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Abstract

We present a comparative study of the anisotropy in the elastic properties of the C49, C54 and C40
phases of TiSi,, as well as orthorhombic TiSi and hexagonal TisSi5. The elastic constants, elastic
moduli, Debye temperature and sound velocities are computed within the framework of density
functional theory. The computed values of the elastic constants and moduli are found to be in
excellent agreement with available experimental values. The average elastic moduli, such as Young’s
modulus, shear modulus, bulk modulus and Poisson’s ratio, of polycrystalline aggregates are
computed using the computed elastic constants of single crystals. The anisotropy in elastic properties
is analyzed using estimates of shear anisotropic factors, bulk modulus anisotropic factors and
variations in Young’s and bulk moduli in different crystallographic directions. Among the Ti—Si
phases, the computed directional Young’s modulus profiles of C49 TiSi, and C40 TiSi, are found to be
quite similar to those of bulk Si and Ti, respectively. In addition to the elastic properties, the electronic
structure of five Ti—Si phases is studied. The density of states and planar charge density profiles reveal
mixed covalent-metallic bonding in all Ti-Si phases.

1. Introduction

Transition metal silicides have played an important and crucial role in the development of microelectronics over
the past three decades [1-7]. On the other hand, semiconducting silicides have been found to be promising for
applications in photovoltaics [8], optoelectronics [9], and as thermoelectric materials [10]. Metal silicides are
widely used as local interconnects and contacts to source, drain and gate regions in complementary metal—
oxide—semiconductor (CMOS) devices because of their low resistivity, low contact resistance to silicon, high
thermal stability, low electromigration and excellent process compatibility with standard silicon technology
[1,3,6]. In CMOS devices, self-aligned silicide contacts (silicides) decrease the RC delay time of circuits due to
the reduction in the parasitic, sheet, contact, and interconnect resistances within the source/drain regions and
the polycrystalline silicon gate. This reduction in RC delay time, in turn, increases the speed performance of the
device. Among all metal silicides, titanium disilicide (TiSi,) has been one of the most widely used silicides for
CMOS ultra-large-scale integration (ULSI) [ 1, 3]. In typical semiconductor device fabrication, TiSi, is formed by
sputtering Ti film on a Si substrate followed by rapid thermal annealing of the film. At 550-700 °C, the high
resistivity phase C49-TiSi, is formed first, followed by the desired low resistivity phase C54 TiSi, at a higher
temperature of 750-850 °C [11-14]. However, in submicron Si lines, the transformation from C49 to C54 phase
becomes difficult because of the low density of nucleation sites, rendering TiSi, unusable in submicron devices
[15, 16]. Chen et al[17] have shown that a new metastable hexagonal C40 TiSi, phase is formed when Ti thin film
deposited on Si substrate is annealed by pulsed laser annealing at a very high ramp rate and with very short
duration. The C40 phase of TiSi, is formed primarily due to kinetic factors which result from the extreme
thermal nonequilibrium induced by the pulsed laser annealing [12]. In addition to applications in
microelectronics, TiSi, is also promising as an aero-space engineering material due to its low density, high
hardness, high melting point, high creep strength and high oxidation resistance.

©2015IOP Publishing Ltd
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Opver the years, the phases of TiSi,, viz. C54, C49 and C40 grown on Si substrates have been studied
experimentally in detail due to their practical importance. The electronic structures of these phases have also
been studied theoretically by several groups [18—22]. However, theoretical and experimental studies of the elastic
properties of different phases of TiSi, are scarce. Elastic properties of a material are important as they critically
influence thin film growth on suitable substrates. Electronic and magnetic properties of thin films are also
influenced by their elastic properties. Furthermore, elastic properties are related to various fundamental
properties such as phonon spectra, equations of state, interatomic potentials, thermal expansion, specific heat,
Gruneisen parameters, Debye temperature, etc. The strength of a material can be inferred from its elastic
moduli, such as its Young’s modulus, bulk modulus, shear modulus and Poisson ratio. Bonding features
between various atoms and the stability of the system can be deduced from knowledge of the elastic constants.
Furthermore, plastic properties of materials are associated with elastic properties. For instance, shear moduli
along the slip planes of mobile dislocations influence plastic properties [ 19, 23]. Recently, the elastic properties
of the C54 and C49 phases of orthorhombic TiSi, have been reported [19, 24]. However, no other work on the
elastic properties of metastable phase C40 TiSi, has been reported to the best of our knowledge. The elastic
properties of these phases of Ti—Si system are important, as they are expected to influence the microstructure
and growth of Ti-Si thin films on Si substrates. In this article, we present a detailed ab-initio density-functional
study of the elastic properties of five phases of titanium silicides: 1) orthorhombic C49 TiSiy; 2) orthorhombic
C54 TiSiy; 3) hexagonal C40 TiSi,; 4) orthorhombic Prma TiSiand 5) hexagonal TisSis. In particular, we
calculate elastic constants, Debye temperatures, sound velocities, Poisson ratios and various moduli, such as
Young’s modulus, the bulk modulus, and the shear modulus. We also study the anisotropy in the elastic
properties of different phases of TiSi,, TiSiand TisSis.

The rest of the paper is organized as follows. In section 2, we present the calculation methodology. Crystal
and electronic structures are discussed in section 3. The elastic properties of single crystal and polycrystalline Ti—
Siphases are discussed in sections 4 and 5, respectively. The anisotropy in elastic properties is computed in
section 6. The sound velocities, Debye temperature and their relationship with elastic moduli are discussed in
section 7. Concluding remarks are given in section 8.

2. Calculation methodology

We use density functional theory (DFT) [25] with the projected augmented wave (PAW) potentials [26], as
implemented in the VASP package [27]. The Perdew—Burke—Ernzerhof (PBE) [28] form of generalized gradient
approximation (GGA) is employed for the exchange and correlation potential. The Kohn—Sham wavefunctions
are expanded in a plane wave basis set with a kinetic energy cutoff of 320 eV and higher. The Brillouin zones of
C49 TiSi,, C54 TiSiy, C40 TiSi,, Pnma TiSiand TisSi; are sampled using 19 x 5 x 19,8 x 14 x 8,

16 x 16 x 12,10 x 18 x 14and 10 x 10x14 Monkhorst—Pack k-point meshes, respectively. The
calculations are converged to 10~ ° eV /cell and the structures are relaxed until the largest force becomes less than
10 2eVA L

3. Crystal and electronic strcuture

C49 and C54 phases of TiSi, and TiSi crystallize in the orthorhombic structure with Crmcm, Fddd and Pnma space
group symmetries, respectively. The crystal structures of C40 TiSi, and TisSi; are hexagonal with P6,22 and P65/
mcm space group symmetries. The unit cells of these five Ti—Si systems are shown in figure 1. Tables 1 and 2 show
the computed and experimental lattice constants, volume, fractional atomic coordinates, cohesive energies and
heats of formation of the aforementioned Ti-Si phases. The calculated lattice constants and atomic coordinates are
in good agreement and are within 1-2% of the available experimental values. The computed cohesive and
formation energies of all five Ti—Si phases are ~6.4 eV /atom. Table 1 also lists the computed cohesive energies for
bulk Siand Ti. As expected, the computed cohesive energies are overestimated as compared to experimental values.
It can be seen that the computed values of cohesive energies of the Ti—Si phases are closer to those obtained for
transition metals [29]. The magnitude and variation of the Ti-Si cohesive energies may be understood using a
simple rectangular d-band model, where the shape of the d-band is assumed to be rectangular. In this model,
cohesive energy depends on the width of the d-band and the number of electrons in it [30]. The formation energies
of Ti-Si phases are computed to be ~0.6 eV /atom. Figure 2 shows the total density of states (DOS) of the Ti-Si
phases. As evident, the DOS around the Fermi energy in TiSi, (C49, C54, C40), TiSi and TisSi; are qualitatively
similar. A dip in the DOS or deep valley (pseudogap) in the vicinity of the Fermi energy can also be seen in figure 2,
indicating the presence of covalent bonding. It has been suggested that the Fermi energy position with respect to a
valley or pseudogap and structural stability may be correlated [31]. The Fermi energy lies below the pseudogap in
C54 and C40 TiSi,, whereas it lies above the pseudogap in C49 TiSi,. It is interesting to note that the position of the
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Figure 1. The unit cells of (a) C49 TiSi, (b) C54 TiSi, (¢) C40 TiSi, (d) B27 (Pnma) TiSi (e) TisSis. Tiand Si atoms are indicated by
larger red and smaller blue balls, respectively.

Table 1. Calculated and experimental lattice constants, volume, cohesive energy (eV/atom) and heat of formation
(eV/atom), of C49, C54, C40 TiSi,, Pnma TiSi and TisSis.

Composition Structure a(A) b(A) c(R) Vo) Econ AH
TiSi, C49 Cal. 3.543 13.544 3.578 171.7 6.45 0.56
Exp.** 3.55 13.49 3.55 170.0 — —
TiSi, C54 Cal. 8.257 4.801 8.559 339.3 6.34 0.55
Exp.* 8.27 4.80 8.55 339.4 — —
TiSi, C40 Cal. 4.727 4.727 6.587 127.5 6.33 0.54
Exp.* 4.71 4.71 6.53 125.5 — —
TiSi B27 Cal. 6.528 3.643 5.005 119.0 6.76 0.77
Exp.*® 6.54 3.63 4.99 1185 — —
TisSis D8s Cal. 7.463 7.463 5.123 247.1 6.34 0.55
Exp. — — — — — —
Si Cal. 5.466 40.84 5.36
Exp.*>" 5.431 40.05 4.63
Ti Cal. 2.930 4.646 34.54 6.62
Exp.*>*8 2.951 4.684 35.32 4.85

Fermi energy and pseudogap coincides in Prnma TiSi. The DOS at the Fermi energy is the highest for TisSi; which is
expected due to more Ti 3d states hybridizing with Si 2p states. It can also be seen in figure 2 that a gap opens up in
the valence band of TiSi and TisSi;, around ~5 eV below the Fermi energy. In figure 3, the charge difference
density contours are shown for C49 TiSi, (100) and C54 TiSi, (001) planes. For comparison with pure covalent and
metallic bonding, charge contours are also shown for Si(1-10) and Ti(1-10) planes. Figure 3 shows that weak
directional bonds are formed between Tiand Siatoms whereas Si—Si atoms exhibit strong directional bonds. The
bonding between atoms in other Ti-Si phases are found to be similar qualitatively.

4. Single crystal elastic constants

The relationship between elastic constants Cyy, , stress 0j; and strain g is given as follows [32]:

3 3
g =) > Ciuen  (,j=12,3). (1

k=1l=1
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Table 2. Calculated and experimental atomic fractional coordinates of C49, C54, C40 TiSi,, Pnma TiSiand

TisSis.
Composition Structure Sp. gr. site u v w
TiSi, C49 Cmcm Ti Cal. 0.0000 0.1031 0.2500
Exp. 0.0000 0.1022 0.2500
Siy Cal. 0.0000 0.4408 0.2500
Exp. 0.0000 0.4461 0.2500
Sip Cal. 0.0000 0.7503 0.2500
Exp. 0.0000 0.7523 0.2500
TiSi, C54 Fddd Ti Cal. 0.0000 0.0000 0.0000
Exp. 0.0000 0.0000 0.0000
Si Cal. 0.3369 0.0000 0.0000
Exp. 0.3365 0.0000 0.0000
TiSi, C40 P6,22 Ti Cal. 0.5000 0.5000 0.5000
Exp. — — —
Si Cal. 0.1623 0.3245 0.5000
Exp. — — —
TiSi B27 Pnma Ti Cal. 0.1759 0.2500 0.1286
Exp. 0.1790 0.2500 0.1270
Si Cal. 0.0442 0.2500 0.6458
Exp. 0.0300 0.2500 0.6200
TisSis D8 P65/mcm Til Cal. 0.3333 0.6667 0.0000
Exp. 0.3333 0.6667 0.0000
Ti2 Cal. 0.2501 0.0000 0.2500
Exp. 0.2400 0.0000 0.2500
Si Cal. 0.6080 0.0000 0.2500
Exp. 0.6150 0.0000 0.2500

Equation (1) in Voigt notation 11 — 1,22 — 2,33 — 3,12 — 6,13 — 5,23 — 4)canbe
written as:

6
Oa = ZCaJ€3 (5 = 1-6). 2
=1

The strain tensor in matrix form is given as:

e1 eg/2 es/2
g = 66/2 (%] 64/2 . (3)
es/2 ey/2 e

The energy of the crystal under small deformation can be written in terms of strain and external stress as [32]:

6 6
E=E,+ VZUaea + Z Z Capeaes. (4)

a=1 a,0=1

The second term in equation (4) is zero in our calculations since an undistorted crystal is taken as the
equilibrium structure at zero pressure. The numbers of independent elastic constants in the case of
orthorhombic (C49, C54 TiSi, and Pnma TiSi), and hexagonal (C40 TiSi, and TisSi3) structures are nine and six,
respectively. Table 3 shows the computed elastic constants of TiSi, (C49, C54 and C40), Pnma TiSi, and TisSis.
Table 3 also lists the reported experimental values for C54 TiSi,. As evident, the computed values are in excellent
agreement with the experimental values. The computed elastic constants and bulk moduli of bulk Tiand Si are
within ~10% and ~7% of the experimental values. The single crystal bulk modulus of orthorhombic and
hexagonal systems can be expressed in terms of elastic constants as:

B(c))rthogonal — (Cll + sz + C33 + 2C12 + 2C13 + 2C23)/9 (5)

B(?exagonal _ (2C11 + C53 + 2C + 4C13)/9 ©

The bulk modulus can also be computed by fitting the total energy as a function of volume to a four-term
Birch—-Murnaghan equation of state [33].
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Figure 2. The total density of states in (a) C49 TiSi, (b) C54 TiSi, (c) C40 TiSi, (d) Pnma TiSi (e) TisSi5. The Fermi energy is indicated
by the vertical line.
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As is clear from table 3, the bulk moduli calculated from the Birch—-Murnaghan fit and from equations (5)
and (6) are in excellent agreement within ~1%, indicating internal consistency in the calculations.

5. Elastic properties of polycrystalline system

Though it is not possible to measure the individual elastic constants (C;;) of polycrystalline systems, average
elastic properties, such as the polycrystalline Young’s modulus (E), Poisson’s ratio (v), the bulk modulus (B), the
shear modulus (G), etc, can be computed using single crystal elastic constants [19, 34].

The polycrystalline Young’s modulus E and Poisson’s ratio v are given by:

9By Gy ,_ _3Bu — 2Gu

" 3By + Gu B 2(3Bu + GH)' ©
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Figure 3. Valence electron charge density contours (a) in (100) plane of C49 TiSi, unit cell (b) in (001) plane of C54 TiSi, unit cell (¢) in
(1-10) plane of bulk Si unit cell (d) in (1-10) plane of Ti unit cell.

Table 3. Calculated and experimental elastic constants and bulk moduli (in GPa) of C49, C54, C40 TiSi,, Pnma TiSiand
TisSis, Tiand Si. Bs ™ and By indicate bulk modulus calculated using a Birch—-Murnaghan fit and single crystal elastic

constants, respectively. Experimental elastic constants for C49 TiSi, are taken from [49].

C49TiSi, C54 TiSi, C40 TiSi, PnmaTiSi D84 TisSis Ti Si
Ci Cal. 270.0 321.5 314.8 227.8 286.9 180.7 153.8
Exp. — 317.5 — — — 162.4 165
Ca Cal. 188.5 317.3 279.2
Exp. — 320.4 — — —
Css Cal. 307.8 408.7 395.6 315.4 270.5 188.8
Exp. — 4132 — — — 180.7
Cu Cal. 121.1 112.4 89.5 95.9 94.04 45.2 75.8
Exp. — 112.5 — — — 46.7 79.1
Css Cal. 138.5 75.5 — 97.3 —
Exp. — 75.8 — — —
Ces Cal. 112.6 123.7 128.7 150.4 88.5 49.0
Exp. — 1175 — — —
Ci Cal. 60.2 28.1 57.4 109.6 109.9 82.8 57.3
Exp. — 29.3 — — — 92.0 63
Cis Cal. 102.8 229 43.7 79.5 56.4 79.8
Exp. — 38.4 — — — 69.0
Cas Cal. 65.5 82.5 — 71.7 —
Exp. — 86.0 — — —
BEM Cal. 134.3 145.2 145.3 148.5 142.1 114.4 88.9
Blastic Cal. 135.9 146.1 146.1 149.3 1433 115.0 89.4
B, Exp. 146.8 97

Here, By and Gy are the bulk and shear moduli in Hill’s approximation [35-37], which in turn are averages

of Voigt and Reuss values of bulk (By and Br) and shear (Gy and Gr) moduli.

B =  (Bu + Bv);

Gy = %(GR + Gv)

©
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Table 4. Calculated shear (G) modulus and bulk moduli (B) (in GPa) in Hill’s approximation, Young
modulus (E) (in GPa), Poisson’s ratio (), and bulk modulus (B) (in GPa) along [100], [010] and [001] of
C49, C54, C40 TiSi,, Pnma TiSi and TisSis, Tiand Si.

GH BH E v B[IOOJ B[OIOJ B[O(]l]

C49TiSi, Cal. 107.7 127.1 253.9 0.18 460.7 247.9 600.4

C54TiSi, Cal. 118.8 144.4 279.7 0.18 361.1 410.0 555.9

C40 TiSi, Cal. 116.9 145.6 276.7 0.18 407.6 407.6 503.7

PrmaTiSi Cal. 102.8 148.8 250.7 0.22 367.2 502.5 492.1

D84 TisSis Cal. 96.5 142.5 236.2 0.22 471.5 4715 355.5

Ti Cal. 483 115.0 127.1 0.32 339.6 339.6 356.2
Exp. 116 0.32

Si Cal. 63.2 89.5 153.5 0.22 268.4 268.4 268.4
Exp. 150 0.22

In the Reuss and Voigt schemes, uniform stress and strain in polycrystalline aggregates are taken to be equal
to external strain and stress, respectively. The Reuss shear modulus (Gg) and the Voigt shear modulus (Gy) can
be obtained from components of the compliance (S) and elastic matrices (C). In the case of orthorhombic
crystals Gg and Gy are given as:

Gr = 15[4(511 + S + 533) + 3(544 + Ss5 + 566) — 4(312 + S13 + 523)]_1 (10)

1 3
Gy = E[CU +Cn+Cs—Cy— Gs — C23] + E[C44 + Css + C66] an

Similarly, the bulk modulus in the Reuss (Bg) and Voigt (By) approximations is given by:

Br = [511 + Sp2 + S33 + 281 + 255 + 2323]71 (12)

By = (Cn + CptCss + 2C; + 2G5 + 2(323)/9 (13)

It has been suggested that the bulk and shear moduli in the Reuss and Voigt approximations are close to the
lower and upper bounds of true polycrystalline bulk and shear moduli. Thus, the computed values in Hill’s
approximation are expected to provide more practical estimates for the moduli of polycrystalline materials. The
computed bulk and shear moduli in Hill’'s approximation, Young’s moduli and Poisson’s ratios of five Ti—Si
systems are listed in table 4. The relatively large values of shear moduli of listed Ti—Si phases are indicative of
pronounced directional bonding which can also be seen in figure 3. As can be seen in table 4, the computed
values of Young’s modulus for Si and Ti are in good agreement with the experimental values. Poisson’s ratio ()
is indicative of stability against shear. The small value of Poisson’s ratio of the Ti—Si phases shows that these
phases are relatively stable against shear. It can be seen in table 4 that the computed values of Poisson’s ratio for
Tiand Siare in excellent agreement with experimental values. The ratio of the bulk modulus to the shear
modulus (B/G) can be used to infer ductile or brittle characteristics of polycrystalline phases [38]. On the other
hand, resistance to fracture and plastic deformation can be assessed from the magnitude of the bulk and shear
modulus, respectively. High and low values of B/G are indicative of ductility and brittleness, respectively, with a
critical value of ~1.75. For all listed Ti—Si phases in table 4, B/ G is computed to be less than 1.75, suggesting the
brittle nature of them. The Young’s modulus of the listed Ti—Si phases in table 4 is higher than that of pure Tiand
Si. The Poisson’s ratio of the TiSi, phases (C49, C54 and C40) is smaller than that of Tiand Si. In the case of
Pnma TiSi and TisSis, the Poisson’s ratio is smaller than that of Ti, but almost equal to that of Si. The Poisson’s
ratio may also provide information on the nature of bonding forces, since it is related to volume change during
uniaxial deformation [39]. For central force solids, the magnitude of Poisson’s ratio lies between 0.25 and 0.5.
The computed Poisson’s ratio of 0.18 for TiSi, phases and 0.22 for TiSi and TisSi; phases suggests that
interatomic forces in Ti—Si phases are non-central in nature. It is apparent from tables 3 and 4 that all five phases
of Ti-Si exhibit qualitatively similar trends in average elastic properties.

6. Elastic anisotropy

The understanding of anisotropy in elastic properties is important in that it influences various physical
properties, microstructure and growth of thin films [19, 40]. Shear anisotropic factors can be used to estimate
the degree of anisotropy in atomic bonding in different planes. The shear anisotropic factor A, for the { 100}
shear planes between (011) and (010) is given by:

7
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Table 5. Calculated shear elastic anisotropic factors (A, A,, and As), directional
bulk modulus anisotropy factors (Ag,, and Ag.), and percent compressibility and
shear moduli factors (Ag and Ag) of C49, C54, C40 TiSi,, Pnma TiSi and TisSis, Ti

and Si.

Ay Ay As Apa Apc Ap Ag
C49 TiSi, 1.30 1.52 1.33 1.86 2.42 3.4 24
C54 TiSi, 0.66 0.54 0.85 0.88 1.36 1.2 3.7
C40 TiSi, 0.57 0.57 1.00 1.00 1.23 1.2 3.7

PnmaTiSi 1.00 0.86 2.09 0.73 0.98 0.4 3.3
D8 TisSi; 0.85 0.85 1.00 1.00 0.75 0.5 0.7

Ti 0.86 0.86 1.0 1.0 1.1 0.1 1.7
Si 1.57 1.57 1.57 1.0 1.0 0.0 24
-1
A = 4C44(C11 + C33 — 2C13) (14)

Similarly, shear anisotropic factors A, and A; for the {010} shear plane ((001) and (101)) and {001} shear
plane ((010) and (110)), respectively, are given by:

-1 —1
Ay = 4C55(C22 + Cs3 — 2C23) A = 4C66(C11 + Cyp — 2C12) (15)

Table 5 shows computed shear anisotropic factors for five Ti—Si phases. The magnitude of the shear
anisotropic factors is one for isotropic crystals. The anisotropy can be estimated from the deviation of the shear
anisotropic factors from a magnitude of one. The shear anisotropic factors (A;, A, A;) of the C49 phase are
smaller and larger than those for the orthorhombic C49 and C54 phases of TiSi,. The A; and A, factors are
smaller than those for hexagonal C40 TiSi,, whereas the A; component is of the magnitude one, as expected. In
the case of orthorhombic Pnma TiSi, A, and A; are smaller and larger than one, whereas A, is almost one. The A,
and A, factors are smaller than one for hexagonal TisSi;, whereas the A; component is one. The shear
anisotropic factors of Tiand Siare also listed in table 5. As can be seen, the shear anisotropic factors are smaller
and larger for Tiand Si, respectively. A; for hexagonal Tiis one, as expected. Additionally, elastic anisotropy can
also result from anisotropy in the bulk modulus. The directional bulk modulus B is computed using the
following relation [19, 34]:

B = [(511 + Si2 + 513)112 + (521 + Sy + 523)122 + (531 + S5 + 533)132]_1 (16)

where [}, [ and 3 are direction cosines and S;; are components of the elastic compliance matrix. Figure 4 shows a
three-dimensional representation of the computed bulk modulus of the Ti-Si systems along different directions.
The anisotropy in bulk modulus is reflected in the nonspherical shape of the directional bulk modulus. As
evident from figure 4, the anisotropy in bulk modulus is similar in all five Ti-Si phases. The computed bulk
moduli along the [100], [010] and [001] directions are listed in table 4. The bulk modulus anisotropy factors
alongthe a ([100]) and ¢ ([001]) axes can be computed as [19, 34]

Ap, = B, /By; Ap. = B. /By (17)

Table 5 shows the bulk anisotropy factors for five Ti—Si phases. For the elastically isotropic crystal, the
magnitude of these factors is one. Among the listed Ti—Si phases, the computed magnitude of the bulk
anisotropy factors is largest for the C49 TiSi, phase (see table 5 and figure 4). Also listed in table 5 are the percent
shear and compressibility elastic anisotropies, which are defined as follows in terms of the Voigt and Reuss shear
and bulk moduli [41]:

_ Gv—Gr A, = Bv = Br

= , = (18)
Gv + Gr b Bv + Br

G
The values of Ag and Ay are bounded by 0% and 100% limits which indicate elastic isotropy and the highest

possible anisotropy, respectively. The percent shear anisotropy (Ag) is ~3.7% for C54 TiSi,, C40 TiSi, and Pnma
TiSi. For C49 TiSi,, the computed value of Ag is ~2.4%, whereas it is ~0.7% for Ti5Si3. The computed percent
compressibility anisotropy (Ag) is highest (~3.4%) for C49 TiSi, and smallest (~0.4%) for Pnima TiSi. The
variation in Young’s modulus along different directions can also be used to infer the degree of anisotropy in
elastic properties. For an orthorhombic crystal, the Young’s modulus E in an arbitrary direction with direction
cosines [y, I, and I5 can be computed as [19, 23, 34]

E= (lf*s11 + 212151, + 21P1ES s 4 1) Syy + 21313803 + 1S53 + 1715844 4 1P 1} Ss5 + 112122366)*1 (19a)
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Figure 4. Direction dependent bulk modulus (B) of (a) C49 TiSi, (b) C54 TiSi, (¢) C40 TiSi, (d) Prnma TiSi (e) TisSis.

Table 6. Young’s modulus (in GPa) along [100], [010],
[001] and [111] directions of C49, C54, C40 TiSi,, Pnma
TiSiand TisSis3, Tiand Si.

Eio0 Eo10 Eqor Ein
C49 TiSi, 227.2 168.3 258.3 279.3
C54 TiSi, 3184 298.9 386.5 241.7
C40 TiSi, 301.0 301.0 385.3 243.1

Pnma TiSi 175.9 222.6 282.8 263.9
D84 TisSis 240.1 240.1 254.5 228.4
Ti 130.6 130.6 140.5 122.7
Si 122.7 122.7 122.7 177.3

where S;; are components of the elastic compliance matrix. Table 6 shows the computed Young’s moduli of
Ti-Si phases along the [100], [010], [001] and [111] directions. Figure 5 shows a plot of the directional Young’s
modulus along different directions. The directional bulk and Young’s modulus for bulk Siand Tiare shown in
figure 6. As can be seen in figures 5 and 6, the shape of the directional Young’s modulus profile for C49 TiSi, and
C40 TiSi, is similar to that for bulk Si and Ti. The computed ratio between Young’s modulus along [111] and
[100]1is 1.23 for C49 TiSi,, 0.76 for C54 TiSi,, 0.81 for C40 TiSi,, 1.50 for Pnma TiSi, 0.95 for TisSis, 0.94 for Ti
and 1.44 for Si. The ratio between Young’s modulus along [001] and [100] is 1.14,1.21,1.28,1.61, 1.06, 1.08 and
1.0 in respective order. It is evident from tables 5 and 6 and figures 4 and 5, that the five Ti—Si phases exhibit
moderate anisotropy in elastic properties.

7. Debye temperature

The Debye temperature is related to the average sound velocity as follows [42]:
1/3
9]) = i i Vm (19b)
kB 4T Va

where V,, v, b, and kg, are atomic volume, sound velocity Planck’s constant and Boltzmann’s constant,
respectively. The average sound velocity in polycrystalline materials is given as [42]
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Table 7. Density (in 10° kg m ), longitudinal, transverse, and average sound velo-
cities (inms '), and Debye temperature of C49, C54, C40 TiSi,, Pnma TiSiand
TisSis, Tiand Si.

p v Vi Vin Op (K)
C49 TiSi, GGA 4025 8269 5174 5699 699
C54 TiSi, GGA 4073 8622 5401 5948 732
C40 TiSi, GGA 4067 8610 5362 5909 727
Pnma TiSi GGA 4239 8212 4925 5448 659
D8 TisSis GGA 4350 7896 4710 5214 623
Ti GGA 4602 6243 3240 3626 417
Exp.*? - — — — 420
Si GGA 2284 8723 5262 5818 634
Exp.*? — — — — 645
-1/3
o= 1(1 ' L) (200)
3\ v

where v, and v| are the transverse and longitudinal velocities in the polycrystalline material. v, and v can be
expressed in terms of polycrystalline bulk (B) and shear (G) moduli [43].

1/2 1/2
)= ( E) and v = (—33 + 4G) (20b)
P 3p

The computed sound velocities and Debye temperatures of five Ti—Si systems are listed in table 7. The
computed Debye temperatureis 611 K for C49 TiSi,, 508 K for C54 TiSi,, 699 K for C40 TiSi,, 659 K for Pnma
TiSi, 623 K for TisSis. The computed Debye temperatures for Tiand Siare 417 Kand 635 K, and are in good
agreement with experimental values of 420 K and 645 K [32].

8. Conclusion

The electronic structure and anisotropy in elastic properties are studied for five Ti—Si phases: C49 TiSi,, C54
TiSi,, C40 TiSi,, Pnma TiSi and TisSi;. The density functional theoretical framework is used to compute elastic
constants, elastic moduli, anisotropic factors, Debye temperature and sound velocities. The computed lattice
parameters and fractional atomic coordinates are found to be in good agreement with available experimental
values. The bonding in the Ti-Si phases is found to be mixed covalent-metallic type. The Young’s modulus,
shear modulus, Poisson’s ratio and other elastic moduli of polycrystalline aggregates are computed from single
crystal elastic constants. The anisotropy in elastic properties is estimated using shear anisotropic factors, bulk
modulus anisotropic factors and directional Young’s and bulk modulus. The elastic anisotropy in the Ti-Si
phases may have significant implications for the mechanical properties, microstructure and growth of textured
Ti-Si thin films on Si substrates.
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