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Abstract: Distributed-order fractional calculus (DOFC) is a rapidly emerging branch of the broader

area of fractional calculus that has important and far-reaching applications for the modeling of

complex systems. DOFC generalizes the intrinsic multiscale nature of constant and variable-order

fractional operators opening significant opportunities to model systems whose behavior stems from

the complex interplay and superposition of nonlocal and memory effects occurring over a multitude

of scales. In recent years, a significant amount of studies focusing on mathematical aspects and

real-world applications of DOFC have been produced. However, a systematic review of the available

literature and of the state-of-the-art of DOFC as it pertains, specifically, to real-world applications is

still lacking. This review article is intended to provide the reader a road map to understand the early

development of DOFC and the progressive evolution and application to the modeling of complex

real-world problems. The review starts by offering a brief introduction to the mathematics of DOFC,

including analytical and numerical methods, and it continues providing an extensive overview of

the applications of DOFC to fields like viscoelasticity, transport processes, and control theory that

have seen most of the research activity to date.
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1. Introduction

Fractional calculus (FC) was first introduced as a mathematical generalization of
integer-order integration and differentiation. Started in 1695 from a discussion between
Leibniz and de L’Hôpital about the possible interpretation of the operator dn/dxn when
n = 1/2 [1], FC has been the object of studies for more than 300 years. In the early years,
research mostly focused on mathematical aspects of the fractional-order operators; their
physical interpretations and potential applications followed much later. Likely, the first
application of FC can be traced back to Abel in 1826. Abel [2] applied FC to formulate an
integral equation describing a tautochrone problem. Following Abel’s study, the integral
representation of FC started gaining increasing attention in the mathematics community.
Early works mostly focused on the development of analytical formulations to solve se-
lected mathematical problems. The most immediate result of this rapidly growing interest
in FC was the expansion of the possible definitions of a fractional operator including,
but not limited to, the integral representation (Liouville, Riemann, and Hadamard) and
the convergent series representation (Grünwald and Letnikov). While these early studies
had pointed out the intriguing role that FC can play when modeling complex processes in
physical systems, the bulk of the early research kept focusing on the development of the
mathematical framework [3] and on the integration of these operators into ordinary and
partial differential equations [4]. It was only in the second half of the twentieth century
that the concept of FC started percolating to fields other than mathematics. An area of
application that has seen a remarkably rapid growth is that involving the modeling of com-
plex physical phenomena. Unlike integer-order operators, the intrinsic multiscale nature of
fractional operators enabled a very unique and effective approach to model historically
challenging physical processes involving, as an example, nonlocality or memory effects.
Indeed, many of the early applications of FC to physical modeling included viscoelastic
effects [5–12], nonlocal behavior [8,12–24], anomalous and hybrid transport [9–11,24–30],
fractal media [12,31–35], and even control theory [36–39]. The interested reader is referred
to the work in [40] for a detailed account of the birth and evolution of fractional calculus.

For more than a century, the study of fractional calculus focused on operators accepting
a constant and single-valued order; we will refer to these operators as constant-order
operators in order to differentiate them from the distributed (but constant) order operators
that will be introduced below. Despite constant-order operators being considerably more
general than their integer-order counterpart, the constant and single-valued nature of
the order still limits its ability to accurately capture certain complex phenomena whose
underlying physics could either evolve in time or emerge as the result of the interplay
of multiple orders. In relatively recent years, this observation led to the formulation of
two remarkable and unique forms of FC operators, namely, the distributed-order and the
variable-order operators. The latter definition accounts for operators whose order can be a
function of either dependent (e.g., state variables of the system) or independent (e.g., space
or time) variables and can change value following the evolution of the system. While this
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review does not focus on this class of operators, the interested reader is referred to the
works in [41,42] for a detailed overview of the mathematical aspects and applications of
variable-order operators.

Before proceeding further, we clarify the different acronyms that will be used in this
review in order to refer to the different types of fractional-order operators. The single
constant-order operators are denoted as “CO” operators, the distributed-order operators
(with constant order distribution) are denoted as “DO” operators, and the variable-order
operators are denoted as “VO” operators. While VO operators can certainly be single or
distributed in nature, with the acronym “VO” we specifically refer to single variable-order
operators. Distributed-variable-order operators, which will be introduced later, are denoted
as “DVO” operators.

The distributed-order definition of the operator allows considering a superposition of
orders and accounting for, as an example, physical phenomena such as memory effects in
composite materials [43] or multi-scale effects [44]. A typical example that illustrates the
capabilities of this class of operators is the mechanical behavior of viscoelastic materials
having spatially varying properties [45]. Distributed-order fractional calculus presents
a natural generalization of constant-order fractional calculus (COFC) by integrating the
fractional kernel of CO operators over an extended range of orders. Given that the funda-
mental kernel of a CO operator is retained in the DO operator, DO operators inherit the
fundamental properties of COFC, such as the ability to model nonlocality and memory
effects, and further extend them to multiple coexisting orders. This latter argument can be
interpreted as a superposition of the behavior captured by individual CO operators using
different orders within a given range.

The original concept of distributed-order fractional calculus (DOFC) can be traced
back to the seminal studies by Caputo on dissipative elastodynamics [46–48]. In these
studies, a generalization of the viscoelastic stress–strain constitutive laws, by employing
a parallel sequence of fractional-order derivatives, was undertaken. Initially, the author
dubbed this operator as the “mean fractional-order derivative”. A couple of decades later,
Caputo [49] formalized the original proposition into the concept of DO derivative and
also explored possible solutions to differential equations employing DO derivatives. Later,
detailed investigations on the properties of DO operators, and on the properties and
solution techniques of DO differential equations (DODE) were conducted in [45,50,51].
Following these pioneering studies on the mathematics of DO operators, in the 1990s and
early 2000s, the interest in this topic went beyond the mathematical community and started
percolating into several branches of engineering and physics. To date, we estimate that
a total of approximately 300 papers have been published in the general area of DOFC.
This estimate includes both journal and conference publications spanning a variety of
fields including, but not limited to, theoretical and applied mathematics, analytical and
numerical methods, viscoelasticity, transport processes, and control theory. A detailed time
history and a quantitative assessment of the scientific studies produced in the general area
of DOFC are provided in Figure 1.

Given the substantial critical mass reached by this field to date, and in view of the
drastic acceleration of the research on DOFC observed in recent years, the time is ripe to
assess the state of the field not only in terms of the mathematical formulation, but from
the perspective of practical applications. In this review, we will provide a comprehensive
discussion of the different fields of application and possible opportunities offered by DOFC
to model complex physical problems. We expect that this review would serve as a starting
point for the reader interested in approaching this fascinating field. Engineering, physics,
chemistry, biology, and finance are only some of the communities that should find several
points of interest and material for further consideration in this work.
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Figure 1. (a) Histogram chart showing the historical evolution of scientific publications per year
starting from 1995. Note that the first study on distributed-order fractional calculus (DOFC) was
published in 1966 by Caputo [46]. Approximately five studies were produced until 1995, which was
taken as the starting year for the histogram. (b) Pie chart showing the distribution of publications
per field. The data used in this figure were collected from Google Scholar.

The remainder of this paper is organized as follows. Section 2 focuses on providing
an overview of the main mathematical concepts including basic definitions and properties
of DOFC. The section also covers analytical and numerical methods for the calculation of
DO operators and for the solution of DODEs. Section 3 briefly discusses the relevance of
DO operators with respect to the modeling of complex physical processes. The remaining
sections provide a review of the applications of DOFC to real-world problems including
viscoelastic systems, transport processes, and control theory.

2. Mathematical Background

We begin this review by providing a brief summary of the basic definitions and
properties of DO operators. Further, we will discuss the properties of differential equations
with DO operators, and provide a brief overview of the corresponding analytical and
numerical simulation techniques. We highlight here that, unless otherwise mentioned,
the DO operator is defined on the basis of a general fractional-order derivative denoted
by �

c Dα
t , evaluated with respect to a generalized independent variable t. We emphasize

that the notation t used in this section must not be interpreted necessarily as time. Note
that c denotes the lower terminal of the fractional derivative. The fractional derivative �

c Dα
t

can accept different definitions, although the most common for DO operators are those
provided by Riemann–Liouville RL

c Dα
t and by Caputo C

c Dα
t [45]. Finally, also for the sake of

brevity, we shall provide only the definitions corresponding to the left-handed fractional
derivatives (the right-handed DO derivatives being an immediate extension).

2.1. Definitions and Properties

From a mathematical perspective, DO derivatives are defined as an integration of
either the constant-order or the variable-order fractional derivatives with respect to the non-
integer order of differentiation [48–51]. Two approaches to the definition of DO derivatives
have been explored [45]. First, the so-called direct approach treats the order as a variable so
that the DO derivative is defined as [45,49]

α1,α2D
α
c,t( f (t), κ(α), α) =

∫ α2

α1

κ(α)�c Dα
t f (t) dα (1)

where the integrand κ(α)�c Dα
t f (t) undergoes integration with respect to the independent

variable α, that is, the fractional order within the interval α ∈ [α1, α2]. κ(α) is denominated
as the order-weighting/strength function, or simply the strength function. The second



Entropy 2021, 23, 110 5 of 43

approach, referred to as the indirect approach, treats the order as a function of a different
independent variable x leading to the following definition [45],

x1,x2D
α(x)
c,t ( f (t), κ(α), x) =

∫ x2

x1

κ(x)�c D
α(x)
t f (t) dx (2)

where x ∈ [x1, x2] is the interval of integration. Similar to κ(α), κ(x) is also an order
strength distribution [45]. The strength function (κ(α) or κ(x)) determines the contribution
of each individual CO derivative to the overall DO derivative. As an example, a constant
value of the strength function κ(α) = κ0 would mean the all the CO derivatives contribute
equally to the final DO derivative [49]. The specific choice of this strength function depends
on the underlying physics of the problem to be modeled and could be defined as either
a continuous or a discrete function of the order α (direct approach) or the independent
variable x (indirect approach). This latter comment is further clarified in the following
section by using practical examples.

To better illustrate the above concepts, we present a numerical demonstration of the
DO derivatives evaluated for two representative functions of the variable t: (1) a sinusoidal
function f (t) = sin πt in Figure 2 and (2) a step function f (t) = H(t− 1) in Figure 3, where
H is the Heaviside function. In Figures 2a and 3a, the strength function is chosen to be
κ(α) = 1, such that it is constant and continuous. In the Figures 2b and 3b, a discontinuous
strength function κ(α) = Σαj∈{0.5,0.7,0.9} τ0

α δ(α − αj), where τ0 is a positive constant.
In generating the above results, we employed the Caputo definition of the fractional
derivatives with terminals (−∞, t]. The CO Caputo fractional derivative of the two different
functions to an order α ∈ (0, 1) is [52]:

C
−∞Dα

t (sin πt) = πα sin
(

π (2t + α)

2

)

(3a)

C
−∞Dα

t (H(t − 1)) = H(t − 1)
[
(t − 1)−α

Γ(1 − α)

]

(3b)

The above CO derivatives are also provided in the Figures 2 and 3 to facilitate comparison
with the DO derivatives. Note that above expressions for the different CO derivatives
identically reduce to their respective first-order (integer) derivatives for the choice of α = 1.

As evident from the Figures 2 and 3, the DO derivatives can be perceived as the
weighted sum of individual CO derivatives over the specified range of fractional-order α.
Particularly for κ(α) = 1, as evident from Figures 2a and 3a, the DO derivative is the linear
sum of the CO derivatives with fractional-order α spanning the range [α1, α2]. This concept
is further illustrated by the examples in Figures 2b and 3b. In these figures, the DO
derivatives evaluated for τ0 = 1 are the sum of the individual CO derivatives. In contrast,
for τ0 = 2 wherein the strength function is also a function of the order α, we observe a
weighted contribution of the different CO derivatives to the DO derivative. The above
discussion also explains the shift in the phase of the harmonic function in Figure 2a.
More specifically, the phase shift in the DO derivative with respect to the original signal is
caused due to the contribution of a phase difference of πα/2 (see Equation (3a)) by each
CO derivative. The effect of the strength function on the amplitude, without changes in
the phase, is illustrated in Figure 2b. Similarly, for the case of the Heaviside step function
in Figure 3, different decaying characteristics can be obtained by varying the definitions of
the strength function κ(α) and its support [α1, α2]. Interesting applications to viscoelasticity
based on this observation will be discussed in Section 4.
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(a)                                                                                                        (b)          

Figure 2. DO derivative of a harmonic function f (t) = sin πt derived following the definitions given
in Equation (1). The plot shows the behavior of the derivative for (a) continuous and (b) discrete
strength functions.

(a)                                                                                                    (b)

Figure 3. DO derivative of the Heaviside function f (t) = H(t − 1) derived following the definitions
given in Equation (1). The plot shows the behavior of the derivative for (a) continuous and (b) discrete
strength functions.

Lorenzo and Hartley [45] also extended the definitions of DO derivatives by allowing
for the order distribution to be a function of different variables (such as, for example, space,
time, or external loads). This extension introduced the concept of distributed-variable-
order (DVO) operator. Following this extension, the direct and indirect approaches to the
definition of DO operators can be reformulated as

α1,α2D
α(t)
c,t ( f (t), κ(α), α) =

∫ α2

α1

κ(α)�c D
α(t)
t f (t) dα (4a)

x1,x2D
α(x,t)
c,t ( f (t), κ(α), x) =

∫ x2

x1

κ(x)�c D
α(x,t)
t f (t) dx (4b)

Although providing a very general form of the operator that can capture both multifractal
(DO) and evolutionary (VO) behavior, the application of these operators has been rather
limited. To date, most applications of DVO operators have been in the area of complex
viscoelastic materials (see Section 4.3).
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2.2. Distributed-Order Differential Equations

The present section is intended to briefly introduce the concept of differential equations
based on DO operators. Clearly, the concept of DODEs is fairly extensive in itself and the
reader is referred to the works in [53,54] for a detailed discussion on the different forms of
DODEs and the corresponding solution techniques. Here, we simply introduce the general
concept of DODE in order to facilitate the understanding of the discussion on applications
presented in the remainder of the paper. Consider the following DODE [49],

0,mD
α
0,t(κ(α), u(t), α) = f (t) (5)

for m ∈ N. Note that a discrete distribution function κ(α) = ∑
n
j=1 bjδ(α − αj) reduces the

above equation to following multi-term fractional-order differential equation,

n

∑
j=1

bj
�
0 D

αj

t u(t) = f (t) (6)

At the same time, a continuous distribution κ(α) = C[0, m] can be perceived as a limiting
case of the multi-term definition provided above when n → ∞ [49]. While Equation (5) is
an example of linear DODE, a nonlinear DODE can be given as [55]

∫ m2

m1

κ(α)F
(
�
0 Dα

t u(t)
)

dα = f (t, u(t)) (7)

where F
(
�
0 Dα

t u(t)
)

is a nonlinear function in the primary variable u(t) including its frac-
tional derivatives.

For the linear DODE in Equation (5), some common assumptions are employed
to ensure that the problem is well-posed, that is, the solution is both bounded and
convergent [55,56]:

Hypothesis 1. κ is absolutely integrable on the interval [α1, α2] and satisfies the following inequality,

∫ α2

α1

κ(α)sαdα 6= 0, for Re(s) > 0 (8)

Hypothesis 2. f ∈ L1[0, ∞), where L1 is the Lebesgue space.

Hypothesis 3. The function u(t) is such that �
0 Dα

t u(t) < M ∀t ∈ [0, ∞) ∩ ∀α ∈ [α1, α2],

where M is a constant. In other terms the fractional-order derivative is always bounded. For the

limiting case where either of the order bounds tends to infinity (i.e., α1 or α2 → ∞), the boundedness

of the DO derivative requires the strength function κ(α) to be non-zero only over a finite range, that

is, κ(α) must have a finite support [45].

Pskhu [57,58] conducted early studies on the solvability of ordinary DODEs. Umarov
and Gorenflo [59] extended these studies to analyze the solvability of multipoint problems.
Diethelm and Ford [60,61] analyzed the existence and the uniqueness of solutions for
linear DODEs, specifically for the case where Caputo-type initial conditions are available.
Later, this proof was extended to the case where initial conditions are unknown [55]. It is
noteworthy that these studies prove the existence and uniqueness for the fractional order
α < 1, while for α > 1 the existence and uniqueness are still a conjecture. A similar
exercise was performed on nonlinear DODEs with specific application to viscoelastic
systems [62] and wave propagation [63]. The existence of solutions to hybrid DODEs was
analyzed in [64], where the hybrid differential equations are quadratic perturbations to
nonlinear DODEs [65,66]. Atanacković et al. also conducted similar studies on selected
forms of DODEs encountered in the study of viscoelastic solids [67,68]. Note that all the
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aforementioned studies adopt the assumptions Hypothesis 1–3. Very recently, Fedorov
studied linear DODEs that violate Hypothesis 2 resulting in an unbounded operator [69].
This study expanded the application of DODEs to initial and boundary value problems of
ultra-slow diffusion.

2.3. Solution of DODEs: Analytical Methods

Concerning the analytical methods for the solution of DODEs, Caputo first proposed
the use of Laplace transform to derive solutions [49]. Later, Bagley and Torvik [50,51]
analyzed this approach in a systematic manner. The results obtained by the application of
Laplace transform to DO derivatives are subject to minor modifications depending on the
strength function and its support. Caputo derived the Laplace transform of DO derivatives
with the order-distribution being an arbitrary interval [a, b]. Bagley and Torvik specialized
this result for a restricted interval: α ∈ [0, 1], given the numerous practical examples
encompassed by this choice. Diethelm and Ford extended the domain to [0, m], m ∈ N [60].
The Laplace transform of a DO derivative with order distributed in [0, m], based on the
Caputo definition, is given as [56]

L

[∫ m

0
κ(α)C

0 Dα
t u(t)dα

]

︸ ︷︷ ︸
C

0,mDα
0,tu(t)

=
∫ m

0 κ(α)
(
sαL[u](s)− u(0)sα−1)dα

− ∑
m−1
j=1

∫ m
j κ(α)u(j)(0)sα−j−1dα

(9)

The Laplace transform of the DO derivative for other possible cases such as α ∈ [0, ∞] and
α ∈ [m − 1, m] can be found in [45,70], respectively.

Using the Laplace transform of the DO derivative in Equation (9), Diethelm and Ford
derived the analytical solution for the linear DODE: C

0,mD
α
0,tu(t) = f (t) as [60]

u(t) = u(0) + L−1

[

1
∫ m

0 κ(β)sβdβ
F(s)

]

+
m−1

∑
k=1

yk(0)L−1

[∫ m
0 κ(β)sβ−k−1dβ
∫ m

0 κ(β)sβdβ

]

(10)

where L−1 is the inverse Laplace transform. Note that the inverse Laplace transform in the
above solution can be applied iff the assumptions Hypothesis 1–3, that ensure a bounded
solution, are satisfied [60]. Lorenzo and Hartley derived analytical solutions for DODEs
employing DO derivatives specifically for an order distributed overR+ [45]. Other common
approaches to derive solutions of DODEs include the Fourier method [71–73], the use of
Mittag–Leffler functions [74–76], the spectral representation of the fractional operator [77],
and series expansion methods [78,79]. The method of Laplace transforms combined with
series approximations using Laguerre polynomials was also used to solve linear and
nonlinear DODEs [80]. While the work in [80] focuses on obtaining the solution for one-
and two-term fractional-order relaxation equations, the method developed in [80] is highly
general and may be extended to DODEs with general strength functions.

Although, in the above discussion we have primarily considered DO derivatives
based on the Caputo definition, the Laplace transform of DO derivatives based on the
Riemann–Liouville definition can also be derived analogously [60]. In fact, as shown in [60],
the only difference appears in the terms consisting the initial conditions, similar to the
CO case [4]. This difference in behavior was also highlighted by Mainardi et al. [81],
who employed Laplace transforms to compare the asymptotic behaviors of fundamental
solutions to time-fractional DO diffusion equations. Interestingly, different asymptotic
behaviors are observed for DO derivatives based on the Riemann–Liouville and Caputo
definitions. The difference in the asymptotic behaviors is primarily due to the difference in
the way the initial conditions appear in the Laplace transform of the CO Riemann–Liouville
and Caputo derivatives [4,82].
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2.4. Solution of DODEs: Numerical Methods

Although analytical solutions are possible for special types of DODEs [45,60], the
rapidly growing application of DOFC to model complex physical systems often requires the
use of numerical methods. Starting from basic observations, Diethelm [83] first proposed
an approximate numerical method for the solution of multi-term DODEs. Following this
initial study, several other numerical methods have been developed. Note that DODEs (see,
for example, Equation (5)) can be either ordinary differential equations (ODE) or partial
differential equations (PDE), depending on the specific application. The numerical simula-
tion of either a distributed-order ODE or PDE requires the numerical approximation of the
DO derivative. Once the approximation of the DO derivative is obtained, the procedure
to numerically simulate the DODE follows exactly from classical procedures developed
for integer-order equations. In other terms, the main difference between the evaluation of
classical integer-order differential equations and DODEs lies in the numerical approxima-
tion of the DO derivative. In the interest of brevity, we focus this section only on this latter
aspect. In general, the procedure to numerically approximate DO derivatives can be seen
as a two-step process:

1. Step 1: Numerical integration of the integral operator. The DO derivative consists of a
continuous distribution of the fractional order α. In Step 1, a numerical integration is
used to discretize the DO derivative into a multi-term CO fractional derivative.

2. Step 2: Approximate solution of the multi-term fractional derivative. Following the
conversion of the DO derivative into a multi-term fractional derivative at step 1,
different numerical methods are used to evaluate each CO fractional derivative within
the multi-term derivative.

The above two steps can be more practically visualized by considering the following
example of DO derivative,

∫ b

a
φ(α)Dαu(t)dα

Step 1
≈

k

∑
i=0

Wiφ(αi)Dαi u(t)

︸ ︷︷ ︸

Approximation of the integral

Step 2
≈

k

∑
i=0

Wiφ(αi)Ψ(αi, t)

︸ ︷︷ ︸

Incorporate approximation of Dαi u(t)

(11)

where Wi is the weight obtained from numerical integration and Ψ(αi, t) is the numerical
approximation of the CO derivative Dαi u(t). In summary, at step 1, an approximation of
the order integral is computed (often by quadrature rules), and at step 2, the remaining
CO derivatives are approximated by employing different types of numerical methods for
CO fractional derivatives. Based on this two-step approximation strategy, this section
is divided into three parts: (1) a discussion of the most popular quadrature rules for
the implementation of step 1, (2) a discussion of the various numerical methods for the
implementation of step 2, and (3) a brief discussion on their computational aspects.

2.4.1. Numerical Integration of the Integral Operator (Step 1)

As highlighted in the previous sections, a key difference between DO derivatives and
CO derivatives is the existence of an additional integration over the order. To transform
the integral form into the multi-term form (first of the two-step process), two common
quadrature rules are often used by researchers: (1) Gauss–Legendre quadrature rule and (2)
Newton–Cotes quadrature rule. Based on the Gauss–Legendre quadrature rules [84–107],
the DO derivative can be approximated using the following multi-term form,

∫ b

a
φ(α)Dαu(t)dα =

∫ b

a
g(α, t)dα =

k

∑
i=0

WG
i gG(αG

i , t) + RG (12)
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where WG
i are the weights at the Gauss points αG

i chosen for this integration over the DO.
Although the Gauss–Legendre quadrature schemes are known to achieve highly accurate
results (particularly when dealing with integrands of specific type such as, for example,
polynomials), an analysis of the numerical convergence and of the truncation error (includ-
ing steps 1 and 2) becomes difficult when the integrand consists of fractional derivatives
(like Dαu(t), as shown in Equation (11)). To overcome these drawbacks of the Gauss–
Legendre quadrature, the Newton–Cotes scheme was considered. The Newton–Cotes
quadrature scheme can be divided into closed and open approaches, depending on whether
the function values at the end points are included. Following the closed approach, different
quadrature rules used for DO derivatives include the trapezoid rule [56,87,106,108–117],
the Simpson’s rule [87,106,111,112,116–121], and the Boole’s rule [122]. All these schemes
are also associated with different orders of convergence. Following the open Newton–Cotes
approach, the mid-point rule is widely used [107,123–143]. The truncation error at the
end of step 1, when employing the Newton–Cotes approach, simply follows the classical
results. More specifically, the truncation errors are O(h2) for trapezoid rule and mid-point
rule, O(h4) for Simpson’s rule, and O(h6) for Boole’s rule. Given the flexibility in choosing
different approximations and the ease of error analysis, Newton–Cotes method is typically
preferred over Gauss–Quadrature approach in step 1 approximation.

2.4.2. Approximation of the Multi-term Fractional Derivatives (Step 2)

As described in Equation (11), the second step involves the numerical approximation
of the CO fractional derivatives within the multi-term fractional derivative. Strictly speak-
ing, this approximation directly follows the techniques available for CO derivatives. The lit-
erature on numerical methods for the approximation of CO derivatives is extensive and
has been the object of books [144] and papers [145–147]. Therefore, for the sake of brevity,
we do not review again these methodologies.

The more interesting and challenging aspect, in the context of the DO formulation,
is the combination of the step 2 approximation with the spatial and/or temporal dis-
cretization of the domain in order to develop computational models for space- and/or
time-fractional DODEs. The different discretization techniques can be generally divided
into (1) mesh-free approaches and (2) mesh-based approaches. The majority of mesh-free
approaches are based on the spectral method, which uses basis functions to approximate
the multi-term DO expression obtained in the first step. On the other hand, the mesh-based
approaches involve most of the classical methods for differential equations including the
finite difference method (FDM) and the finite element method (FEM). Depending on the
specific implementation, that is, on the numerical technique adopted to approximate the
CO fractional derivative in step 2 and the spatial and/or temporal discretization of the
domain, the computational approaches differ in their accuracy and computational cost.
This review focuses on this latter aspect. In this regard, we report here the accuracy of each
method, wherever available. In order to unify the expressions for convergence analysis of
different methods, we will use τ, h, and σ to represent the step-sizes in time, space, and
order, respectively.

Mesh-Free Approaches

In this section, we briefly describe the different mesh-free approaches available in
the literature to numerically simulate DODEs. The majority of these techniques adopt the
common strategy of converting the DODE into a system of algebraic equations using or-
thogonal basis functions. This allows formulating operational matrices which approximate
the CO derivatives within the step 2 approximation. Depending on the strategy adopted to
develop these matrices (or, equivalently, these algebraic equations) the different mesh-free
approaches can be broadly categorized as Galerkin methods, collocation methods, and tau
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methods. A brief discussion on these methods and some other miscellaneous techniques is
provided in the following.

1. Galerkin spectral methods can be divided broadly into two categories depending on
the specific nature of the basis functions: (1) Galerkin spectral methods based on
Legendre polynomials (GLSM) and (2) Galerkin spectral methods based on Jacobi
polynomials (GJSM). GLSMs were proposed very recently in [92,118,125,143,148] to
solve time-fractional DODEs. These were accurate to O(τ2−β) (where, β ∈ (0, 1)).
A few researchers combined the GLSM scheme with an alternating direction implicit
(ADI) scheme to improve the accuracy to O(τ2 + σ2) [98,139]. Numerical studies
based on the GJSM approach can be found in [85,91,149]. Some interesting conclusions
were presented in [150], which combined a s-stage implicit Runge–Kutta method in
time and the GJSM/GLSM in space to solve time-space-fractional DODEs. They estab-
lished that a convergence of O(s + 1) in time could be obtained when employing an
algebraically stable Runge–Kutta method with order p (p ≤ s + 1). A few researchers
have compared the performance of the GLSM and GJSM techniques in [90,150,151].
The results of these studies indicate that the specific basis functions do not drastically
alter the computational performance.

2. Collocation methods require that the approximate solution satisfies the DODE at specific
locations known as the collocation points. Similar to the Galerkin spectral method,
various collocation methods have been developed starting from (1) Legendre basis
(LCM) [100,134] and (2) Jacobi basis (JCM) [105,152]. Zaky constructed a LCM to
solve both linear and nonlinear boundary value problems [100], and later extended
this method to simulate initial value DODEs [99,153]. Results indicated that the con-
vergence error decays exponentially with an increasing number of Gauss–Legendre
points. Very recently, the LCM was extended by Xu [96] to develop a higher-order
Legendre–Gauss collocation method for nonlinear DODEs. JCMs were developed
in [101,102,152] to solve DODEs concerning different physical applications (such
as, for example, transport processes and control). A majority of the above studies
achieved either first or second-order accuracy. Recently, Abdelkawy [105] proposed a
fourth-order accurate scheme for time-fractional DODEs (admitting only smooth solu-
tions) while also achieving an exponential convergence rate. Besides the popular LCM
and JCM, collocation methods based on other basis functions including, for example,
the Chebyshev polynomials [129,154], fractional Lagrange polynomials [92], and the
wavelet method [119], were also developed. Some interesting numerical techniques
were developed by combining selected aspects of the different basis functions such as,
for example, the fractional-order Chelyshkov wavelets [104]. Similar to the Galerkin
spectral methods, it appears that the different basis polynomials in the collocation
methods, do not drastically alter computational accuracy.

3. Tau methods also employ different basis functions similar to the Galerkin spectral
method and collocation method. Tau methods for DODEs were first developed
in [155,156] using shifted Chebyshev polynomials. Building on these studies, shifted
Jacobi polynomials were adopted as basis functions in [157], and shifted Legendre
polynomials were adopted in [103,158]. A detailed analysis of the results from these
studies suggests that the accuracy and computational cost of simulating a given DODE
using the tau methods are similar to the collocation and Galerkin spectral methods.

4. Other mesh-free methods based on the formulation of fractional-order operational ma-
trices have also been explored to solve DODEs. The operational matrix is based on
different functions such as the block-pulse function (BPF) [89], Chebyshev polynomi-
als [159,160], and shifted Legendre polynomials [154]. Following the same strategy,
hybrid approximation methods based on the combination of different basis functions
have also been developed. The specific combinations that have been explored in
literature are BPFs and Bernoulli polynomials [95], BPFs and Taylor polynomials [93],
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and BPFs and shifted Legendre polynomials [161]. For completeness, we mention that
other numerical methods including the Laguerre spectral method [108], Legendre
wavelets method [84], fractional pseudo-spectral method [162], reproducing kernel
method [163], radial basis function based mesh-free methods [86,114], and element-
free Galerkin method [106] have also been proposed. Further, several semi-analytical
approaches including the Homotopy perturbation method [164–167], harmonic ap-
proximations [168], and the Adomian decomposition method [169–171] have also
been proposed and applied to derive the solution of DODEs and multi-term fractional
differential equations (FDE).

Mesh-Based Approaches

Although many mesh-free approaches can be implemented relatively easily for DO
problems involving simple geometries and boundary conditions, algorithms for numer-
ical computations on complex domains (e.g., involving irregular geometry and high-
dimensional systems) still present several complexities. This also reflects from the fact
that many 2D and 3D problems have been solved using mesh-based approaches, while a
majority of mesh-free approaches focus primarily on 1D problems. FEM is particularly
useful in exploring numerical solutions over irregular domains. Among the mesh-based
approaches for DODEs, two methods have generated the most interest: finite difference
methods (FDM) and finite element methods (FEM). Before proceeding to review these
mesh-based approaches, it is important to note a specific challenge faced by this class
of methods. More specifically, due to weak singularity of the integral kernel within the
fractional derivative, numerical solutions for initial boundary-value FDEs normally have
non-smooth sharp approximations near the boundary [172–174]. As the DO derivative is
approximated via a weighted sum of CO derivatives (see Equation (11)), this phenomenon
also occurs when solving initial boundary-value DODEs [143]. To tackle this weak singular-
ity, the commonly used mesh-based methods need to be improved. One possible approach,
commonly adopted in literature, consists in the use of a graded mesh [87,143]. Remarkably,
the use of the graded mesh also helps achieving a high-order convergence [87,143].

1. Finite difference methods are one of the most widely used mesh-based approaches
for the solution of DODEs because they allow easy formulation and implementation.
Compared with other approaches, the convergence and accuracy of FDM are easier
to analyze [175–177]. A majority of the advanced FDMs are based on the Grünwald–
Letnikov method (GLM) [122,142]. Recall that GLM uses a finite number of terms
from a convergent series to approximate the fractional derivative and is a widely
used approach [4]. Hu [126] used a shifted GLM to simulate a time-fractional DODE
with accuracy up to O(τ1+σ/2 + h + σ2). Second-order accurate schemes for space-
fractional DODEs were developed in [136] by using a Crank–Nicolson scheme in
time and a shifted GLM. Similar second-order accurate algorithms can also be found
in [133,178]. The second-order accurate backward difference formula, first proposed
by Diethelm [145], also appears to be popular among several researchers [124,129,138].
To further improve the numerical accuracy, more elaborate methods were developed
using the weighted and shifted GLM (WSGLM). Li [179] developed a numerical
scheme with high spatial accuracy (O(τ2 + h4.5 + σ2)) by combining WSGLM and the
parametric quintic spline method. Another scheme capable of delivering high spatial
accuracy (O(τ2 + h4 + σ4)) was proposed by using the WSGLM for temporal approx-
imation and high-order compact difference scheme for spatial approximation [117].
Yang [180] also proposed a similar composite method based on WSGLM in time
and orthogonal spline collocation method in space. This scheme was shown to be
unconditionally stable and accurate up to O(τ2 + hr+1 + σ2) (here r is the polynomial
degree used in the spatial domain).
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FDM schemes have also been developed for high-dimensional problems, with par-
ticular attention being given to accuracy and convergence performance [141,181].
For applications requiring high accuracy, two techniques are often used: (1) compact
FDM (CFDM) and (2) extrapolation method. Based on a fully discrete difference
scheme [182], Ye [132] proposed a CFDM and demonstrated its convergence to be
O(τ1+σ/2 + h4 + σ2). Pimenov [121] constructed a linearized difference scheme for
nonlinear time delay DODE. Several researchers [110,120,183] also obtained a CFDM
with order O(τ2 + h4 + σ4) based on higher order temporal approximation techniques.
Gao [111,116] applied two extrapolation methods in time to achieve high temporal
convergence: O(τ2) and O(τ2|lnτ|2). For high-dimensional problems, ADI schemes
become highly popular and help achieve highly accurate (second-order in time and
fourth-order in space) numerical schemes [107,184].

2. Finite element methods: Starting from the study of multi-term FDEs, Jin [185] de-
veloped a Galerkin approach, Bu [186] used a multi-grid FEM, and Zhao [187] used
a spatially nonconforming FEM to solve time fractional diffusion equations. Simi-
larly, several researchers first developed FEMs to solve multi-term FDEs and later
extended them to solve DODEs [87,123,188]. Few researchers [112,189] developed the
H1-Galerkin FEM for DO sub-diffusion equations which allowed the estimation of the
diffusive field variable as well as its spatial derivative. By using locally discontinuous
Galerkin FEM, Aboelenen [137] and Wei [190] developed highly accurate numerical
schemes with spatial convergence O(hk+1) (k is the degree of basis polynomials).
Given the FEM’s unique ability of handling complex geometry, several recent studies
have focused on its application to irregular domains. Examples include the develop-
ment of FEMs, based on unstructured meshes, to solve DO equations corresponding
to different physical applications [109,191–193].

3. Other mesh-based methods: In addition to FEM and FDM, a few other mesh-based
methods were also explored. Examples include the combined B-spline interpolation
and the Du Fort–Frankel method [130] for time-fractional DODEs. Heris [135] and
Javidi [136] introduced a fractional backward differential formulas for space DODEs
and obtained a second-order accurate numerical scheme. Diethelm et al. [60,188,194]
introduced a convolution quadrature method for the numerical approximation of DO
operators. Based on a backward difference formula, Podlubny [195,196] proposed a
matrix form to represent discrete analogs of fractional operations and extended this
method to the solution of DODEs [197]. Other mesh-based techniques developed
in literature to solve DODEs and multi-terms FDEs include the predictor-corrector
method [56,198–201] and the finite volume method [127,128,202].

Computational Aspects of DODEs

The previously discussed numerical schemes for the approximation of fractional
derivatives typically generate dense matrices; a clear consequence of the intrinsic nonlocal
character of the operator. For discretizations with N number of elements (temporal or
spatial), these dense matrices generally require O(N3) floating point operations and O(N2)

memory, for each iteration. In order to reduce this high computational cost, several alternate
approaches were considered. Based on the idea of relabeling employed in ADI methods,
Jia [203] developed a fast FDM which stores a coefficient matrix in O(N) memory and
performs matrix-vector multiplication in O(NlogN) computations. Two numerical algo-
rithms offering comparable time and space complexity were developed by Jian [142] and
Zheng [202]. By expressing the matrix of coefficients as a sum of special diagonal-Toeplitz
matrices, Jian derived a fast solution technique based on the preconditioned Krylov sub-
space method. Zheng proposed an efficient biconjugate gradient stabilized method to solve
system of equations with a Toeplitz structured coefficient matrix. More recently, a reduced-
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order ADI method [184] was developed to reduce the computational cost involved in the
numerical solution of DODEs.

Before proceeding further, it is worth noting that the computational time for the
numerical simulation of DODEs can also be reduced via parallel computation and pre-
conditioning of the operational matrices used to approximate the fractional derivatives.
While parallel computation has not been directly applied to DODEs, parallel solvers have
been developed for CO FDEs [204–206]. Besides the parallel algorithm itself, the effect of
different hardware platforms (GPU v/s CPU) [207] and different memory architectures
(shared memory v/s distributed memory) [206] on the computational times for simula-
tion of CO FDEs, have also been studied. Further, preconditioners are often designed to
accelerate matrix computations in nonlinear CO FDEs involving iterative problem solv-
ing procedures. Many studies have proposed different types of preconditioners such as,
for example, preconditioned biconjugate gradient method [208] and generalized minimal
residual method [209], for solving nonlinear CO FDEs. Both the above described tech-
niques, that are parallel computing and preconditioning, present possible opportunities
to reduce the computational time for solving DODEs and are hence worthy of detailed
investigation in the future.

3. Relevance of Distributed-Order Operators

As evident from the definitions presented in Section 2, DO operators can be interpreted
as a parallel distribution of derivatives of either integer or fractional orders. It follows that
one of the most immediate application of these operators is to model physical systems
whose response is characterized by a superposition of different processes operating in
parallel and individually described by either fractional- or integer-order operators. As an
example, consider electro-rheological fluids that can change their properties following
the application of an electric field. This means that, in these media, the order of a small
fluid element is dependent on the local field strength. Therefore, if the applied electric
field is nonuniform, a corresponding order distribution will exist throughout the mate-
rial [45]. A similar example consists of modeling the response of an electrical circuit with
a distributed network of capacitors exhibiting the well-known fractional-order Curie’s
law. According to this law, current through a capacitor varies with time t as i(t) = V0/Ctα,
where V0 is a constant voltage and α ∈ (0, 1) [210]. These simple examples suggest that
there exists a class of physical problems that can be better described by DO operators.

Broadly speaking, the above-described class of physical problems is characterized by
the presence of multifractal or equivalently multifractional systems [211]. The response of
such systems is marked by the presence of multiple temporal and spatial scales, which can
be accurately captured via time-fractional and space-fractional DO operators, respectively.
The advantage of the DO operator in capturing the hierarchy of scales as well as anomalous
scaling effects has been analyzed in detail in [44]. The occurrence of this hierarchy of
scales could be better visualized by considering, for example, the modeling of turbulence
via the Lévy walk approach. This approach associates a time scale with jump distances,
and the multiplicity of scales is explicitly taken into account via an integral equation
which contains a coupled memory kernel similar to the DO operator [212]. Other examples
of such multifractional processes include the analysis of structures with simultaneous
nonlocal and strain-gradient (multiscale) effects [213], diffusion of particles in microporous
materials [214], analysis of financial markets where distributions of financial data usually
possess fast falling power-law tails [215], and even state functions of complex quantum-
mechanical systems [216,217].

From a different perspective, DO operators can also be used to retrofit models to
experimental data derived from systems with an unknown fractional behavior. The frac-
tionalization of differential equations commonly used in mathematical physics leads to the
analysis of the order-parameter, say α, to be determined via experimental results. As experi-
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ments can lead to several values of the fractional order, as a result of different experimental
conditions, it is convenient to introduce a DO fractional derivative. This is equivalent to
integrating the product of a fractional derivative (Dα

�
(·)) of the primary response variable

(say u) and a weight function (or distribution) with respect to the order of the derivative,
that is, to evaluate

∫

supp φ φ(α)Dα
�

udα. In this way, one may use several experimental
results and determine a continuous function φ rather than focusing on a single variable
that is the fractional-order α. This can be interpreted as a homogenization of the different
possible fractional processes and the resulting epistemic uncertainties. In other terms, such
an approach would enable a valid and accurate analysis of experimental data and allow the
development of fractional-order models, without having to identify the specific underlying
fractional behavior.

The above remarkable properties of DO operators have led to the development of
fractional models capable of describing numerous complex physical processes. Most of the
work to date has concentrated on the general areas of viscoelasticity, transport processes,
and control theory. We make a few concluding remarks, before proceeding to review the
most significant applications of DOFC reported to date in the different areas. Note that the
application of DOFC to viscoelasticity and control theory primarily involves the use of time-
fractional DO derivatives, while the application to transport processes involve both space-
and time-fractional DO derivatives. This separation follows from the underlying physics
being captured. In this regard, recall that, while time-fractional DO derivatives are typically
used to account for memory effects and dissipation across multiple temporal scales, space-
fractional derivatives are used to model nonlocal effects and spatial heterogeneity over
multiple spatial scales. In the applications presented below, we do not specify if the
DO model is based on a Riemann–Liouville or Caputo (or any other) definition, as it
only marginally affects the overall discussion. Finally, we use the following notation
in all the subsequent sections: t and x refer to the independent variables in time and
space, respectively.

4. Applications to Viscoelasticity

Fractional-order derivatives are well suited to capture the dissipation in viscoelas-
tic solids. The differ-integral definition of the fractional derivatives allows the effects of
deformation history to be realized within the stress–strain constitutive models, thus com-
bining the elastic response across different time scales. In this regard, Gemant [218,219],
Caputo [46], Bagley and Torvik [5,6], and Chatterjee [7] provided seminal contributions
towards the use of fractional-order models to simulate the effect of dissipation in viscoelas-
tic solids. While an approach based on CO time-fractional derivatives is intuitive and has
drawn much interest, it is not well suited for applications involving materials character-
ized by multiple relaxation times. In order to address this gap in modeling viscoelastic
systems via the CO derivatives, DO models were proposed [48,49,220]. As mentioned in
Section 3, the DO operators allow the multiple relaxation scales to be visualized as separate
viscoelastic connections operating simultaneously. Thus, a superposition of multiple CO
derivatives (or equivalently, multiple relaxation scales) is achieved via the definition of the
DO derivative for viscoelastic solids.

4.1. Constitutive Models

As mentioned in Section 2.1, the DO derivatives were originally conceptualized
to model the dissipative elastic response with several temporal relaxation scales [48].
Following this seminal work, several other models of viscoelasticity either based on DO
derivatives now exist in literature. These models can be viewed as simplified versions
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of the following generalized DO stress–strain constitutive law, proposed by Atanacković,
for viscoelastic solids [221,222]:

∫ 1

0
φσ(γ)0D

γ
t σ(t)dγ = E

∫ 1

0
φǫ(γ)0D

γ
t ǫ(t)dγ (13)

where φσ and φǫ represent the strength functions corresponding to stress and strain (these
are constitutive functions that characterize the viscoelastic response), E is the Young’s mod-
ulus, and 0D

γ
t (·) is the CO time-fractional derivative. The formulation in Equation (13) is

referred to as the most general model because all other models, already existing in literature,
can be derived from this model via suitable assumptions on the additional (fractional-
order) constitutive parameters. For instance, the choice φσ = δ(γ) and φβ = δ(γ − 1) for
the for strength functions results in the standard dashpot. Additional abstractions of the
DO constitutive model in Equation (13), describing different viscoelastic elements, are
illustrated in the Figure 4. Further, as discussed in Equation (6), a discrete choice for the
order-distribution weights in Equation (13) would result in a multi-term fractional-order
expression for the DO definition given above. Employing discrete strength functions in the
above equation, the stress and its temporal derivatives (of real order, not necessarily integer)
can be recast in terms of strain and its (real-order) temporal derivatives as follows [223],

N

∑
n=0

an

[

0Dαn
t σ

]
=

M

∑
m=0

bm

[

0D
βm
t ǫ

]

, t > 0 (14)

where the fractional-orders are assumed to satisfy: 0 ≤ α0 < α1... < αN < 1, 0 ≤ β0 <

β1... < βM < 1. The constants a� and b� can be interpreted to be relaxation times for
the viscoelastic solid. As demonstrated in [223], the above-presented multi-term model is
effective in modeling both stress relaxation and creep response in viscoelastic structures.
The integral constitutive relation given in Equation (13) can be interpreted as the continuum
limit of the discrete multi-term constitutive relation given in Equation (14). This is also
illustrated in Figure 4b, which depicts the DO integral model as the continuum limit of the
discrete model in Figure 4a.

(a)                                                                                               (c)

(b)

Distributed-order extension

Disributed-variable-order extension

Figure 4. Examples illustrating the different DO models of viscoelasticity along with their respective
constitutive relations. It appears that DO operators can model multiple viscoelastic elements within
the same general formulation. Dashpots characterized by material constants η and order α indicate
the individual viscoelastic elements. Schematic illustration of (a) the multi-term DO viscoelastic
model, (b) the generalized DO model depicted as an infinite ensemble of elements with αi ∈ (0, 1]
such that Span {αi} is (0, 1], and (c) the generalized temperature field-dependent VO definition for
the DO viscoelastic model.
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4.1.1. DO Integral Models

All existing models catering to different lossy materials can be recast into the DO
form in Equation (13) (or equivalently, Equation (14)) by considering different choices for
order-distribution functions. In other words, each of the several distinct classifications
of the viscoelastic solids proposed by Caputo and Mainardi [224] based on the creep and
relaxation moduli relations, can be described by the single DO constitutive law via suitable
choices of the fractional-order constitutive parameters. This highlights the relevance of DO
operators and their scope in modeling viscoelastic constitutive relations when compared
with other more classical integer—and fractional—(CO or VO) models available in the
literature. To better illustrate this, consider the following two cases: case I: φσ = δ(γ),
φǫ = τα

0 , and case II: φσ = τα
σ , φǫ = τα

ǫ , τσ < τǫ, τ� being a material constant. These two
choices for the integral forms of the DO constitutive relation are commonly used in mod-
eling viscoelastic solids [43,225–227]. Depending on the choice of the strength functions,
Equation (13) can successfully characterize both fluid-like and solid-like viscoelastic materi-
als. Remarkably, salient mechanical characteristics of the viscoelastic materials modeled by
these choices, such as the creep and stress relaxation functions, exhibit the experimentally
observed power-law attenuation [228].

4.1.2. Multi-Term Fractional Models

Compared to integral models, the discrete multi-term approach has been more widely
used for the modeling of viscoelastic constitutive relations. This is a direct consequence of
the simplicity with which discrete models could be modified in order to account for different
lossy behaviors observed in real materials. The discrete form also facilitates a direct
comparison between the viscoelastic behavior captured by DO models with respect to the
more traditional and established integer-order models. This enables a better understanding
of the physical relevance of DO models and it also allows a more natural approach to
material characterization. The following instances of the different viscoelastic models that
can be recovered from the multi-term DO law in Equation (14) further illustrate the strength
of the DO approach:

1. Kelvin-Voigt models: The DO analogue of the Kelvin–Voigt model is obtained for the
choice of φσ = δ(γ), and φǫ = τγ [229].

2. Maxwell models: The fractional-order Maxwell model of viscoelasticity can be obtained
for φσ = δ(γ) + ταδ(γ − α) and φǫ = E∞τβδ(γ − β) in Equation (13) [230]. Note that,
assuming α = β in the fractional Maxwell model, allows recovering the fractional
Zener model [231].

3. Zener models: If the material constants in Equation (14) are chosen as a0 = b0 = 1,
a1 = a, b1 = b, and orders α0 = β0 = 0, α1 = β1 = 1 the classical Zener model
is obtained. Similarly, α1 = β1 = α gives the generalized Zener model [232].
Wave propagation in fractional Zener-type viscoelastic media, obtained by choosing
φσ = φǫ = δ(γ) + ταδ(γ − α) in Equation (13), was studied in [233,234]. Similarly,
the choice of φσ = δ(γ) + (a/b)δ(γ − (α − β)) and φǫ = aδ(γ − α) + cδ(γ − η) +

(ac/b)δ(γ − α − η + β) in Equation (13), also results in a fractional version of the
classical Zener model with springs and dashpots [223].

4. Other models: Viscoelastic models described for the strength functions φσ = δ(γ) +

ταδ(γ − α) and φǫ = E0(δ(γ) + ταδ(γ − α) + τβδ(γ − β)) in Equation (13), were ana-
lyzed in [235]. Variations of this latter model (also referred to as the four-parameter
model [236]) including the use of five-parameters [237] were studied to simulate
selected types of lossy behavior in real materials. Further extensions that explored
the use of additional terms were also presented [79].

In the above discussion, {a, b, c} denote different material constants corresponding to
different relaxation times and {α, β, η} are the fractional-orders associated with different
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lossy behaviors of the DO model (see Equation (14)). In conclusion, we note that the multi-
term fractional model is highly general and offers much flexibility in modeling different
types of lossy behavior in viscoelastic solids. This is unlike CO or VO approaches that
require separate models to capture these different behaviors.

4.2. Material Characterization: Methods and Experiments

It is clear from the discussion in Section 4.1 that several possibilities for the viscoelas-
tic constitutive theories exist, considering suitable choices for the DO model parameters.
Before proceeding to review the application of these DO theories to the characterization of
viscoelastic materials, we make an important remark. Note that the application of these
DO theories to real-world viscoelastic problems requires that these models are physically
as well as mathematically consistent. To ensure consistency of the DO viscoelastic theories,
there exist restrictions on the choice of the fractional model parameters which are derived in
accordance with the principles of (1) time invariance, (2) causality, and (3) thermodynamics
(dissipation inequality given by the Clausius–Duhem inequality) [49]. The conditions over
the strength distribution functions φσ and φǫ, corresponding to the integral definition of the
DO law given in Equation (13), are available in [222]. For instance, the thermodynamic law
restricts the choice of DO constitutive parameters for the fluid-like viscoelastic materials,
discussed in Section 4.1.1, as follows, τ0 > 0. An analogous study conducted on the discrete
form of the DO constitutive law (see Equation (14)) identified the restrictions on relevant
constitutive parameters [223]. The investigations conducted in the aforementioned studies
were further extended in [53] which analyzed the physical as well as mathematical consis-
tency of the generalized DO model of viscoelasticity. In this regard, note that mathematical
consistency ensures the existence and uniqueness of a linear viscoelastic response corre-
sponding to the generalized DO formulation. The framework developed in [53] provides
the foundation for a rigorous and consistent application of DOFC to modeling the response
of viscoelastic solids.

The discussion in Section 4.1 highlighted the ability of DO operators to capture
multiple scales of relaxation time and thereby different lossy behaviors observed in real
materials [220]. For this purpose, the constitutive parameters of the DO constitutive model
in Equation (13) that require to be identified are the fractional-order parameters and
their numerical range. Initial investigations [82,220] laid a theoretical foundation for this
fractional-order system identification problem. Further experiments on the characteri-
zation of viscoelastic properties corresponding to the different class of DO models for
commercial polymers are reported in [238]. Such studies were carried out by matching the
experimental profiles of the loss and storage moduli for viscoelastic materials [53]. Recall
from Section 4.1.2 the relevance of DO operators in modeling multiple forms of viscoelastic
behavior. This feature of the DO constitutive models for viscoelastic elements presents an
interesting opportunity. To better illustrate this aspect, consider the multi-term DO models
depicted in Figure 4a as the sum of several independent viscoelastic connectors with their
associated relaxation timescales. This type of arrangement allows incorporating multiple
timescales within a single DO model in order to design an optimized fractional damper.
The incorporation of multiple timescales (using the DO derivative) can also be visualized
from the DO derivative of the Heaviside step function in Figure 3. The relaxation time
of the viscoelastic damper can be tuned by an appropriate choice of the constituent CO
derivatives and their associated weights within the definition of DO derivative. This ap-
proach presents an opportunity to identify the damper that can deliver a desired behavior
in terms of overshoot, peak time, and integrated tracking error [239]. This feature is unlike
the classical integer-order or CO constitutive theories that allow only a single type of lossy
behavior to be captured with a given model.
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4.3. Distributed-Variable-Order Models

The above discussion presented an overview of the applications that DO models,
based on CO derivatives, enable in the general area of viscoelastic solids. A few studies
have also explored the extension of these models to employ DO operators based on
VO derivatives; here below referred to as distributed-variable-order (DVO) operators.
Lorenzo and Hartley presented one of the first works exploring the combination of both
VO and DO operators to the formulation of the stress–strain constitutive law of viscoelastic
solids [45]. They discussed how a DVO operator defined using a spatially-dependent
VO law could be used to model the response of a thermorheologically complex material
subject to a spatially and temporally varying temperature field. By choosing a spatially-
dependent VO law, the resulting DVO model is capable of describing the spatial variation
of the viscoelastic properties. The spatial variation of viscoelastic properties can be the
result of a combination of internal as well as external conditions such as, for example,
varying microstructure, presence of thermal loads, and a distribution of thermal gradients.
We merely note that, very recently, this concept of defining a spatially-dependent VO
law was used to model nonlocal solids with spatially varying microstructure in [240].
Further, an example of the temperature-dependent DVO viscoelastic model is illustrated
in Figure 4c. In this case, the DVO model is required to introduce the effect of a spatially
varying temperature field T(x, t) on the multiple timescales present within the DO model
for viscoelasticity. This allows an accurate representation of the transient viscoelastic
response [220]. It is important to mention that, unlike the DO models employing CO
derivatives, the thermodynamic basis for the DVO models still remains to be ascertained.

4.4. Some Practical Applications

The DO constitutive models have been successfully applied in the analysis of viscoelas-
tic solids. Recall that the different DO constitutive models can be classified primarily into
two classes: (1) integral-models and (2) multi-term models, corresponding to the choice of
DO derivative. Further, within each of these classes, further subdivisions exist depending
on the specific functions chosen for (a) weights of the order-distribution functions and (b)
bounds of the fractional-order α. Here, we shall present some prominent examples studied
in literature that cater to a specific class of viscoelastic solids. These studies include finite
solids with appropriate boundary conditions, and also the infinite solids.

Some examples of the constitutive parameters within DO integral models in
Equation (13) were discussed previously in Section 4.1.1. Employing specific choices
of the constitutive parameters, successful modeling of the creep response [225] and stress-
relaxation [226] in finite solids is possible. Further, these integral models find relevance in
modeling the vibration of fractional DO oscillators [227]. Patnaik and Semperlotti [168]
demonstrated a successful application of DO viscoelastic models in the analysis of non-
linear oscillators with distributed nonlinear properties. In this study, the effect of the
order-distribution on the phase and frequency response was captured analytically using
asymptotic techniques and some important characteristics, such as simultaneous phase and
amplitude modulation (that is not seen in integer-order models) were presented. Recently,
the scope of DO constitutive models is also being explored to describe viscoelasticity within
complex materials like composites [43].

These studies can also be extended to modeling and analyzing the damping of the
structural response. DO models can be utilized to derive moment–curvature relations
of viscoelastic rods [241–243]. The DO constitutive relation between moment (M) and
curvature (κ) for the viscoelastic rod is given by

∫ 1

0
φM(γ)0D

γ
t Mdγ =

∫ 1

0
φκ(γ)0D

γ
t κdγ (15)
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In this equation, the choice of φM = δ(γ) and φκ = EIδ(γ) (EI is the bending modulus)
reduces the above expression to the classical Euler–Bernoulli beam theory. The solution
to the above DODE would reflect the influence of viscoelastic damping over the bending
response of beams. Similar exercises can be conducted over more complex shapes with the
help of advanced numerical techniques discussed in Section 2.4.

Employing the multi-term definition of the DO constitutive relations, the DO moment–
curvature relations can be revisited for different classes of viscoelastic solids. For instance,
DO bending relations analogous to the generalized Zener model were derived to study the
dynamics of a viscoelastic rod in [243,244]. Similarly, the lateral vibration of a viscoelastic
rod modeled according to the generalized Kelvin-Voigt behavior was studied in [229].
The choice of φM = δ(γ) + aδ(γ − α) and φκ = EI(δ(γ) + bδ(γ − α) + cδ(γ − β)), which
is a generalization of the standard Zener model, was proposed in [235] and used in [245] to
study the lateral vibrations of viscoelastic rod. DO models were also used to analyze the in-
fluence of viscoelastic foundations on the dynamic stability of local and nonlocal rods [246].
Similarly, Varghaei et al. [247] investigated the nonlinear vibration of viscoelastic beams
using a generalized Kelvin–Voigt model implemented via DO derivatives. Finally, Duan
and Chen [248] investigated oscillatory shear flow between two parallel plates using DO
form of the constitutive law for for viscoelastic fluids. Different effects of viscoelasticity
over the structural response can be realized thanks to the generality of the DO models of
viscoelasticity by employing specified choices for constitutive parameters. For instance,
different viscoelastic constitutive models were employed in a study over the damping
influence on the propagation of an initial Dirac delta disturbance through an infinite media.
This provides the necessary foundation for designing an optimized damper as in [239].

5. Applications to Transport Processes

Several experimental investigations have shown that transport processes in many
classes of materials are often characterized by anomalous mechanisms exhibiting either
memory effects over various temporal scales or nonlocal effects over several spatial
scales [249–251]. A direct consequence of this, as an instance, is a loss of the scaling
invariance (CO or VO) noted in classical transport processes. Consequently, such processes
cannot be modeled by using CO (integer or fractional) or even VO differential equations,
as CO and VO diffusion equations lead to self-similar probability densities with a charac-
teristic displacement exhibiting spatio-temporal scaling. The loss of the spatio-temporal
scaling is a direct result of the presence of a spectrum of temporal or spatial scales in the
transport process. The presence of several temporal scales, as an example, can be the result
of the presence of a mixture of delay sources of variable strength [252] while the presence of
distributed spatial scales can occur in transport through multifractal materials [211,215,253]
(see Figure 5). Real-world examples of such complex transport processes include appli-
cations in geophysical and atmospheric phenomena [254–257], financial markets [258],
turbulence [259], and even biology and medicine [211]. As discussed in Section 3, DODEs
are very well suited to model such non-scaling anomalous transport processes exhibiting
effects over multiple temporal and/or spatial scales.
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(a)                                       (b)                                             (c)                                               (d) 

Figure 5. (a) Underground aquifers contain heterogenous layers of soils where each layer is charac-
terized by a different level of porosity. The diffusion of groundwater through this multifractal media
can be better described by DO operators, by replicating (mathematically) the parallel action of the
different porous media in the order-distribution (see Section 5.3). Additional examples of multifractal
systems where transport processes are better described via DO operators: (b) the diffusion of ions in
neuronal dendrites [211], (c) the diffusion of pigments to form patterns in animals (see Section 5.2),
and (d) turbulent flows. The subfigures (a–d) are taken from Wikipedia.
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From a thorough review of the literature it appears that anomalous diffusion, among
other types of anomalous transport processes, has seen the maximum applications of
DOFC. Therefore, we start by reviewing the application of DO models to complex diffusive
transport processes, and then move on to other processes including reaction–diffusion,
advection–diffusion, and hybrid propagation. In an effort to keep this review contained and
focused on the main applications of DOFC to physical modeling, we present the key aspects
and mathematical characteristics of the use of DODE in the modeling of transport processes.
The interested reader can find extensive mathematical details on the implementation of
DO transport models in [54].

5.1. Anomalous Diffusion Processes

As highlighted previously, diffusion processes in several classes of media exhibit
strong anomalies wherein the mean square displacement (MSD) is not characterized by a
definite (or unique) scaling exponent, [260–263]. As an example, the MSD in several systems
grows as a power of the logarithm of time (strong anomaly) and shares the interesting
property that the probability distribution of the particle’s position at long times is a double-
sided exponential [261–264]. More specifically, the MSD varies as

〈x2(t)〉 ∝ logν t (16)

where ν is a positive constant. These diffusion processes are indicated as ultraslow diffu-
sion (or, sometimes, superslow diffusion) processes and they do not conform to self-affine
random processes. The most commonly referred example of such a strong anomalous
diffusion process is the Sinai diffusion (ν = 4) in which the particle moves in a quenched
random force field [265]. Additional examples of such ultraslow diffusion behavior in-
clude polymer physics [266], numerical experiments on an area-preserving parabolic map
on a cylinder [267], motion in aperiodic environments [268], and in a family of iterated
maps [269]. We highlight that, apart from ultraslow diffusion, there exist other strong
anomalies including retarding subdiffusion and accelerating subdiffusion, as well as retard-
ing superdiffusion and accelerating superdiffusion. The specific form of the DO governing
equation suitable to model either phenomena depends entirely on two factors: (1) the use
of time and/or space-fractional DO derivatives, and (2) support of the strength function
corresponding to the time- and/or space-fractional DO derivative. In the following, we
will review the different modeling possibilities arising from combinations of the aforemen-
tioned factors.

In a series of seminal studies, Chechkin et al. [261,270,271] developed a DO framework
for strongly anomalous diffusion mechanisms. They considered the time-fractional DO
diffusion equation:

∫ 1

0
τβ−1φ(β)D

β
t c(t, x) dβ = DD2

xc(t, x) (17)

where c(t, x) denotes the particle concentration, and D denotes the diffusion coefficient.
τ is a positive constant representing a characteristic time of the problem, and the strength
function was chosen as φ(β) = νβν−1. The normalization condition for φ(β) on [0, 1],
i.e.,

∫ 1
0 φ(β)dβ = 1 assumes v > 0. As established in [261], this choice of φ(β) leads

to ultraslow kinetics. More specifically, for the above mathematical setup, the MSD is
obtained as

〈x2(t)〉 ∝

{
2D
ν t log(τ/t) t/τ ≪ 1

2D
Γ(1+ν)

τ logν (t/τ) t/τ ≫ 1
(18)

As evident, strong diffusion anomalies are described within the above DO diffusion formal-
ism. In fact, it appears that the DODE in Equation (17) describes a subdiffusion random
process which is subordinate to the Wiener process with a diffusion exponent decreasing in
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time (retarding subdiffusion). The same behavior was further highlighted by demonstrating
that the modes of the solution, obtained via separation of variables, show an ultraslow, log-
arithmic, decay pattern. The waiting times (ψ(t)) of the diffusing particles corresponding
to this setup are [271]

ψ(t) ∝
1

t[log(t/τ)]1+ν
(19)

and they do not have finite moments. Clearly, the DO diffusion equation can be interpreted
as a limit of the continuous time random walk (CTRW) model with an extremely broad
waiting-time probability density function (PDF), so that there are no finite moments [271].

We highlight that several authors have also analyzed the diffusion characteristics
obtained via discrete order distributions [272–274] as well as a uniform strength distribu-
tion [261,272–274]. For the discrete time-fractional DO with φ(β) = φ1δ(β − β1) + φ2δ(β −

β2) (0 < β1 < β2 ≤ 1, φ1 > 0, φ2 > 0, and φ1 + φ2 = 1), the characteristic displacement
grows initially as tβ2 , whereas at large times it grows as tβ1 indicating slow yet power-law
growing diffusion. For the uniform strength function, that is φ(β) = 1, the MSD is given as

〈x2(t)〉 ∝

{
2Dt log(τ/t) t/τ << 1
2Dτ log (t/τ) t/τ >> 1

(20)

It appears that the DODE with the uniform strength function leads to slightly anomalous
superdiffusion at small times, and to ultraslow diffusion at large times.

Another example of strongly anomalous diffusion processes corresponds to acceler-
ating superdiffusion wherein the MSD, similar to ultraslow diffusion, does not exhibit a
unique spatio-temporal scaling. In this class of diffusion processes, the diffusion exponent
increases with time. Such processes are characterized using the following space-fractional
diffusion equation [261],

D1
t c(x, t) =

∫ 2

0+
lα−2

D Φ(α)Dα
xc(x, t) dα (21)

where l is dimensional positive constant. In [261], the authors obtained the MSD behav-
ior by considering a two-term space-fractional diffusion equation, that is by choosing
the strength function to be Φ(α) = Φ1δ(α − α1) + Φ2δ(α − α2) with 0 < α1 < α2 ≤ 2.
For this DO diffusion equation, it was shown that at small times the characteristic dis-
placement grows as t1/α2 , whereas at large times it grows as t1/α1 ; clearly exhibiting
superdiffusion with acceleration. The fundamental solutions for this discrete order distri-
bution can be found in [275]. Exact solutions for a triple-order discrete distribution can be
found in [276]. Random walk models corresponding to the space-fractional DO diffusion
equation are presented in [275,277].

Notably, independently of the specific nature of the DODE (space-fractional or time-
fractional) as well as of the strength function, the DO diffusion model no longer exhibits
self-similarity or scale invariance. This is a direct result of the fact that the DO derivative
modifies the constant- or even variable-order formulation, by integrating all possible orders
over a certain range. The resulting solutions exhibit memory and/or nonlocal effects over
several temporal and/or spatial scales leading to strong anomalities.

Building upon the time- and space-fractional DO diffusion models presented in
Equations (17) and (21), several authors [278–280] developed DO diffusion models that
lead to accelerating subdiffusion and retarding superdiffusion contrary to retarding subdif-
fusion and accelerating superdiffusion obtained via Equations (17) and (21), respectively.
These DO diffusion models are given as [278–280]

D1
t c(x, t) =

∫ 1

0
φ(β)DD

1−β
t

[

D2
xc(x, t)

]

dβ (22a)
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∫ 2

0
φ(α)l2−αD2−α

|x|

[

D1
t c(x, t)

]

dα = DD2
xc(x, t) (22b)

A direct comparison of the above equations with Equations (17) and (21) indicates an
exchange in the presence of the time- and space-fractional DO derivatives, resulting in a
class of mixed spatio-temporal DO derivatives. The detailed expressions of the MSD of the
particles described via the above equations can be found in [278–280]. The MSD obtained
via these formulations indicates that the anomalous diffusion phenomena described via
Equation (22a) and Equation (22b) exhibit accelerating subdiffusion and retarding superdif-
fusion, respectively; that is, they become less anomalous in the course of time. Additional
details on these anomalous behaviors are provided in the following. The DO time-fractional
diffusion equation (Equation (22a)) describes a subdiffusion process which becomes less
subdiffusive or, in other words, more classical in the course of time. The MSD demonstrates
the occurrence of a transition from a growth characterized by a smaller exponent to a
growth with a larger exponent. Equivalently, the probability density for a particle to remain
around the origin exhibits a transition from slow to a faster decay. We highlight here that
the fundamental solution for a discrete form of the Equation (22a), considering an infinite
domain, can be found in [281]. The DO space fractional diffusion equation (Equation (22b))
describes power-law truncated Lévy flights, that is, a random process showing a slow
convergence to a Gaussian, but exhibiting Lévy-like behavior at short times. This behavior
manifests itself in the non-Gaussian Lévy scaling of the probability density to stay at the
origin and in superdiffusive behavior. At short times, the central part of the PDF has a
Lévy-stable shape, whereas the asymptotics decay with the power-law, faster than the
decay of the Lévy-stable law. At long times, the central part of the PDF approaches the
classical Gaussian shape, however, the asymptotics decay with the same power-law.

In addition to the above studies, several researchers have demonstrated the suitability
of DOFC for modeling strongly anomalous diffusion behavior, particularly ultraslow
diffusion, via stochastic descriptions [215,282–287]. Meerschaert et al. [282,288] developed
a stochastic model based on random walks with a random waiting time between jumps.
Scaling limits of these random walks are subordinated random processes whose density
functions solve the DO ultraslow diffusion equation. Ultraslow diffusion has also been
modeled using Langevin stochastic representations in [217,253,284,289]. As shown in [284],
the solutions of DO Langevin equations have MSDs which describe retarding subdiffusion
and ultraslow diffusion with logarithmic growth. Ultraslow diffusion is also obtained via
the wait-first and jump-first Lévy walk models, which underlie the fractional dynamics
involving DO material derivatives [289]. The approach in [289] is based on a strongly
coupled CTRW, with the distribution of waiting times displaying ultraslow (logarithmic)
decay of the tails. Similarly, the authors of [283,285] obtained the space-fractional DO
diffusion formulation as the continuum limit of a random process which is characterized by
the presence of a distribution of spatially-dependent jumping rate and the Lévy distributed
jumping size. As described in [283,285], such a system is well suited to describe diffusion
in multifractal systems which do not possess a unique Hurst exponent and, consequently,
exhibit a lack of scaling. The lack of scaling in multifractals requires a generalization of
stochastic Lévy equation by admitting a spectrum of the Lévy index. The continuum limit
of this stochastic equation is the DO diffusion equation. A detailed mathematical analysis of
the Lévy models is presented in [286] and a Lévy mixing based probabilistic interpretation
of the DO diffusion model is presented. The characteristics of the model are exemplified by
a direct application to slow diffusion, particularly the delayed Brownian motion. A similar
stochastic representation, given in the form of the Brownian motion subordinated by a Lévy
process was to model accelerating subdiffusion in [290]. Additionally, the authors of [290]
also constructed an algorithm for computer simulations of accelerating subdiffusion paths
via Monte Carlo methods.
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Before proceeding further, we briefly review the contributions that several researchers
made to the different mathematical aspects of the DO diffusion equations. Exact solutions
corresponding to Dirichlet, Neumann, and Cauchy boundary conditions for the time-
fractional DO diffusion Equation (17) can be found in [291]. The fundamental solution
of the DODE corresponding to a uniform strength distribution can be found in [272–274].
Mainardi et al. [292] obtained the fundamental solution of the time-fractional DO diffusion
equation based on its Mellin–Barnes integral representation. They also presented a series
expansion of the fundamental solution that clearly highlights, within the solution, the pres-
ence of several time-scales related to the distribution of the fractional-orders in the DO
diffusion equation. Asymptotic solutions to initial and boundary value problems based
on the DO time-fractional diffusion equations can be found in [293,294]. Some additional
and important mathematical aspects, such as the existence of the solution to different
types of DO diffusion equations, the solvability of DO diffusion equations, subordination
properties, and positivity of the solution were addressed in [59,63,263,287,295–300]. In a
series of papers [71,72,301], Luchko analyzed the well-posedness of the DO formulation via
maximal principles, and obtained a priori norm estimates for solutions to both linear and
nonlinear DO diffusion equations. Luchko has also provided a survey of these maximal
principles in [302]. Further, the well-posedness of the inverse problem, that is the determi-
nation of the strength distribution of the DO and its support, has been analyzed in detail
in [303–307]. The analysis of the well-posedness of the inverse problem is highly essential
to promote applications of DOFC since it determines whether the DO framework is suited
to model a given real-world application. In other terms, given a set of experimental or
real-world data, the analysis of the inverse problem determines whether DOFC is well
suited to model the dataset and hence, it also indicates if the corresponding system exhibits
multiscale (temporal and/or spatial) characteristics.

The remarkable properties of the DO diffusion formalism provided a strong founda-
tion for the development of other DO transport formulations: DO reaction–diffusion, DO
advection–diffusion, and DO wave propagation. Before reviewing these other applica-
tions, we briefly overview some recent, yet remarkable, real-world applications of the DO
diffusion formulation (see Figure 5). Grain boundary diffusion in engineering materials
at elevated temperatures, that often determines the evolution of microstructure, phase
transformations, and certain regimes of plastic deformation and fracture, was modeled via
a DO diffusion framework in [308]. DO diffusion equations have also been used to model
the diffusion of mobile ions in different electrolytic cells [309–311]. The predictions of the
DO model closely matched experimental data which indicated the presence of different
diffusive regimes. A similar application was presented in [312], where DO operators were
introduced into the Letokhov model of photon diffusion to model non-resonant random
lasers. Very recently, the effect of disordering of nanotubes within an electrode, on the
impedance of a supercapacitor, was modeled using the DO subdiffusion model in [313].
All these applications highlighted the ability of the DO diffusion formulation to accu-
rately capture highly anomalous diffusion behavior arising out of the presence of multiple
temporal and/or spatial scales.

5.2. Reaction–Diffusion Processes

An interesting application of DOFC involves the modeling of reaction–diffusion sys-
tems. Reaction–diffusion processes describe changes in the concentration of interacting
chemical substances both in space and time. Reaction–diffusion processes have been linked
to the formation of spots and patterns in different animals and birds [314,315], among many
other real-world applications [125,316] (see Figure 5c). Distributed-order derivatives help
to account for the heterogeneity and multifractal nature of the diffusing medium, typical
of these applications. More importantly, the DO derivatives also account for the multi-
ple sources of the reacting chemicals within the heterogeneous system. This allows for
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compact yet more comprehensive theoretical formulations of the reaction–diffusion mecha-
nisms when compared to classical integer-order based approaches. Several authors have
analyzed complex reaction–diffusion systems using DO derivatives [102,129,149,316,317].
Detailed mathematical formulations along with closed form solutions for DO reaction–
diffusion equations can be found in [316,318]. The effect of different strength functions
as well as the specific nature of the DO reaction–diffusion equation was analyzed nu-
merically in [102,129,149]. Very recently, Guo et al. [148] analyzed a 3D Gordon-type
reaction–diffusion model of colliding and diffusing Gordon-type solitons. The numerical
results provided a deeper understanding of the complicated nonlinear behavior of the
3D Gordon-type solitons system while highlighting the remarkable capabilities of the DO
derivatives in capturing the collision and diffusion of the solitons.

5.3. Advection-Diffusion Processes

The VO diffusion equation formed the basis of several interesting investigations in-
volving strongly anomalous advection-diffusion processes in complex systems, particularly
those related to hydrology such as, for example, geomigration [319], transport of solutes
in heterogeneous media [257,320], the spread of contaminants in groundwater [321], as
well as groundwater flow [322]. Indeed, several theoretical and experimental studies have
shown that the transport of fluids and pollutants through geological aquifers exhibits
the presence of multiple spatio-temporal scales arising from the multifractal nature of
the aquifers. The multifractality is a direct consequence of the porous, fractured, layered,
and heterogeneous nature of the aquifers (see Figure 5a). The underlying distinctive char-
acteristics of DOFC make it a very well suited modeling approach for the aforementioned
anomalous transport phenomena experienced in hydrology.

The detailed mathematical analysis of a DO advection-diffusion equation with a
discrete distribution of orders was presented in [77]. Analytical solutions were obtained
in [77] for a time- and space-fractional formulation and some interesting derivations
including the spectral representation of the fractional Laplacian operator were presented.
Later, several researchers used DOFC to model advection–diffusion in complex problems,
particularly those related to hydrology. A DO advection–diffusion model was proposed
in [256] to model infiltration, absorption, and water exchange in mobile and immobile
zones of swelling soils. A similar formulation was adopted in [319] to model a geomigration
process in a geoporous medium saturated with a salt solution that exhibits subdiffusive
characteristics. Several researchers also used DOFC to model subdiffusive characteristics
observed in the transportation of solutes in heterogeneous porous media [257,320,323].
Very recently, an interesting application of DOFC was proposed to simulate superdiffusion
of dissolved phase contaminants in groundwater [321]. In this study, several insights
including the specific impact of different geometric properties of the contaminants on their
spatial distribution pattern, were derived using the DO advection-diffusion model.

5.4. Wave Propagation

Several authors investigated DO models for wave propagation by directly extending
the DO diffusion approaches reviewed in Section 5.1. More specifically, this process in-
volved altering the support of the strength function corresponding to the DO time-fractional
derivative from [0, 1] to an interval within [1, 2]. The most generalized versions of the one-
dimensional DO wave equation can be obtained by modifying Equations (17) and (21) as

∫ 2

1
τβ−1φ(β)D

β
t u(t, x) dβ = E0D2

xu(t, x) (23a)

D2
t u(x, t) =

∫ 2

0+
lα−2E0Φ(α)Dα

xu(x, t) dα (23b)
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where u(x, t) denotes the particle displacement and E0 denotes a material constant. A differ-
ent set of DO wave equations can be obtained by modifying the support of the strength func-
tion and using mixed spatio-temporal DO derivatives, similar to Equations (22a) and (22b).
The qualitative discussions on the application of DO models for multifractal systems, pre-
sented for other types of transport processes reviewed in this Section 5, also holds for DO
wave propagation. As an example, the propagation of elastic waves through dissipative
media exhibiting multifractal viscoelastic behavior (see Section 4) is described via time-
fractional DO models [221,324]. Similarly, elastic wave propagation via attenuating media
characterized by simultaneous microstructural and nonlocal (hence, multiscale) effects can
be described via space-fractional DO models [213]. Important mathematical aspects such
as the existence and uniqueness of the solution to the DO time-fractional wave equation
have been outlined in detail in [63,325–327]. Additionally, the fundamental solutions of
the DO wave equation have been derived in [298,325,327,328] using the technique of the
Fourier and Laplace transforms. Numerical experiments highlighting the specific effects of
the DO model parameters have been used to derive interesting insights into the DO wave
equation in [298,325,328].

Another possible route to develop the DO wave propagation formulation consists
in formulating DO stress–strain constitutive relations within the classical elastodynamic
problem as proposed in [324,329]:

σ = E0

∫ 1

0
φ(β)D

β
t εdβ (24)

This approach resembles the formulation of DO viscoelastic models (see Section 4) and
indeed leads to a hybrid propagation model that also captures dissipation. The DO wave
propagation model was then used to simulate the interaction of compressional waves
with an interface separating two dissimilar media. Further, the impact of the support and
definition of the strength function were analyzed on the wave scattering at the interface.

6. Applications to Control Theory

In this section, we analyze the applications of DOFC to control theory. The founda-
tion as well as motivation for the application of DOFC to control theory follows from a
successful application of COFC to model complex control phenomena. The use of CO
fractional controllers has enabled robust control and helped achieving highly desirable
dynamic control characteristics. A detailed review of theory and applications of COFC
in control theory can be found in [36]. In this regard, recall that a fractional derivative
implicitly embeds within itself time-delays, or in other terms, it accounts for the memory
of past events. Consequently, the presence of a distribution of fractional-order derivatives
translates, physically, to the presence of a mixture of delay sources (similar to what is
discussed in Section 5). These DO characteristics have helped achieve high performance
controllers with several applications ranging from secure messaging [330], to control of
motors [331,332] as well accurate frameworks to model robust stability of gene regula-
tory networks [332]. Broadly speaking, the applications of DOFC to control theory can
be divided into two categories: (1) the development of DO controllers and (2) study of
the stability and control of DO systems; the majority of the studies being focused on the
latter category. In the following, we first review the DO controllers and their applications,
before considering their stability. A few other studies have numerically analyzed various
DO system identification techniques [220,333] and DO optimal control problems [100,334].
However, the basic DO control theory employed in the latter studies are derived from the
two broad categories mentioned above.
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6.1. DO Controllers and Filters

Several theoretical and experimental studies have shown that fractional-order designs
can enhance both the flexibility and robustness of the controllers as a result of the additional
parameters represented by the fractional-orders themselves. Tuning of the fractional-orders
allows for superior control characteristics. As an example, consider the CO PID controller
PIλDµ. The value of the order λ in PIλDµ control affects the slope of the low frequency
range of the system as well as the peak value of the system. On the other hand, the value of
the order µ affects the accuracy of the dynamic closed-loop response, the system overshoot,
and the stability. For a more detailed discussion of the roles of λ and µ, the interested reader
is referred to the work in [36]. It is immediate that a distribution of several CO controllers
can lead to highly accurate and robust control. In fact, DOFC allows the development of a
highly generalized controller from which all other types of controllers (such as, for example,
the classical integrator and differentiator, the classical PID, and the fractional PIλDµ) can
be recovered.

In the most general form, the transfer function of a DO controller can be expressed
as [36]

G(s) =
∫ β2

β1

φ(β)
1
sβ

dβ (25)

where s is a complex variable. The interval [β1, β2] dictates the specific nature of the con-
troller. Note that a DO low-pass filter can be obtained from the DO controller via the trans-
formation s → T(β)s + 1 [335]. The above formulation is highly general in the sense that
all the classical, CO, and DO controllers can be recovered from the same by an appropriate
choice of the strength function. As an example, the classical integrator can be obtained by
choosing φ(β) = δ(β− 1), the classical differentiator can be obtained from φ(β) = δ(β+ 1),
the classical PID from φ(β) = kPδ(β)+ kIδ(β− 1)+ kDδ(β+ 1) (kP, kI and kD are constants
to be tuned), the fractional PID from φ(β) = kPδ(β) + kIδ(β − λ) + kDδ(β + µ), and so on.
It is immediate to see that a DO PID controller can be also obtained directly from the
controller in Equation (25), by insisting that the support of the weight function lies within
the interval [−1, 1]. DO PID controllers have been studied in detail in a series of papers by
Jakovljević et al. [336–338]. Note that in the case of a DO controller, the strength function
in Equation (25) can have infinite support. In fact, as established in [339], any DO controller
can be developed by appropriate composition of the DO integrator (0 ≤ β1 < β2 ≤ 1),
the classical integrator (1/s) and the classical differentiator (s). The different DO controllers
have been schematically illustrated in Figure 6.

The impulse response and asymptotic behavior of the DO controllers have been
derived in [335,340]. Additionally, a physical realization of the DO integrator using a series
of capacitors has been developed in [210,340]. The DO controllers have been applied to
control motors [338] and robots [331] among many other applications [36]. As observed
in these studies, the DO controllers reduce the maximum overshoot while guaranteeing a
fast dynamic response and a zero steady-state error [36,336–338]. Furthermore, the phase
curves of DO PID controllers are non-constant and much wider than the corresponding
CO controllers making them more robust to system uncertainties [331]. Therefore, the DO
controllers exhibit unique frequency response characteristics, and provide highly robust
and accurate control.
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Figure 6. Block diagram illustrating the feedback DO controller based on Equation (25). The fractional-
orders µk, λk ∈ (0, 1]. This is a highly general controller from which all classical, CO, and DO
controllers, as well as the DO PID controller can be recovered by an appropriate choice of the
controller constants. As an example, the DO differentiator can be obtained by setting Kλk

I = 0,
KP = 0, and K

µk

D 6= 0. As evident, the DO differentiator consists of a network of CO differentiators.
Similarly, the DO PID controller would require that KP 6= 0, K

µk

D 6= 0 and Kλk

I 6= 0.

6.2. Stability and Control of DO Systems

The development of robust and accurate DO controllers prompted several researchers
to analyze the stability of both linear and nonlinear DO dynamical systems. Most of the
studies conducted on linear systems correspond to the bounded-input bounded-output
(BIBO) stability analysis of DO linear time-invariant (LTI) systems. On the other hand,
the nonlinear studies have focused primarily on the Lyapunov stability of the equilibrium
points of the DO system. First, we briefly review the key highlights of the DO LTI systems
and their applications. Consider a DO system described via the following LTI DODE and
algebraic output equation,

∫ 1
0 φ(β)D

β
t x(t)dβ = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(26)

where x(t) is the state vector, u(t) indicates the input, and y(t) indicates the output
of the system. A, B, C, and D are matrices of appropriate dimensions. Note that the
interval of the DO derivative in the above single-input single-output (SISO) system can be
converted to a more general interval [β1, β2] ∈ [0, 1]. Applying a set of Laplace and inverse
Laplace transform to the above DODE with the assumption that x(0) = 0 and u(t) = δ(t),
the following expression can be obtained,

x(t) = L−1

[ [(∫ 1

0
φ(β)sβdβ

)

I − A

]−1

︸ ︷︷ ︸

G(s)

B

]

(t) (27)

where I denotes the identity matrix. As established in [341–343], the DO LTI system in
Equation (26) with the transfer function H(s) = CG(s)B + D is BIBO stable iff all the
roots of the secular equation corresponding to |G(s)I − A| = 0 have negative real parts.
The contours of this stability region have been derived based on the latter principle for
different definitions of the strength function in [342,344]. The stability contours are often
impossible to express via elementary functions, which makes the stability tests of DO
systems more complicated than their constant- and integer-order counterparts. In this
regard, the Lagrange inversion theorem was utilized in [345] to obtain explicit expressions
for the stability contours. Several interesting properties of these stability curves such as the
slope of the tangent at very high and very low frequencies, convexity, inability to cut itself,
location in the first and fourth quadrants, and shifting and enhancement of the area of
the stability via multiplication of suitable functions to the strength distribution, have been
presented in [346–348].The above mentioned properties of the stability boundaries were
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used in [347] to present a remarkable framework for the robust stability analysis of DO
LTI systems with uncertain strength distributions and dynamic matrices. More specifically,
these properties were used to show that the stability boundary of DO LTI systems can be
accurately located in a certain region on the complex plane defined by the upper and lower
bounds of the strength distribution. These results are sufficient to ensure robust stability
in DO LTI systems with uncertain strength functions and uncertain dynamic matrices.
The above framework presented in [347] is highly relevant for real-world applications that
are commonly accompanied by uncertainties. Additional discussions on the stabilization,
controllability, and passification of DO LTI systems can be found in [349–352].

The DO LTI framework discussed above has been used to analyze different systems:
the solar wind-driven magnetosphere ionosphere system (a complex driven-damped
dynamical system which exhibits a variety of dynamical states) [341,348], a DO Lotka–
Volterra predator–prey system (a system with multiple time-delays) [353], the DO Chen
system [354], and gene regulatory systems [332]. All the aforementioned applications differ
primarily in the choice of the strength function which directly affects the stability and
control of the system.

In nonlinear systems, researchers have focused mainly on analyzing the Lyapunov
stability of systems, as also mentioned previously. The Lyapunov direct method, used
for analysis of stability, was first generalized for nonlinear time-varying DO systems
in [355–357] and was used to determine the stability or asymptotic stability of certain
nonlinear systems including a DO analog of the Lorenz system. The theoretical framework
proposed in the studies [355,356] was then used to analyze different nonlinear time-varying
DO systems including a DO consensus model [358], the DO Lorenz system [359], and the
DO Van der Pol oscillator [330,360]. The consensus of multi-agent systems with fixed
directed graphs and described by DODE, was analyzed in [358] and sufficient condi-
tions were obtained for robust consensus in the presence and absence of external distur-
bances. Recently, the stability and control of a DO Van der Pol were analyzed in [330],
wherein the intervals of the different model parameters at which this oscillator exhibits
periodic, chaotic, and hyperchaotic behaviors, were calculated using Lyapunov exponents.
Further, a robust scheme was presented in [330] to achieve complete synchronization
between two DO hyperchaotic unforced Van der Pol oscillators. This synchronization
allowed the development of a secure messaging system for a text which contains alphabets,
numbers, and symbols.

7. Conclusions

This paper presented an overview of the general area of Distributed-Order Fractional
Calculus (DOFC) with particular focus on its applications to scientific modeling of complex
systems. A branch of the broader field of fractional calculus, DOFC has rapidly emerged
and captured the attention of many researchers in science and engineering. This rapid
growth was mostly due to its remarkable ability to capture complex multiscale processes.
Phenomena like multiple relaxation times in viscoelasticity, multiple temporal and spatial
scale effects in transport processes, and mixture of time delays in control theory, just to
name a few, have all illustrated the significant performance of DOFC over more traditional
integer-order techniques. The main goal of this review was to provide a snapshot in time of
the field of DOFC and to guide the interested reader into an introductory journey through
this fascinating topic. In this regard, we highlight that the content of technical papers was
only briefly addressed in order to favor a more general discussion of the evolution of the
field in its different areas of application.

Despite the recent substantial growth in DOFC research, there are still many areas
holding significant opportunities for further development. While some preliminary work
is available on distributed-variable models, a comprehensive framework for distributed-
variable-order fractional calculus (DVOFC) is still lacking. A key factor that adds to the
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complexity of formulating DVOFC is the existence of different definitions for VO operators
that exhibit different memory characteristics. Thus, a unified definition of the different
variable- and distributed-order operators and an analysis of their mathematical properties
would certainly be beneficial. In these operators, the order-variation can be a function
of different dependent or independent physical variables (such as, for example, temper-
ature, space, time, and energy). The combination of the DO and VO formalisms should
allow the simulation of highly complex physical systems which are both evolutionary
(therefore, requiring VO operators) and multifractal (requiring DO operators) in nature.
Another possible extension of currently available DO operators follows from the use of
normalized self-similar strength functions within the definition of DO operators, which
can be considered analogous to random-order operators. Particularly lacking is a rigorous
mathematical analysis of the properties of such operators. Despite the above challenges,
the extension of DOFC to these areas can have important applications in modeling random
and chaotic dynamics observed, as an example, in turbulent dynamics, noise and vibration
control, or even in financial systems. These models could even form the basis for the
development of highly accurate risk analysis and control models.

It should be pointed out that, despite the rapidly growing number of related studies,
there are still several open questions that need to be addressed before DOFC could become
a mainstream modeling approach for common real-world applications. A critical step
to promote the broader use of DOFC models is to establish the connection between the
mathematical properties of DO operators (i.e., the strength function and its support) and
the physical properties and parameters of the system to be modeled. In other terms,
the identification of closed form relations linking the mathematical parameters of the DO
operators to the physical parameters of the system at hand are of paramount importance to
foster the use of DOFC tools in scientific modeling.
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68. Atanackovic, T.M.; Oparnica, L.; Pilipović, S. Semilinear ordinary differential equation coupled with distributed order fractional

differential equation. Nonlinear Anal. Theory Methods Appl. 2010, 72, 4101–4114. [CrossRef]
69. Fedorov, V.E. Generators of analytic resolving families for distributed order equations and perturbations. Mathematics 2020,

8, 1306. [CrossRef]
70. Refahi, A.; Ansari, A.; Najafi, H.S.; Merhdoust, F. Analytic study on linear systems of distributed order fractional differential

equations. Le Matematiche 2012, 67, 3–13.
71. Luchko, Y. Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl.

Anal. 2009, 12, 409–422.



Entropy 2021, 23, 110 34 of 43

72. Luchko, Y. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl.

2011, 374, 538–548. [CrossRef]
73. Daftardar-Gejji, V.; Bhalekar, S. Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl.

2008, 345, 754–765. [CrossRef]
74. Li, Z.; Liu, Y.; Yamamoto, M. Initial-boundary value problems for multi-term time-fractional diffusion equations with positive

constant coefficients. Appl. Math. Comput. 2015, 257, 381–397. [CrossRef]
75. Luchko, Y. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional

diffusion equation. Comput. Math. Appl. 2010, 59, 1766–1772. [CrossRef]
76. Luchko, Y.; Gorenflo, R. An operational method for solving fractional differential equations with the Caputo derivatives.

Acta Math. Vietnam 1999, 24, 207–233.
77. Jiang, H.; Liu, F.; Turner, I.; Burrage, K. Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-

diffusion equations on a finite domain. J. Math. Anal. Appl. 2012, 389, 1117–1127. [CrossRef]
78. Bazhlekova, E. Completely monotone functions and some classes of fractional evolution equations. Integral Transform. Spec. Funct.

2015, 26, 737–752. [CrossRef]
79. Bazhlekova, E.; Bazhlekov, I. Complete monotonicity of the relaxation moduli of distributed-order fractional Zener model. In AIP

Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 2048, p. 050008.
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