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1 Introduction

Due to its vast applicability in various areas of Statistics, Mathematics and Economics,
theory of total positivity has received considerable attention in the literature. Among
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its many applications in different research domains, theory of total positivity is useful in
deriving optimal decision procedures in Statistical Decision Theory, deciding optimal
allocation of resources in Queuing and Reliability Theory, and determining optimal
policies in Operations Management. In the field of Statistical Reliability Theory, totally
positive (reverse regular) functions of order 2 (TP2 (RR2)) arise naturally in studying
reliability of coherent systems. Significant contributions in this area have been made by
Samuel Karlin who built its foundations in probability and statistical theory. In the year
1968, he wrote a classical book on this subject and inspired several new developments.
Karlin (1968) defined a TP2 (RR2) function in the following way:

Definition 1.1. Let S1 and S2 be two subsets of the real lineR. A non-negative function
k : S1 × S2 → [0,∞) is said to be TP2 (RR2) if, for x1 ≤ x2, y1 ≤ y2 (xi ∈ S1; yi ∈ S2,
i = 1, 2),

k(x1, y1) k(x2, y2) ≥ (≤) k(x1, y2) k(x2, y1). (1.1)

Karlin (1968) has also defined totally positive functions of order r (TPr functions),
r ∈ {3, 4, . . .}. Due to limited applicability of totally positive functions of order greater
than 2 in the applications relevant to our paper, we concentrate only on TP2/RR2

functions here. TP2 functions were also studied by Lehmann (1966) who referred to
the corresponding condition (given in (1.1)) as positive likelihood ratio dependence.

Among numerous applications, an application of theory of TP2/RR2 functions in
Statistical Reliability Theory or Theory of Stochastic Orders is witnessed in proving
various preservation results where one is interested in knowing whether a reliability
property (e.g., decreasing failure rate, increasing failure rate, etc.) or a stochastic order
(e.g., hazard rate order, reversed hazard rate order, etc.) satisfied by a collection of
distributions is preserved under the operations of integral with respect to a sigma finite
measure (such as those arising for mixtures or convolutions of distributions). Due to
their importance in various applications, several general results have been obtained
in the literature. For an account of contributions in this direction, one may refer to
Lehmann (1966), Karlin (1968), Keilson and Sumita (1982), Dasgupta and Sarkar
(1984), Lynch et al. (1987), Bartoszewicz (1998), Durham et al. (1990), Joag-dev et al.
(1995), Khaledi and Shaked (2010), Marshall et al. (2010), Dewan and Khaledi (2014),
Khaledi (2014), Laradji (2015) and Misra and Naqvi (2018).

To gain an insight into these studies, consider random variables (r.v.s) T1 and T2

having Lebesgue probability density functions (p.d.f.s) g1(·) and g2(·), respectively. Let
ψi : X × R → [0,∞), i = 1, 2, be given non-negative functions, where X ⊆ R. In many
applications (e.g., see Examples 1.1 - 1.3 discussed below), one is interested in deriving
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sufficient conditions that guarantee the monotonicity of a function of the type

ψ(x) =
E(ψ2(x,T2))

E(ψ1(x,T1))
=

∫ ∞

−∞
ψ2(x, θ)g2(θ)dθ

∫ ∞

−∞
ψ1(x, θ)g1(θ)dθ

, (1.2)

for those values of x ∈ X for which atleast one of the integrals in the definition of
ψ(x) above is positive (with the convention that, for any a > 0, a/0 = ∞ and for any
b ∈ R, b < ∞). Note that the function ψ(x), defined in (1.2), is monotonically increasing
(decreasing) if, and only if, the function

ψ∗i (x) =

∫ ∞

−∞

ψi(x, θ)gi(θ)dθ, (i, x) ∈ {1, 2} ×X, (1.3)

is TP2 (RR2) in (i, x) ∈ {1, 2} ×X, i.e., if, and only if, the inequality

ψ∗1(x2)ψ∗2(x1) ≤ (≥) ψ∗1(x1)ψ∗2(x2), (1.4)

holds, whenever x1 ≤ x2, xi ∈ X, i = 1, 2. Thus, studying preservation of TP2/RR2

property under the operation of an integral may be useful in many applications. More
generally, one may be interested in monotonicity of the function of the type

η(x) =

∫ b

a
η2(x, θ)dθ

∫ b

a
η1(x, θ)dθ

=
η∗

2
(x)

η∗
1
(x)
, x ∈ S = {t ∈ X : η∗1(t) + η∗2(t) > 0}, say, (1.5)

where, for −∞ ≤ a < b ≤ ∞, ηi : X × (a, b) → [0,∞), i = 1, 2, are given non-negative
functions, and

η∗i (x) =

∫ b

a

ηi(x, θ)dθ, x ∈ X, i = 1, 2. (1.6)

Clearly, η(x) is monotonically increasing (decreasing) in x ∈ S, if, and only if, η∗
i
(x)

is TP2 (RR2) in (i, x) ∈ {1, 2} ×X, or equivalently, the inequality

η∗1(x2)η∗2(x1) ≤ (≥) η∗1(x1)η∗2(x2), (1.7)

holds for any x1 ≤ x2, xi ∈ X, i = 1, 2.

Now, we provide three specific examples where such studies are useful. For
definitions of some of the notions used in these examples, one may refer to Definitions
2.1 and 2.2 introduced in the sequel.
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Example 1.1. (Preservation of likelihood ratio, hazard rate and reversed hazard rate

orderings by mixtures) Let {X1(θ) : θ ∈ Θ} and {X2(θ) : θ ∈ Θ} be two families of
r.v.s, where Θ ⊆ R is an interval and, for θ ∈ Θ, Xi(θ) has the Lebesgue p.d.f. hi,θ(·),

survival function (s.f.) Hi,θ(·) and distribution function (d.f.) Hi,θ(·), i = 1, 2. Let T1 and
T2 be two r.v.s having the Lebesgue p.d.f.s g1(·) and g2(·), respectively, and the same
distributional support Θ. Let Xi be a r.v. (called a mixture r.v.) having the p.d.f.

mi(x) =

∞
∫

−∞

hi,θ(x)IΘ(θ)gi(θ)dθ, −∞ < x < ∞,

the s.f.

Mi(x) =

∞
∫

−∞

Hi,θ(x)IΘ(θ)gi(θ)dθ, −∞ < x < ∞,

and the d.f.

Mi(x) =

∞
∫

−∞

Hi,θ(x)IΘ(θ)gi(θ)dθ, −∞ < x < ∞,

where, for any set A ⊆ R, IA(·) denotes its indicator function. It is known in the

literature that if X1(θ)
d
= X2(θ) (= X(θ), say), ∀ θ ∈ Θ, X(θ1) ≤lr (respectively, ≤hr

and ≤rh) X(θ2), whenever θ1 ≤ θ2, and T1 ≤lr (respectively, ≤hr and ≤rh) T2, then
X1 ≤lr (respectively, ≤hr and ≤rh) X2 (see, for example, Theorems 1.C.17, 1.B.14 and

1.B.52 in Shaked and Shanthikumar (2007)); here
d
=means equality in distribution. For

generalizing these results to situations where, for θ ∈ Θ, X1(θ) and X2(θ) may not
be identically distributed, one requires sufficient conditions that ensure the increasing
behaviour of the function

ψ(x) =

∞
∫

−∞

ψ2(x, θ)g2(θ)dθ

∞
∫

−∞

ψ1(x, θ)g1(θ)dθ

, −∞ < x < ∞,

where ψi(x, θ) = hi,θ(x)IΘ(θ) (respectively, ψi(x, θ) = Hi,θ(x) IΘ(θ) and ψi(x, θ) = Hi,θ(x)
IΘ(θ)), (x, θ) ∈ (−∞,∞) × Θ, i = 1, 2. Equivalently, one requires a set of sufficient

conditions under which the function mi(x) (respectively, Mi(x) and Mi(x)) is TP2 in
(i, x) ∈ {1, 2} × (−∞,∞).
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Example 1.2. (Closure of DFR property under the operation of mixtures) Let g(·) be

the Lebesgue p.d.f. with an interval support Θ and let {Fθ : θ ∈ Θ} be a family of

absolutely continuous s.f.s. Assume that, for each θ ∈ Θ, Fθs have the same interval
support I. Consider the mixture s.f.

H(x) =

∫

Θ

Fθ(x)g(θ)dθ =

∫ ∞

−∞

Fθ(x)IΘ(θ)g(θ)dθ, x ∈ R.

It is well known that if each Fθ(·), θ ∈ Θ, is log-convex on I (i.e., each Fθ, θ ∈ Θ, has

decreasing failure rate (DFR)) then H(·) is log-convex on I (i.e., H(·) has DFR). In other
words, any class of DFR distributions is closed under mixtures (Barlow and Proschan

(1975)). Note that H(·) is log-convex in x ∈ I if, and only if, for every∆ > 0, H(x+∆)/H(x)
is increasing in x ∈ I (see, for example, Pečarić et al. (1992)). Since this ratio is of the
form ψ(x) (or η(x)), defined in (1.2) (or (1.5)), any result on monotonicity of function
ψ(x) (or η(x)) can be used here.

Example 1.3. (Closure of IFR property under the operation of convolutions) Let F1

and F2 be two absolutely continuous s.f.s with Lebesgue p.d.f.s f1 and f2, respectively,
and let

H(x) =

∞
∫

−∞

F2(x − θ) f1(θ)dθ, x ∈ R,

be the convolution of F1 and F2. It is well-known that H is log-concave onR (i.e., H has

increasing failure rate (IFR)) if F1 and F2 are log-concave onR (i.e., F1 and F2 have IFR).
This implies that the IFR class of distributions is closed under convolutions. Further,

note that H(x) is log-concave if, and only if, for any ∆ > 0, H(x)/H(x + ∆) is increasing

in x ∈ I = {t ∈ R : H(x) +H(x + ∆) > 0}. Therefore, any result ensuring monotonicity of
functions of the type ψ(·) (or η(·)) can be employed here.

In this paper, we provide a review of various results, available in the literature, that
provide sufficient conditions under which inequality (1.4) (or (1.7)) holds (equivalently,
ψ∗

i
(x) (or η∗

i
(x)) is TP2 (RR2) in (i, x) ∈ {1, 2}×X) and highlight connections between them.

By doing so, we aim to provide a guideline to researchers, working in the relevant areas,
on applicability of these results in different situations.

The outline of this article is as follows. In the next section (Section 2), we introduce
some notations, recall definitions and properties of various stochastic orders and
reliability notions relevant to our paper and discuss some auxillary results. In Section
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3, we discuss various general results that are frequently used in the literature and also
highlight connections between them. In Section 4, we discuss some results that are
useful in situations where underlying functions have a special structure. Finally, the
study is concluded in Section 5.

2 Notations, Definitions and some Auxillary Results

Throughout the sequel,Rwill denote the real line (−∞,∞) and, for any positive integer
p, Rp will denote the p-dimensional Euclidean space. For any real number a > 0, we
use the convention that a/0 = ∞ and that b < ∞, ∀ b ∈ R. When we say that a function
ζ : D→ R (where D ⊆ R) is increasing (decreasing), it means that it is non-decreasing

(non-increasing). For r.v.s X1 and X2, we write X1
d
= X2 to indicate that X1 and X2 are

identically distributed.

Let X1 and X2 be two r.v.s with absolutely continuous d.f.s F1 and F2; s.f.s F1 = 1−F1

and F2 = 1 − F2; and Lebesgue densities f1 and f2, respectively. Let li = inf{x ∈ R :

Fi(x) > 0}, ui = sup{x ∈ R : Fi(x) > 0} and {x ∈ R : fi(x) > 0} = (li,ui), i = 1, 2.

Let ri(x) = fi(x)/Fi(x), x < ui, and r̃i(x) = fi(x)/Fi(x), x > li, respectively, denote the
hazard rate function and the reversed hazard rate function of Xi, i = 1, 2. We first
provide definitions of main stochastic orders. For a comprehensive discussion on
various stochastic orders, one may refer to Whitt (1988), Bergmann (1991), Muller
and Stoyan (2002), Lai and Xie (2006), Shaked and Shanthikumar (2007), Mosler and
Scarsini (2012), Tong (2012), Szekli (2012), Li and Li (2013), Belzunce et al. (2016).

Definition 2.1. Under the above set-up, the r.v. X1 is said to be smaller than the r.v. X2

in the

(a) usual stochastic order (denoted by X1 ≤st X2) if E(φ(X1)) ≤ E(φ(X2)), for every
increasing function φ : R → R for which the underlying expectations exist; or

equivalently, if l1 ≤ l2, u1 ≤ u2 and F1(x) ≤ F2(x), ∀ x ∈ (l2,u1), whenever l2 < u1;

(b) hazard rate order (denoted by X1 ≤hr X2) if F1(y)F2(x) ≤ F1(x)F2(y), ∀ − ∞ < x ≤

y < ∞; or equivalently, if l1 ≤ l2, u1 ≤ u2 and F2(x)/F1(x) is increasing in x ∈ (l2,u1),
whenever l2 < u1;

(c) reversed hazard rate order (denoted by X1 ≤rh X2) if F1(y)F2(x) ≤ F1(x)F2(y),
∀ − ∞ < x ≤ y < ∞; or equivalently, if l1 ≤ l2, u1 ≤ u2 and F2(x)/F1(x) is increasing
in x ∈ (l2,u1), whenever l2 < u1;
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(d) likelihood ratio order (denoted by X1 ≤lr X2) if f1(y) f2(x) ≤ f1(x) f2(y), ∀ −∞ < x ≤
y < ∞; or equivalently, if l1 ≤ l2, u1 ≤ u2 and f2(x)/ f1(x) is increasing in x ∈ (l2,u1),
whenever l2 < u1.

It is noteworthy that X1 ≤hr X2 (respectively, X1 ≤rh X2 and X1 ≤lr X2) if, and only

if, Fi(θ) (respectively, Fi(θ) and fi(θ)) is TP2 in (i, θ) ∈ {1, 2} ×R. It is also well known in
the literature that:

X1 ≤lr X2 =⇒ X1 ≤hr X2 and X1 ≤rh X2 =⇒ X1 ≤st X2.

The following definition will be useful in defining some reliability notions.

Definition 2.2. Let −∞ ≤ c < d ≤ ∞. A non-negative function η : (c, d)→ [0,∞) is said
to be log-concave (log-convex) on (c, d) if, for any α ∈ (0, 1) and x, y ∈ (c, d),

η(αx + (1 − α)y) ≥ (≤) (η(x))α (η(y))1−α,

or equivalently, if ∀ ∆ ∈ [0, d− c], η(t)/η(t+∆) is increasing (decreasing) in t ∈ (c, d−∆).

It is easy to verify that the log-concavity of a non-negative function η on an interval
I ⊆ R guarantees its log-concavity on whole R. The same is not true for log-convex

functions. Consequently, f1 (respectively, F1 and F1) is log-concave on (l1,u1) if, and

only if, f1 (respectively, F1 and F1) is log-concave on R. However, log-convexity of f1
(or, F1 and F1) on (l1,u1) is not extendable to whole R.

Definition 2.3. A real valued function η defined on an interval I ⊆ R is said to have
atmost one sign change and from negative (positive) to positive (negative), as x increases
on I, if any one of the following three conditions is satisfied:

(i) η(x) ≥ 0, ∀ x ∈ I;

(ii) η(x) ≤ 0, ∀ x ∈ I;

(iii) if there exists x0 ∈ I such that η(x0) > (<) 0, then η(x) > (<) 0, ∀ x ∈ [x0,∞) ∩ I.

The following well known result provides a characterization of monotone functions
in terms of sign changes.

Proposition 2.1. Let τ be a real-valued function defined on an interval I ⊆ R. Then τ is
increasing (decreasing) on I if, and only if, ∀ λ ∈ R the function φλ(x) = τ(x) − λ, x ∈ I, has
atmost one sign change and from negative (positive) to positive (negative) as x increases on I.
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The result stated below is an immediate consequence of the above proposition.

Proposition 2.2. Let −∞ ≤ a < b ≤ ∞, X ⊆ R, and let ηi : X × (a, b) → [0,∞), i = 1, 2, be
given non-negative functions. Then, the function

η(x) =

∫ b

a
η2(x, θ)dθ

∫ b

a
η1(x, θ)dθ

=
η∗

2
(x)

η∗
1
(x)
, say,

is increasing (decreasing) in x ∈ S = {t ∈ R : η∗
1
(t) + η∗

2
(t) > 0} if, and only if, for any λ ∈ R,

the function

φλ(x) =

∫ b

a

[

η2(x, θ) − λη1(x, θ)
]

dθ, x ∈ X,

has atmost one sign change and from negative (positive) to positive (negative) as x increases on
X.

In conjunction to Propositions 2.1 and 2.2, another result that has been extensively
used in the literature for proving monotonicity of functions, such asψ(·) and η(·) defined
in (1.2) or (1.5), respectively, is the following result given in Karlin (1968, Theorem 11.2,
pp 324-325).

Theorem 2.1. Let A,B ⊆ R and let τ1 : A × B→ [0,∞) be a TP2 (RR2) function. Let µ be a
σ-finite measure and let τ2 : A × B→ R be such that the following conditions are satisfied:

(i)

τ(x) =

∫

B

τ1(x, θ) |τ2(x, θ)| dµ(θ) < ∞, ∀ x ∈ A,

and τ(x) defines a continuous function of x ∈ A;

(ii) ∀ x ∈ A, τ2(x, θ) has atmost one sign change and from negative to positive as θ increases
on B;

(iii) ∀ θ ∈ B, τ2(x, θ) increases (decreases) in x ∈ A.

Then, τ(x) has atmost one sign change and from negative to positive (positive to negative) as x
increases on A.

For the special case whenτ2(x, θ) does not depend on x (i.e., τ2(x, θ) ≡ τ2(θ), ∀ (x, θ) ∈
A × B, say), the above result is stated as Theorem 3.5 (pp. 93) in Barlow and Proschan
(1975) and is useful in proving preservation of various stochastic orders under general
shock models.
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3 Some General Results

In this section, we will discuss various results that provide sufficient conditions under
which the functionψ∗

i
(x), defined in (1.3), is TP2 (RR2) in (i, x) ∈ {1, 2}×X, or equivalently,

the function ψ(x), defined in (1.2), increases (decreases) for those values of x ∈ X for
which atleast one of the integrals in (1.2) is positive.

First, we state the following result that follows from Theorem 5.1 given in Karlin
(1968, pp. 123); also see Dewan and Khaledi (2014). Karlin’s proof is based on the
routine method of breaking involved integrals into two parts and then interchanging
the variables of integration in one of the integrals. In order to gain insight into results
based on sign changes of a function, presented in Propositions 2.1 and 2.2 and Theorem
2.1, we provide here a proof based on these results.

Theorem 3.1. Let −∞ ≤ a < b ≤ ∞ and let ηi : X × (a, b) → [0,∞), i = 1, 2, be given
non-negative functions, where X ⊆ R. Suppose that, for any fixed x ∈ X, ηi(x, θ) is TP2 in
(i, θ) ∈ {1, 2} × (a, b) and, for every fixed θ ∈ (a, b), ηi(x, θ) is TP2 (RR2) in (i, x) ∈ {1, 2} ×X.
In addition, suppose that either η1(x, θ) or η2(x, θ) is TP2 (RR2) in (x, θ) ∈ X × (a, b). Then
the function η∗

i
(x), defined in (1.6), is TP2 (RR2) in (i, x) ∈ {1, 2} ×X.

Proof. Fix x ∈ R. In view of Proposition 2.2, it suffices to show that, for any λ ∈ R, the
function

η(x) =

∫ b

a

[η2(x, θ) − λη1(x, θ)]dθ

=

∫ b

a

η1(x, θ)

[

η2(x, θ

η1(x, θ)
− λ

]

dθ,

has atmost one sign change and from negative to positive (positive to negative) as

x increases on S = {x ∈ X :
∫ b

a
η1(x, θ)dθ +

∫ b

a
η2(x, θ)dθ > 0}. This follows on using

Theorem 2.1 along with the hypothesis of the theorem by taking τ1 ≡ η1 and τ2 ≡
η2

η1
. �

Now, we present results on monotonicity of function ψ(x), defined in (1.2), for the
special case when ψ1 ≡ ψ2. The following result is immediate from Theorem 3.1.

Theorem 3.2. Let ψ1 : X ×R→ [0,∞) be a given non-negative function. Suppose that

(i) gi(θ) is TP2 in (i, θ) ∈ {1, 2} ×R (or equivalently, T1 ≤lr T2);

(ii) ψ1(x, θ) is TP2 (RR2) in (x, θ) ∈ X ×R;
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(iii)
∫ ∞

−∞
ψ1(x, θ)gi(θ)dθ < ∞, ∀ x ∈ X, i = 1, 2.

Then, ψ∗
i
(x) =

∫ ∞

−∞
ψ1(x, θ)gi(θ)dθ is TP2 (RR2) in (i, x) ∈ {1, 2} ×X.

It is worth mentioning here that results stated in Theorems 3.1 and 3.2 are equivalent
in the sense that they can be used interchangeably where they are applicable.

Recall that if gi(θ) is TP2 in (i, θ) ∈ {1, 2} × R (i.e., T1 ≤lr T2) then each of Gi(θ)
and Gi(θ) are TP2 in (i, θ) ∈ {1, 2} × R (i.e., T1 ≤hr T2 and T1 ≤rh T2). Thus, one
would be interested in versions of Theorem 3.2 where condition (i) of Theorem 3.2 is
replaced by a weaker condition that Gi(θ) is TP2 in (i, θ) ∈ {1, 2} × R or Gi(θ) is TP2

in (i, θ) ∈ {1, 2} × R. Of course that may be possible with trade-off of condition (ii) of
Theorem 3.2 by stronger conditions. In this direction, the following two results follow
from Joag-dev et al. (1995).

Theorem 3.3. Let ψ1 : X ×R→ [0,∞) be a given non-negative function. Suppose that

(i) Gi(θ) is TP2 in (i, θ) ∈ {1, 2} ×R (i.e., T1 ≤hr T2);

(ii) ψ1(x, θ) is TP2 (RR2) in (x, θ) ∈ X ×R;

(iii) ψ1(x, θ) is increasing in θ ∈ R, for every x ∈ X;

(iv)
∫ ∞

−∞
ψ1(x, θ)gi(θ)dθ < ∞, for every x ∈ X, i = 1, 2.

Then, ψ∗
i
(x) =

∫ ∞

−∞
ψ1(x, θ)gi(θ)dθ is TP2 (RR2) in (i, x) ∈ {1, 2} ×X.

Theorem 3.4. Let ψ1 : X ×R→ [0,∞) be a given non-negative function. Suppose that

(i) Gi(θ) is TP2 in (i, θ) ∈ {1, 2} ×R (i.e., T1 ≤rh T2);

(ii) ψ1(x, θ) is TP2 (RR2) in (x, θ) ∈ X ×R;

(iii) ψ1(x, θ) is decreasing in θ ∈ R, for every x ∈ X;

(iv)
∫ ∞

−∞
ψ1(x, θ)gi(θ)dθ < ∞, for every x ∈ X, i = 1, 2.

Then, ψ∗
i
(x) =

∫ ∞

−∞
ψ1(x, θ)gi(θ)dθ is TP2 (RR2) in (i, x) ∈ {1, 2} ×X.

The following generalization of Theorem 3.2 to situations where, ψ1 and ψ2 may
not be the same, is immediate from Theorem 3.1 (also see Dewan and Khaledi (2014)).

Theorem 3.5. Let ψi : X × R → [0,∞), i = 1, 2, be given non-negative functions. Suppose
that
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(i) gi(θ) is TP2 in (i, θ) ∈ {1, 2} ×R.

(ii) either ψ1(x, θ) or ψ2(x, θ) is TP2 in (x, θ) ∈ X ×R;

(iii) for every fixed θ ∈ R, ψi(x, θ) is TP2 in (i, x) ∈ {1, 2} ×X;

(iv) for every fixed x ∈ X, ψi(x, θ) is TP2 in (i, θ) ∈ {1, 2} ×R.

Then, ψ∗
i
(x) =

∫ ∞

−∞
ψi(x, θ)gi(θ)dθ is TP2 in (i, x) ∈ {1, 2} ×X.

Realizing that it will be useful to have similar generalizations of Theorems 3.3 and
3.4 to situations where the functions ψ1 and ψ2 may be different, Misra and Naqvi
(2018) provided these generalizations as reported in the sequel.

Theorem 3.6. Let ψi : X × R → [0,∞), i = 1, 2, be given non-negative functions. Suppose
that, for every fixed x ∈ X, ψi(x, θ) is TP2 in (i, θ) ∈ {1, 2} × R and, for every fixed θ ∈ R,
ψi(x, θ) is TP2 (RR2) in (i, x) ∈ {1, 2} × X. In addition, suppose that either of the following
three set of conditions are satisfied:

(i) gi(θ) is TP2 in (i, θ) ∈ {1, 2} ×R and

ψ1(x, θ) or ψ2(x, θ) is TP2 (RR2) in (x, θ) ∈ X ×R;

(ii) Gi(θ) is TP2 in (i, θ) ∈ {1, 2} ×R and

ψ1(x, θ) is TP2 (RR2) in (x, θ) ∈ X ×R and is increasing in θ ∈ R

or

ψ2(x, θ) is TP2 (RR2) in (x, θ) ∈ X ×R and is increasing in θ ∈ R;

(iii) Gi(θ) is TP2 in (i, θ) ∈ {1, 2} ×R and

ψ1(x, θ) is TP2 (RR2) in (x, θ) ∈ X ×R and is decreasing in θ ∈ R

or

ψ2(x, θ) is TP2 (RR2) in (x, θ) ∈ X ×R and is decreasing in θ ∈ R.

Then, the function ψ∗
i
(x) =

∫ ∞

−∞
ψi(x, θ)gi(θ)dθ is TP2 (RR2) in (i, x) ∈ {1, 2} ×X.
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It is to be noted that when the stronger stochastic ordering (i.e., likelihood ratio
order) in (i) is replaced by a weaker stochastic ordering (i.e., hazard rate or reversed
hazard rate order) in (ii) or (iii) then we need an extra condition for the same result
to hold true. It is worth mentioning here that the result stated in Theorem 3.6 (i) is
equivalent to that stated in Theorem 3.1. It is also evident that the above theorem
generalizes/extends the results of Karlin (1968), Joag-dev et al. (1995), Khaledi and
Shaked (2010) and Dewan and Khaledi (2014).

We would like to add a note of caution for using Theorems 3.1 and/or 3.6. In many
applications, ψi(x, θ) (or, ηi(x, θ)), i = 1, 2, will be a p.d.f./s.f./d.f. and the underlying
assumptions of Theorems 3.1 and/or 3.6 may require ψi(x, θ) (or, ηi(x, θ)) to be a log-
convex function of θ ∈ R, whereas what will be known is the log-convexity of ψi(x, θ)
(or, ηi(x, θ)) on distributional support of Ti, 1 = 1, 2. Note that the log-convexity of a
p.d.f./s.f./d.f. on the support of the associated distribution is not extendable to wholeR,
and thus, in such situations, one needs to be careful in verifying validity of assumptions
of Theorems 3.1 and/or 3.6. The same is not true for log-concavity of p.d.f./s.f./d.f. as
their log-concavity on distributional support implies their log-concavity on whole R.

4 Some Results under Special Structures

Although Theorems 3.1 and/or 3.6 are quite useful in many situations, they have some
limitations, especially when ψi and/or gi (or, ηi) have some special structure. To see
this, let (T1,T2) and (U1,U2) be pair of independent random vectors with Ti (Ui) having

absolutely continuous s.f. Fi (Hi) and the Lebesgue p.d.f fi (hi), i = 1, 2. Suppose that the

common support of F1, F2, H1 and H2 is [0,∞). It is well-known that if Fi and Hi, i = 1, 2,
are log-concave (i.e., they have IFR), and Ti ≤hr Ui, i = 1, 2, then T1 + T2 ≤hr U1 + U2,
i.e.,

ψ(x) =

∫ ∞

−∞
H1(x − θ)h2(θ)dθ

∫ ∞

−∞
F1(x − θ) f2(θ)dθ

,

is increasing for those values of x ∈ X = [0,∞) for which atleast one of the integrals in
the definition of ψ(x) above is positive. One can easily check that the aforementioned

assertion cannot be proved using Theorems 3.1 or 3.6 as H1(x − θ)/F1(x − θ) cannot be
simultaneously increasing in x ∈ X (for fixed θ ∈ R) and in θ ∈ R (for fixed x ∈ X). For
such situations, the following result that follows from Karlin (1968, pp. 124, Theorem
5.2) may be useful.
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Theorem 4.1. Let ψi : R→ [0,∞), i = 1, 2, be given non-negative functions such that ψi(x)
is TP2 in (i, x) ∈ {1, 2} ×R and suppose that T1 ≤lr T2 (i.e., gi(θ) is TP2 in (i, θ) ∈ {1, 2} ×R).
Additionally, suppose that ψ1, ψ2, g1 and g2 are log-concave functions on R (equivalently,
ψi(x − θ) and gi(x − θ), i = 1, 2, are TP2 in (x, θ) ∈ R2). Then,

(a) ψ∗
i
(x) =

∫ ∞

−∞
ψi(x − θ)gi(θ)dθ is TP2 in (i, x) ∈ {1, 2} ×R, or equivalently, the function

ψ(x) =

∫ ∞

−∞
ψ2(x − θ)g2(θ)dθ

∫ ∞

−∞
ψ1(x − θ)g1(θ)dθ

,

is increasing for those values of x ∈ R for which atleast one of the integrals in the definition
of ψ(x) above is positive;

(b) for every ∆ > 0, ψ∗
i
(x)/ψ∗

i
(x+∆) is increasing for x ∈ S = {t ∈ R : ψ∗

i
(t)+ψ∗

i
(t+∆) > 0}

(equivalently, ψ∗
i

is log-concave on R), i = 1, 2.

On carefully analyzing the second proof of Theorem 5.2 of Karlin (1968, pp. 124), one
realizes that Theorem 4.1 can, in fact, be proved under weaker assumptions detailed
below (see, for example, proof of Theorem 1.1 in Hu and Zhu (2001)). For this
purpose, we first introduce some shifted stochastic orders (that are stronger than
their counterparts in Definition 2.1) which have been studied in the literature (see,
for example, Shanthikumar and Yao (1986), Nakai (1995), Brown and Shanthikumar
(1998), Lillo et al. (2000), Lillo et al. (2001), Di Crescenzo and Longobardi (2001), Hu
and Zhu (2001), Belzunce et al. (2002), Nanda et al. (2006), and Aboukalam and Kayid
(2007)).

Definition 4.1. The r.v. X1 is said to be smaller than the r.v. X2 in the

(a) up shifted hazard rate order (denoted by X1 ≤hr↑ X2) if X1 − ∆ ≤hr X2, ∀ ∆ ≥ 0, or

equivalently, if l1 ≤ l2, u1 ≤ u2 and F2(t)/F1(t + ∆) is increasing in t ∈ (l2,u1 − ∆),
∀ ∆ ∈ (0,u1 − l2), whenever l2 < u1;

(b) up shifted reversed hazard rate order (denoted by X1 ≤rh↑ X2) if X1 − ∆ ≤rh X2,
∀ ∆ ≥ 0, or equivalently, if l1 ≤ l2, u1 ≤ u2 and F2(t)/F1(t + ∆) is increasing in
t ∈ (l2,u1 − ∆), ∀ ∆ ∈ (0,u1 − l2), whenever l2 < u1;

(c) up shifted likelihood ratio order (denoted by X1 ≤lr↑ X2) if if X1 −∆ ≤lr X2, ∀ ∆ ≥ 0,
or equivalently, if l1 ≤ l2, u1 ≤ u2 and f2(t)/ f1(t + ∆) is increasing in t ∈ (l2,u1 − ∆),
∀ ∆ ∈ (0,u1 − l2), whenever l2 < u1.
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Theorem 4.2. Let ψ1 and ψ2 be given non-negative functions on R. For any ∆ ≥ 0, define
ψ∗

1,∆
(x) = ψ1(x+∆) andψ∗

2,∆
(x) = ψ2(x). Suppose that, for any∆ ≥ 0, ψ∗

i,∆
(x) is TP2 in (i, x) ∈

{1, 2}×R (or equivalently, ψ2(x)/ψ1(x+∆) is increasing in x ∈ {t ∈ R : ψ1(t+∆)+ψ2(t) > 0})

and T1 ≤lr↑ T2. Then, the function ψ∗
i
(x) =

∫ ∞

−∞
ψi(x − θ)gi(θ)dθ is TP2 in (i, x) ∈ {1, 2} ×R,

or equivalently, the function

ψ(x) =

∫ ∞

−∞
ψ2(x − θ)g2(θ)dθ

∫ ∞

−∞
ψ1(x − θ)g1(θ)dθ

,

is increasing for those values of x ∈ R for which atleast one of the integrals in the definition of
ψ(x) above is positive.

It is easy to verify that the assumptions of Theorem 4.1 are stronger than those of

Theorem 4.2. To see another limitation of Theorems 3.1 and 3.6, let {Fθ : θ ∈ Θ} be a
collection of log-convex (DFR) s.f.s, where Θ is an interval on R and, for every θ ∈ Θ,

the support of Fθ is [0,∞). Denote a r.v. corresponding to Fθ by X(θ), θ ∈ Θ. Let g be a
Lebesgue pd.f. supported on [0,∞). Define the s.f.

F(x) =

∫

Θ

Fθ(x)g(θ)dθ =

∫ ∞

−∞

Fθ(x)IΘ(θ)g(θ)dθ, x ∈ R.

Then, it is well known that F is log-convex (DFR) on [0,∞), or equivalently, for every
∆ ≥ 0, the function

ψ(x) =
F(x + ∆)

F(x)
=

∫ ∞

−∞
Fθ(x + ∆)IΘ(θ)g(θ)dθ
∫ ∞

−∞
Fθ(x)IΘ(θ)g(θ)dθ

,

is increasing on [0,∞). One can check that for proving this known fact, both Theorems
3.1 and 3.6, are applicable and would require the following assumptions for ascertaining
the increasing behaviour of x on [0,∞):

(i) ∀ θ ∈ Θ, Fθ(x) is log-convex on [0,∞);

(ii) ∀ θ2 > θ1, X(θ1) ≤hr X(θ2) or, ∀ θ2 > θ1, X(θ2) ≤hr X(θ1).

Clearly, assumption (ii) above is the additional assumption required by Theorems
3.1 and 3.6 to establish the increasing behaviour of x and therefore, Theorems 3.1 and
3.6, do not yield desired results here. The following result due to Artin (1931) (also see
Karlin (1968, Section 8.E, pp. 152) and Marshall et al. (2010, pp. 52)) is useful in such
situations.
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Theorem 4.3. Let Θ ⊆ R and −∞ ≤ a < b ≤ ∞ and let ψθ : (a, b) → R, θ ∈ Θ, be a family
of non-negative functions such that, for every θ ∈ Θ, ψθ(x) is log-convex in x ∈ (a, b). For a
positive measure µ on R, suppose that the integral

ψ(x) =

∫

Θ

ψθ(x)dµ(θ),

converges for all x ∈ (a, b). Then, ψ(x) is log-convex on (a, b) or, equivalently, for every
∆ ∈ [0, b − a), the function

ψ(x + ∆)

ψ(x)
=

∫

Θ
ψθ(x + ∆)dµ(θ)
∫

Θ
ψθ(x)dµ(θ)

,

is increasing in x ∈ (a, b − ∆).

Finally, we present a result due to Prékopa (1971) (also see Pečarić et al. (1992,
Theorem 13.26, pp. 353)) on preservation of log-concavity by marginals. For this, we
require the definition of log-concavity on R2.

Definition 4.2. A non-negative function τ : R2 → [0,∞) is said to be log-concave on
R

2 if, for every α ∈ (0, 1), (x1, x2) ∈ R2 and (y1, y2) ∈ R2,

τ(αx1 + (1 − α)y1, αx2 + (1 − α)y2) ≥ (τ(x1, x2))α(τ(y1, y2))1−α.

Theorem 4.4. Let τ : R2 → [0,∞) be a log-concave function. Then the function

η(x) =

∫ ∞

−∞

τ(x, θ)dθ,

is a log-concave function of x ∈ R, or, equivalently, for every ∆ ≥ 0, the function

ψ∆(x) =
η(x)

η(x + ∆)
=

∫ ∞

−∞
τ(x, θ)dθ

∫ ∞

−∞
τ(x + ∆, θ)dθ

,

is increasing in x ∈ S = {t ∈ R : η(t) + η(t + ∆) > 0}.

It is worth mentioning here that the above theorem can be used to provide sufficient
conditions under which mixture of IFR distributions is IFR (also see Lynch (1999)).

Since the results stated in Theorems 3.1, 3.6, 4.2, 4.3 and 4.4, above are strongest
among similar results available in the literature (e.g., those given in Karlin (1968), Joag-
dev et al. (1995), Khaledi and Shaked (2010), Dewan and Khaledi (2014) and Misra and
Naqvi (2018)) on monotonicity of functions of the type ψ(x) (or, η(x)), defined in 1.2
(1.5), we would prescribe use of these theorems in various applications.
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5 Conclusion

In this paper, we reviewed various results based on theory of TP2/RR2 functions that
are widely applicable in theory of stochastic orders and reliability. We also provide
a guideline to users for usefulness of various results in different situations. While
reviewing these results, we realized that for many applications it would be useful to
obtain general results of the following type:

(i) derive sufficient conditions, such as those in Theorem 3.6 (i)-(iii), for monotonicity
of functions of the type:

ψ(x) =

∫ ∞

−∞

∫ ∞

−∞
ψ2(x, θ1, θ2)g1(θ1)g2(θ2)dθ1dθ2

∫ ∞

−∞

∫ ∞

−∞
ψ1(x, θ1, θ2)g1(θ1)g2(θ2)dθ1dθ2

, x ∈ X;

(ii) find sufficient conditions for monotonicity of functions of the type:

ψ(x) =

∫ ∞

−∞
ψ2(x − θ)g2(θ)dθ

∫ ∞

−∞
ψ1(x − θ)g1(θ)dθ

,

under T1 ≤hr↑ (≥hr↑) T2 and/ or T1 ≤rh↑ (≥rh↑) T2 (see Theorem 4.2);

(iii) obtain sufficient conditions (different from those provided by Prékopa (1971),
Theorem 4.4) for log-concavity of the function:

ψ(x) =

∫ ∞

−∞

ψ1(x, θ)g1(θ)dθ, x ∈ X,

(see, for example, Lynch (1999)).
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