + B) + 8 ln(S + B),

ln L�E2(3|S,B) = −(S + B) + 3 ln(S + B). (5.11)

We then marginalise numerically over the background:

L
eff
CDMS =

∞
∫

0

dB LCDMS(11|S,B)p(B), (5.12)

to get the effective likelihood we use in computing the exclusion bound.

The 90S% confidence interval corresponds to �χ2 = 2.5, obtained considering that in the

whole energy range there are 11 events with an expected background of 6.

5.1.3. DAMA

The DAMA likelihood for the modulated rate is described in [87] and follows a Gaussian

distribution:

ln LDAMA = −
Nbin
∑

i=1

(si − s̄obs
i )2

2σ 2
i

, (5.13)

where si and s̄obs
i are the theoretical and the mean observed modulation respectively in the ith

energy bin, σi is the associated uncertainty in the observed signal. We use in this analysis the

12-bin data from Fig. 9 of [94]. The quenching factors qNa and qI are taken to be free param-

eters in our analysis, which we vary over their respective allowed range [95,96], as reported in

Table 2. In addition we require that the unmodulated predicted signal does not overcome the total

unmodulated rate in Fig. 1 of [94], namely in each energy bin the predicted total rate should be

at most equal to the measured rate.

5.1.4. XENON100

As far as it concerns XENON100 (Xe100 hereafter) experiment, we use the last data release

for inelastic scattering [70]. The likelihood is given by a Poisson distribution for three seen events
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Table 2

MCMC parameters and priors for the model parameter space and experimental systemat-

ics (nuisance parameters). All priors are uniform over the indicated range.

Experiment MCMC parameter Prior

All log(mDM/GeV) 0 → 5

All δ/keV 0 → 200

DAMA qNa 0.2 → 0.4

DAMA qI 0.06 → 0.1

XENON100 Leff −0.01 → 0.18

times a Gaussian which takes into account the uncertainties on the scintillation efficiency Leff.

These latter however affect only the low mass DM region. In addition the uncertainties over the

background are marginalised over. For details about this experiment we refer to [87].

5.1.5. Choice of priors and pills of Bayesian inference

As for the Bayesian inference we follow closely the approach of [87]. We consider a full

Bayesian analysis without discussing profile likelihoods: indeed in case of informative data (as

for DAMA experiment) the posterior pdf and the profile likelihood are equivalent, while in the

case of exclusion bounds, in order to be insensitive on the choice of priors, we use the invariant

bound for the xS% credible region, as described in Appendix A, which can have a Bayesian

interpretation in terms of probability for the S signal.

Having specified the likelihood functions for each experiments, the only missing element for

Bayes theorem, Eq. (4.28), is the choice of priors. As in the previous section, the prior on the DM

mass is chosen flat on a logarithmic scale on the same range (note that it is the only parameter

in common with the asymmetry generation MCMC), while for δ we chose a flat prior, since the

scale of this parameter is known by the requirement of inelastic scattering. The range is given in

Table 2, together with the priors for the systematic parameters in each experiment.

5.1.6. Astrophysics

In addition to the candidate mass mDM, the mass splitting δ between the DM and its excited

state and the nuisance parameters in the experimental set-ups, two further free parameters are

used to characterise the DM velocity distribution: the virial mass of the DM halo, and its concen-

tration. These additional parameters are, however, also constrained by astrophysical observations

on the velocity of the local standard at rest, v0, on the escape velocity for the DM halo, vesc and

on the DM density at the sun position ρ⊙, which all enter in Eqs. (5.1) and (5.2). The Gaussian

priors and the astrophysical likelihood are given in details in [87]. Only in the case of Maxwellian

velocity distribution we do not vary the astrophysical observable in their allowed range but keep

them fixed at their mean values, which are v̄0 = 230 km s−1 [97,98], v̄esc = 544 km s−1 [99,100]

and ρ̄⊙ = 0.4 GeV cm−3 [101,102].

5.2. Results for scalar and fermionic candidates

In this section we present our inference analysis for the considered experiments. Before com-

ing to the results for the scalar and fermionic candidate we would like to make few general

comments about inelastic scattering mediated by the Z boson and the DAMA region.

Fig. 11 shows the preferred DAMA region for inelastic scattering in the plane {δ,mDM} for a

NFW density profile. In the left plot only the modulated signal is considered, while on the right-
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Fig. 11. Left: 2D marginal posterior for DAMA in the parameters space {δ,mDM} and the NFW density profile. Right:

Same as left with the additional constraint of the total unmodulated rate.

hand plot we add the additional constraint on the total rate: it follows that the region with small

δ ∼ 20 keV and large masses, O(10) TeV, is excluded. In addition the mass range around 50 GeV

and small mass splitting is disfavoured, while an island at lower masses and splittings survives.

The same behaviour is retrieved for the cored isothermal halo. In Fig. 12 the dependence on the

quenching factors is depicted. As expected qNa is unconstrained, as shown in the left plot by the

flat 1D marginal posterior (cyan solid line) while for qI one might claim for a slight preference for

values around 0.08 although it is statistically insignificant. The quenching factors for inelastic,

Z mediated scattering result to be less constraint than the elastic spin-independent case [87].

The right panel illustrates the correlation between {δ,mDM} and the quenching factor on Iodine.

There is a clear dependence on qI for masses between 3 and 30 TeV and splittings in the range

50–100 keV: smaller value of the quenching factor favours smaller splitting and lighter masses.

All the remaining region does not show a correlation between the model parameters and qI. The

small island at masses of few GeV is due to scattering on Sodium and therefore correlated to qNa.

The dependence on the astrophysical observables and NFW density profile for inelastic scat-

tering is shown in Fig. 13 with the 3D marginal posteriors for {δ,mDM} and a third parameter

direction v0, vesc and ρ⊙. The DAMA signal favours the high tail of the velocity distribution

from the central panel, where the larger values of vesc are preferred. From the left and right panel

we see that in the ‘croissant’-shaped region the internal parts are due to circular velocity below

v̄0 and DM density close to 0.2 GeV cm−3. The increase of v0 and ρ⊙ favours instead the outer

parts of the region, in example very large mass splitting ∼190 keV and masses around the TeV

scale.

An analogous behaviour holds for velocity distributions arising from the cored isothermal

halo. The main difference is that this latter prefers in particular the very high end of the ob-

servationally allowed escape velocities. In Table 3 the preferred values for the astrophysical

observables are indicated for both the NFW dark matter profile and the cored isothermal one.

We underline that the difference in the preferred values of vesc will play a role in case of inelas-

tic scattering, even if the statistical significance in the difference of the preferred vesc values is

small. Indeed in Fig. 14 we show all the experimental constraints and the DAMA region in a
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Fig. 12. Inference for DAMA assuming the NFW density profile for the DM halo. Left: 1D marginal posterior pdf for

the quenching factor of Sodium and Iodine, as labelled. Right: 3D marginal posterior for {δ,mDM, qI}, where the qI

direction is represented by the colour code. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

Fig. 13. Inference for DAMA assuming the NFW density profile for the DM halo. Left: 3D marginal posterior for

{δ,mDM, v0}, where the v0 direction is represented by the colour code. Center, right: Same as left, but for {δ,mDM, vesc}
and {δ,mDM, ρ⊙} respectively. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

single plot, on the left for NFW profile and on the right for isothermal cored DM density profile.

Firstly we note that the NFW profile favours larger splitting for fitting DAMA with respect to the

isothermal profile and secondly the low mass region is larger. The exclusion limits for CDMS

(blue dashed), Xe100 (pink dot-dashed) and CRESST (black dotted) are 90S% confidence inter-

vals and all the region on the left of the curve is excluded. As a general remark the NFW prefers

smaller vesc, namely the tail of the velocity distribution is constituted by less high speed particles

than the isothermal one: there is less room for the detectors to be sensitive to inelastic scattering

and therefore the exclusion limits are less constraining. Regarding the NFW profile, up to masses

of 80 GeV the most constraining upper bounds is CDMS, then leaving the place to Xe100 that

excluded all DM masses above 316 GeV. The trend for the isothermal profile is the same, except

that CDMS and Xe100 intercepts at 50 GeV and all masses above 251 are excluded by Xe100.

The transparent region below 50 GeV is excluded by LEPII constraint on the Z decay width,

while the orange region above 56 TeV is excluded requiring unitarity of the S matrix [103]. The

CRESST upper bound is comparable to the Xe100 one up to masses of 300 GeV, because even
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Table 3

1D posterior modes and 90% credible intervals for the circular velocity v0, escape velocity vesc, and the local DM density

ρ⊙ for DM density profiles considered in this work.

v0 (km s−1) vesc (km s−1) ρ⊙ (GeV cm−3)

Cored Isothermal

DAMA 211+25
−18 629+22

−20 0.31+0.05
−0.03

CDMS 211+26
−19 629+22

−21 0.31 ± 0.04

Xe100 210+27
−19 628+25

−19 0.31+0.05
−0.03

CRESST 210+27
−18 628+23

−20 0.31+0.05
−0.04

NFW

DAMA 221+40
−23 558+20

−18 0.38+0.16
−0.10

CDMS 220+39
−21 558+19

−16 0.38+0.14
−0.10

Xe100 221+39
−22 557+25

−21 0.38+0.14
−0.11

CRESST 220+42
−21 558+21

−17 0.38+0.16
−0.10

Fig. 14. Left: 2D credible regions for the individual experimental bounds and regions assuming the NFW DM density

profile and marginalising over the astrophysical uncertainties, combined in a single plot. For DAMA (shaded) we show

the 90% and 99% contours. The 90S% contours are given by respectively the pink dot-dash curve for Xe100, the dashed

blue line for CDMS and the dark green one denotes CRESST. The region below Mχ = 2 TeV is excluded by χ0–χ̄0

oscillation (horizontal red solid line), while the orange/dark grey region is excluded by unitarity bound and below the

dashed gray line by the LEP constraints on the Z decay width. Right: same as left but for the isothermal cored DM density

profile. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

though it has a much smaller total exposure the W is heavier than Xe. For larger masses the effect

of the larger total exposure of Xe100 dominates.

In terms of SDDM, an asymmetric candidate is completely excluded: the parameter space

that survives the χ0–χ̄0 oscillation bound is severely disfavoured by Xe100, for both DM density

profiles. In case of the inert doublet model as standard thermal relic there is still room up from

45 GeV to 300 GeV for a NFW profile and 250 GeV for an isothermal halo. It has been shown
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that this mass range provides the correct WMAP relic abundance thanks to three body annihila-

tion channels [104,105] and is in the reach of LHC [106,107]. On the contrary, the asymmetric

fermionic doublet is a good DM candidate up to 200 or 300 GeV depending on the DM density

profile, in addition of satisfying the DM to baryon ratio.

6. Conclusions

We proposed a simple extension of the SM model to explain the observed ratio ΩDM/ΩB ≈ 5

as given by WMAP. We extended the SM by including two heavy triplet scalars whose partial

decay to SM leptons and inert (odd under a Z2 symmetry) doublet scalars (χ ), or vector like

fermions (ψ ), could explain a common origin of asymmetric dark matter and visible matter via

leptogenesis route. Moreover, the induced vev of the triplets also gave rise to neutrino masses, as

required by the oscillation experiments, via the type-II seesaw mechanism. Thus a triple unifica-

tion of asymmetric dark matter, leptogenesis and neutrino masses could be achieved.

We studied the relevant annihilation and scattering processes that arise in the model. The

asymmetry in case of inert scalar (χ ) doublet dark matter (SDDM) gets strongly depleted by the

contact annihilation process χχ → HH mediated via λ5 coupling. Therefore, the survival of the

asymmetry in case of inert SDDM required λ5 < 10−5. Besides that we showed that λ5 ∼ 10−7

is required for the annual modulation signal at DAMA while restoring the asymmetry. On the

other hand, the inert fermion (ψ ) doublet dark matter (FDDM) does not under go any further

depletion of asymmetry in comparison to leptons. A strong constraint arose on the mass scale

of inert SDDM from the rapid oscillation between χ0 and its complex conjugate χ0. Below

EW phase transition the fast oscillation between χ0 and χ0 depletes the asymmetry strongly.

Therefore, the survival of the asymmetry in case of SDDM led to its mass Mχ � 2 TeV so that it

freezes out before it begins to oscillate. On the other hand, in case of inert FDDM, the survival of

asymmetry does not depend on its mass apart from the LEP constraint that Mψ � MZ/2. Hence

a O(100) GeV dark matter is allowed.

We then numerically solved the relevant Boltzmann equations to estimate the efficiency fac-

tors of DM and lepton in either scenarios, for a fixed scalar triplet mass of M1 = 1010 GeV. The

model parameter space has been systematically investigated via MCMC techniques. We have

singled out the preferred regions in the parameter space that lead to a successful leptogenesis and

to an asymmetric DM, namely satisfying ΩDM/Ωb and nb/nγ ratios. We showed that:

(i) dark matter, irrespective of SDDM or FDDM, masses up to O(TeV) can fulfil the require-

ment of ΩDM/Ωb ,

(ii) for observed BAU and asymmetric dark matter large BL and small BDM are preferred. In par-

ticular for BL → 1 and BDM → 10−5 the efficiency ratio ηDM/ηL approaches its maximum

value.

The survival of asymmetry in the dark sector leads to inelastic dark matter because the elastic

scattering is subdominant in both (SDDM and FDDM) cases. In case of SDDM the small cou-

pling λ5 ∼ 10−7 gave rise to a mass difference between the excited state and ground state of DM

to be O(100) keV. On the other hand, in case of inert FDDM, the O(100) keV mass difference

between the ground state and excited state of DM is provided by its Majorana mass induced

by the triplet scalar. By performing a Bayesian analysis we found that an asymmetric SDDM

of mass larger than 2 TeV is strongly disfavoured by the XENON100 data while an asymmet-
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ric FDDM of mass O(100) GeV is suitable to explain DAMA annual modulation signal while

passing the latest constraint from XENON100 experiment.
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Appendix A. Bayesian inference and MCMC techniques

In the analysis of the data X the inference of the posterior probability density as a function of

the parameters, P (θ |X), is constructed invoking Bayes’ theorem:

P (θ |X)dθ ∝ L(X|θ) · π(θ)dθ, (A.1)

where L(X|θ) is the likelihood function and π(θ) denotes the probability density on the param-

eter space θ prior to observing the data X. The posterior pdf represents our state of knowledge

about the parameters after taking into account the information contained in the data, and has an

intuitive and straightforward interpretation in that
∫

V
P (θ |X)dθ is the probability that the true

value of θ lies in the volume V .

Since the prior pdf is independent of the data, it needs to be chosen according to one’s belief

and is thus inherently subjective. In the often encountered situation in which no unique theoret-

ically motivated prior pdf can be derived, one may wish to use one which does not favour any

parameter region in particular. A common choice is the uniform or top-hat prior

πflat(θ) ∝
{

1, if θmin � θ � θmax,

0, otherwise,
(A.2)

if the general order of magnitude of the parameter is known. Here, the limits θmin and θmax should

be chosen such that they are well beyond the parameter region of interest. If even the order of

magnitude is unknown, one may want to choose a uniform prior in log θ space instead,

πlog(log θ)d log θ =
{

d log θ, if θmin � θ � θmax,

0, otherwise,
(A.3)

which is equivalent to a dθ/θ prior in θ space. Note that because the volume element dθ is in

general not invariant under a parameter transformation f : θ → θ ′, a uniform prior pdf on θ does

not yield the same probabilities as a uniform prior pdf on θ ′ unless the mapping f is linear. The

same is also true for the posterior probabilities, i.e., P (θ |X)dθ �= P (θ ′|X)dθ ′ in general.

While the posterior pdf technically contains all the necessary information for the interpretation

of the data, the fact that it is a function in the N -dimensional space of parameters makes it difficult

to visualise if N > 2. Being a probability density, its dimensionality can be easily reduced by

integrating out less interesting (nuisance) parameter directions ψi , yielding an n-dimensional

marginal posterior pdf,

Pmar(θ1, . . . , θn|X) ∝
∫

dψ1 · · ·dψm P (θ1, . . . , θn,ψ1, . . . ,ψm|X), (A.4)

which is more amenable to visual presentation if n = 1,2, and can be used to construct constraints

on the remaining parameters.
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Fig. 15. 2D credible regions for the individual experimental bounds and regions assuming the SMH, combined in a single

plot. For DAMA (shaded) we show the 90% and 99% contours. The 90S% contours are given by respectively the pink

dot-dash curve for Xe100, the dashed blue line for CDMS and the dark green one denotes CRESST. The region below

Mχ = 2 TeV is excluded by χ0–χ̄0 oscillation (horizontal red solid line), while the orange/dark grey region is excluded

by unitarity bound and below the dashed gray line by the LEP constraints on the Z decay width. The astrophysical

observables are fixed at v̄0, v̄esc and ρ̄⊙. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

We employ a modified version of the generic Metropolis–Hastings sampler [108,109] in-

cluded in the public MCMC code CosmoMC [110,111], to sample the posterior over the full

parameter space. Each point xi+1 obtained from a Gaussian random distribution (the so-called

proposal density) around the previous point xi is accepted to be the next element of the chain

with probability:

P(xi+1) = min

(

1,
P (xi+1)

P (xi)

)

. (A.5)

The resulting chains are analysed with an adapted version of the accompanying package Get-

Dist, supplemented with matlab scripts from the package SuperBayeS [112,113]. One- or

two-dimensional marginal posterior pdfs are obtained from the chains by dividing the relevant

parameter subspace into bins and counting the number of samples per bin. An x% credible inter-

val or region containing x% of the total volume of Pmar is then constructed by demanding that

Pmar at any point inside the region be larger than at any point outside. In the one-dimensional

case, a credible interval thus constructed corresponds to the Minimal Credible Interval of [114].

Provided the data are sufficiently constraining the marginal posterior typically exhibits very little

dependence on the choice of prior. For data that can only provide an upper or a lower bound on

a parameter (or no bound at all) however, the properties of the inferred posterior and the bound-

aries of credible regions can vary significantly with the choice of prior as well as its limits θmin

and θmax, making an objective interpretation of the results rather difficult. This is in particular

the case for the inference of credible regions subject to direct detection data.
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Indeed in the case of Xe100, CDMS and CRESST we construct intervals on the volume of

the marginal posterior in S-space Pmar(S|X), where S is the expected WIMP signal, using a

uniform prior on S with a lower boundary at zero. An x% upper bound thus constructed has

a well-defined Bayesian interpretation that the probability of S � Sx is x%. The limit Sx is

then mapped onto the {mDM, δ}-plane by identifying those combinations of mDM and δ with

Pmar(mDM, δ|X) = Pmar(Sx |X). An x% contour, which will be denoted xS%, computed in this

manner has the property of being independent of the choice of prior boundaries for mDM and δ. Its

drawback, however, is that it has no well-defined probabilistic interpretation in {mDM, δ}-space.

Appendix B. Standard model halo results for inelastic scattering

For sake of completeness we show in Fig. 15 the preferred region for DAMA modulation

assuming the standard Maxwellian halo with fixed astrophysical observables as DM velocity

distribution, Eq. (5.2). The astrophysical variables are fixed at their preferred values, see Sec-

tion 5.1. In the same plot we add the exclusion limits of CDMS, Xe100 and CRESST. The trend

is analogous to Fig. 14, even though the DAMA region is smaller, since there a no volume effect

due to marginalisation over the astrophysical uncertainties. The region is also smaller because of

v̄esc = 544 km s−1, which limits the contribution of particles in the very high tail of the distribu-

tion. At the same time the exclusion bounds are tighter than in NFW and isothermal case, again

because the reduce parameter space. The results regarding the viability of the DM candidate

are practically unchanged with respect to the case with marginalisation over the astrophysics:

an asymmetric scalar DM with Mχ � 2 TeV as explanation of the DAMA signal is completely

disfavoured by Xe100, while a fermionic component is compatible at 90% C.L. up to a mass of

200 GeV.
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