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Abstract

Contingency tables are a very common basis for the investigation of effects of different treatments or influences on a

disease or the health state of patients. Many journals put a strong emphasis on p-values to support the validity of

results. Therefore, even small contingency tables are analysed by techniques like t-test or ANOVA. Both these

concepts are based on normality assumptions for the underlying data. For larger data sets, this assumption is not so

critical, since the underlying statistics are based on sums of (independent) random variables which can be assumed to

follow approximately a normal distribution, at least for a larger number of summands. But for smaller data sets, the

normality assumption can often not be justified.

Robust methods like the Wilcoxon-Mann-Whitney-U test or the Kruskal-Wallis test do not lead to statistically

significant p-values for small samples. Median polish is a robust alternative to analyse contingency tables providing

much more insight than just a p-value.

Median polish is a technique that provides more information than just a p-value. It explains the contingency table in

terms of an overall effect, row and columns effects and residuals. The underlying model for median polish is an

additive model which is sometimes too restrictive. In this paper, we propose two related approach to generalise

median polish. A power transformation can be applied to the values in the table, so that better results for median

polish can be achieved. We propose a graphical method how to find a suitable power transformation. If the original

data should be preserved, one can apply other transformations – based on so-called additive generators – that have

an inverse transformation. In this way, median polish can be applied to the original data, but based on a non-additive

model. The non-linearity of such a model can also be visualised to better understand the joint effects of rows and

columns in a contingency table.

Introduction
Contingency tables often arise from collecting patient

data and from lab experiments. The rows and columns of

a contingency table correspond to two different categor-

ical attributes. One of these categorical attributes could

account for different drugs with which patients are treated

and the other attribute could stand for different forms

of the same disease. Each cell of the table contains a

numerical entry which reflects a measurement under the
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combination of the categorical attributes corresponding

to the cell. In the example above, these entries could be

the number of patients that have been cured from the dis-

ease by the drug corresponding to the cell. Or it could be

the time or average time it took patients to recover from

the disease while being treated with the drug.

Table 1 shows an example of a contingency table. The

rows correspond to six different groups. The columns in

this case reflect replicates. The columns correspond to

3 replicates of a gene expression experiment where cul-

tured cells were transfected with increasing amounts of

an effector plasmid (a plasmid expressing a protein that

increases the expression of a gene contained on a second

plasmid, referred to as a reporter plasmid) in the presence

© 2013 Klawonn et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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Table 1 A contingency table

Group Replicate

G1 6.39 8.10 6.08

G2 8.95 7.48 6.57

G3 5.61 8.58 5.72

G4 813.70 686.50 691.20

G5 4411.50 3778.90 4565.30

G6 32848.40 28866.00 46984.40

or absence of the reporter plasmid. Rows 1–3 consti-

tute the negative control experiment, in which increasing

amounts of the effector plasmid were transfected, but no

reporter plasmid. The experiments in rows 4–6 are iden-

tical to those in 1–3, except that increasing amounts of

the reporter plasmid were co-transfected. The data cor-

respond to the intensity of the signal derived from the

protein which is expressed by the reporter plasmid.

A typical question to be answered based on data from

a contingency table is whether the rows or the columns

show a significant difference. In the case of the treatment

of patients with different drugs for different diseases, one

could ask whether one of the drugs is more efficient than

the other ones or whether one disease is more severe

than the other ones. For the example of the contingency

Table 1, one would be interested in significant differences

among the groups, i.e. the rows. But it might also be

of interest whether there might be significant differences

in the replicates, i.e. the columns. If the latter question

had a positive answer, this could be a hint to a batch

effect, which turn out to be a serious problem in many

experiments [1].

Hypothesis tests are a very common way to carry out

such analysis. One could perform a pairwise comparison

of the rows or the columns by the t-test. However, the

underlying assumption for the t-test is that the data in

the corresponding rows or columns originate from nor-

mal distributions. For very large contingency tables, this

assumption is not very critical, since the underlying statis-

tics will be approximately normal, even if the data do not

follow a normal distribution. Non-parametric tests like

the Wilcoxon-Mann-Whitney-U test are a possible alter-

native. However, for very small contingency tables they

cannot provide significant p-values. In any case, a correc-

tion for multiple testing – like Bonferroni (see for instance

[2]), Bonferroni-Holm [3] or false discovery rate (FDR)

correction [4] – needs to be carried in the case of pairwise

comparisons.

Instead of pairwise comparisons with correction for

multiple testing, analysis of variance (ANOVA) is often

applied instead of the t-test. Concerning the underly-

ing model assumptions, ANOVA is even more restric-

tive than the t-test, since it does even assume that the

underlying normal distributions have identical variance.

ANOVA is also – like the t-test – very sensitive to outliers.

The Kruskal-Wallis test is the corresponding counterpart

of the Wilcoxon-Mann-Whitney-U test, carrying out a

simultaneous comparison of the medians. But it suffers

from the same problems as theWilcoxon-Mann-Whitney-

U test and is not able to provide significant p-values for

small samples [5].

A general question is whether a p-value is required at all.

A p-value can only be as good as the underlying statistical

model and a lot of information is lost when the interest-

ingness of a whole contingency table is just reflected by a

single p-value. In the worst case, a t-test or ANOVA can

yield a significant p-value just because of a single outlier.

Median polish [6] – a technique from robust statistics

and exploratory data analysis – is another way to anal-

yse contingency tables based on a simple additive model.

We briefly review the idea of median polish in terms of a

simple additive model. Although the simplicity of median

polish as an additive model is appealing, it is sometimes

too simple to analyse contingency table. Very often, espe-

cially in the context of gene, protein or metabolite expres-

sion profile experiments, the measurements are not taken

directly, but are transformed before further analysis. In the

case of expression profiles, it is common to apply a log-

arithmic transformation. The logarithmic transformation

is a member of a more general family, the so-called power

transformations which we use to introduce a method to

find a suitable power transformation that yields the best

results for median polish for a given contingency table.

The leads to median polish based on an additive model,

but with transformed attribiutes. We further extend the

presented ideas, by transforming the median polish back

to the original domain of the attributes. This back-

transformation requires special transformations related to

additive generators. With such back-transformation the

median polish result can be interpreted on the original

data values as non-additive model. Finally, we illustrate

how to visualise the non-linearity exploited by the non-

additive median polish model. This paper combines the

ideas that were presented in [7,8].

Median polish
Median polish has been applied to medical and biomed-

ical contingency tables in various settings [9-11]. The

underlying additive model of median polish is that each

entry xij in the contingency table can be written in the

form

xij = g + ri + cj + εij.

• g represents the overall or grand effect in the table.

This can be interpreted as general value around

which the data in the table are distributed.
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• ri is the row effect reflecting the influence of the

corresponding row i on the values.
• cj is the column effect reflecting the influence of the

corresponding column j on the values.
• εij is the residual or error in cell (i, j) that remains

when the overall, the corresponding row and column

effect are taken into account.

The overall, row and column effects and the residuals

are computed by the following algorithm.

1. For each row compute the median, store it as the row

median and subtract it from the values in the

corresponding row.

2. The median of the row medians is then added to the

overall effect and subtracted from the row medians.

3. For each column compute the median, store it as the

column median and subtract it from the values in the

corresponding column.

4. The median of the column medians is then added to

the overall effect and subtracted from the column

medians.

5. Repeat steps 1–4 until no changes (or very small

changes) occur in the row and column medians.

Table 2 shows the result of median polish applied to

Table 1.

The result of median polish can help to better under-

stand the contingency table. In the ideal case, the residuals

are zero or at least close to zero. Close to zero means

in comparison to the row or column effects. If most of

the residuals are close to zero, but only a few have a

large absolute value, this is an indicator for outliers that

might be of interest. Most of the residuals in Table 1

are small, except the ones in the lower right part of the

table.

The row effect shows how much influence each row,

i.e. in the example, each group has. One can see that

group G1, G2 and G3 have roughly the same effect. Group

G5 and G6 have extremely high influence and show very

significant effects.

The column effects are interpreted in the same way.

Since the columns represent replicates, they shall have no

effect at all in the ideal case. Otherwise, some batch effect

might be the cause. The column effects in Table 1 are – as

expected – all zero or at least close to zero.

Power transformations
Transformation of data is a very common step of data pre-

processing (see for instance [12]). There can be various

reasons for applying transformations before other anal-

ysis steps, like normalisation, making different attribute

ranges comparable, achieving certain distribution prop-

erties of the data (symmetric, normal etc.) or gaining

advantage for later steps of the analysis.

Power transformations (see for instance [6]) are a special

class of parametric transformations defined by

tλ(x) =

{

xλ−1
λ

ifλ �= 0,

ln(x) ifλ = 0.

It is assumed that the data values x to be transformed are

positive. If this is not the case, a corresponding constant

ensuring this property should be added to the data.

We restrict our considerations on power transforma-

tions that preserve the ordering of the values and therefore

exclude negative values for λ.

In the following section, we use power transformations

to improve the results of median polish.

Finding a suitable power transformations for
median polish
An ideal result for median polish would be when all resid-

uals are zero or at least small. The residuals get smaller

automatically when the values in the contingency table

are smaller. This would mean that we tend to put a high

preference on the logarithmic transformation (λ = 0), at

least when the values in the contingency table are greater

than 1. Small for residuals does not refer to the abso-

lute values of the residuals being small. It means that the

residuals should be small compared to the row or column

effects. Therefore, we should compare the absolute values

Table 2 Median polish for the data in Table 1

Overall: 350.075

R1 R2 R3 Row effect

G1 0.000 4.795 −0.310 −343.685

G2 0.000 1.615 −2.380 −341.125

G3 −0.110 5.945 0.000 −344.355

G4 122.500 −1.615 0.000 341.125

G5 0.000 −629.515 153.800 4061.425

G6 0.000 −3979.315 14136.000 32498.325

Column effect 0.000 −3.085 0.000
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Figure 1 IQRoQ plot for the row (left) and column effects (right) for the artificial example data set.

of the residuals to the absolute values of the row or col-

umn effects. One way to do this would be to compare

the mean values of the absolute values of the residuals to

the mean value of the absolute values of the row or col-

umn effects. This would, however, be not consistent in

the line of robust statistics. Single outliers could domi-

nate this comparison. This would also lead to the reverse

effect as considering the residuals alone. Power transfor-

mations with large values for λ would be preferred, since

they make larger values even larger. And since the row or

column effects tend to be larger than the residuals in gen-

eral, one would simply need to choose a large value for λ

to emphasize this effect.

Neither single outliers of the residuals nor of the row or

column effects should have an influence on the choice of

the transformation.What we are interested in is being able

to distinguish between significant row or column effects

and residuals. Therefore, the spread of the row or col-

umn effects should be large whereas at least most of the

absolute values of the residuals should be small.

To measure the spread of the row or column effects, we

use the interquartile range which is a robust measure of

spread and not sensitive to outliers like the variance. The

interquartile range is the difference between the 75%- and

the 25%-quantile, i.e. the range that contains 50% percent

of the data in the middle.

We use the 80% quantile of the absolute values of all

residuals to judge whether most of the residuals are small.

It should be noted that we do not expect all residuals to

be small. We might have single outliers that are of high

interest.

Finally, we compute the quotient of the interquartile

range of the row or column effects and divide it by the

80% quantile of the absolute values of all residuals. We

call this quotient the IQRoQ value (InterQuartile Range

over the 80% Quantile of the absolute residuals). The

higher the IQRoQ value, the better is the result of median

polish. For each value of λ, we apply the corresponding

power transformation to the contingency table and calcu-

late the IQRoQ value. In this way, we obtain an IQRoQ

plot, plotting the IQRoQ value depending on λ.

Of course, the choice of the interquartile range – we

could also use the range that contains 60% percent of the

data in themiddle – and the 80%-quantile for the residuals

are rules of thumb that yield good results in our applica-

tions. If more is known about the data, for instance that

outliers should be extremely rare, one could also choose a

higher quantile for the residuals.

Before we come to examples with real data in the next

section, we illustrate our method based on artificially gen-

erated contingency tables. The first table is a 10 × 10,

generated by the following additive model. The overall

Figure 2 IQRoQ plot for the row (left) and column effects (right) for the exponential artificial example data set.
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Figure 3 IQRoQ plot for the row (left) and column effects (right) for a random data set where all entries in the contingency table were

generated by a normal distribution with expected value 5 and variance 1.

effect is 0, the row effects are 10, 20, 30, . . . , 100, the col-

umn effects are 1, 2, 3, . . . , 10. We then added to each

entry noise from a uniform distribution over the interval

[−0.5, 0.5] to each entry.

Figure 1 shows the IQRoQ plots for the row and column

effects for this artificial data set. In both cases, we have a

clear maximum at λ = 1. So the IQRoQ plots propose to

apply the power transformation with λ = 1 which is the

identity transformation and leaves the contingency table

as it is. The character of the IQRoQ plots for the row and

column effects is similar, but the values differ by a factor

10. This is in complete accordance with the way the arti-

ficial data set had been generated. The row effects were

chosen 10 times as large as the column effects.

As a second artificial example we consider the same con-

tingency table, but apply the exponential function to each

of its entries. The IQRoQ plots shown in Figure 2 have

their maximum at λ = 0 and therefore suggest to use

the logarithmic transformation before applying median

polish. So this power transformation reverses the expo-

nential function and we retrieve the original data which

were generated by the additive model.

The last artificial example is a negative example in the

sense that there is no additive model underlying the data

generating process. The entries in the corresponding 10×

10 contingency table were produced by a normal distri-

bution with expected value 5 and variance 1. The IQRoQ

plots are shown in Figure 3. The IQRoQ plot for the row

effect has no clear maximum at all and shows a tendency

to increase with increasing λ. The IQRoQ plot for the col-

umn effect has amaximum at 0 and then seems to oscillate

with definitely more than one local maximum. There is no

clear winner among the power transformations. And this

due to the fact that there is no underlying additive model

for the data and no power transformation will make the

data fit to an additive model.

Examples
We now apply the IQRoQ plots to real data sets. As a first

example, we consider the data set in Table 1. The IQRoQ

plots are shown in Figure 4. The IQRoQ plot for the row

effects has its global maximum at λ = 0 and a local max-

imum at λ = 0.5. The IQRoQ plot for the column effects

has its global maximum at λ = 0.5. However, we know

Figure 4 IQRoQ plot for the row (left) and column effects (right) for the data set in Table 1.
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Table 3 Median polish for the data in Table 1 after power transformation with λ= 0

Overall: 4.2770

R1 R2 R3 Row effect

G1 0.0000 0.2422 −0.0497 −2.4223

G2 0.1760 0.0017 −0.1331 −2.2614

G3 −0.0194 0.4106 0.0000 −2.5331

G4 0.1632 −0.0017 0.0000 2.2614

G5 0.0000 −0.1497 0.0343 4.1149

G6 0.0000 −0.1241 0.3579 6.1226

Column effect 0.0000 −0.0051 0.0000

that in this data set the columns correspond to replicates

and it does not make sense to maximise the effects of the

replicates over the residuals. The IQRoQ values for the

column effects are also much smaller than the IQRoQ val-

ues for the row effects. Therefore, we chose the power

transformation suggested by the IQRoQ plot for the row

effects, i.e. the logarithmic transformation induced by λ =

0. The second choice would be the power transformation

with λ = 0.5 which would lead to similar effects as the

logarithmic transformation, although not so strong.

Table 3 shows the result of median polish after the log-

arithmic transformation has been applied to the data in

Table 1. We compare this table with Table 2 which orig-

inated from median polish applied to the original data.

In Table 3 based on the optimal transformation derived

from the IQRoQ plots, the absolute values of all residuals

are smaller than any of the (absolute) row effects. There

is no indication of extreme outliers anymore, whereas the

median polish in Table 2 applied to the original data sug-

gests that there are some extreme outliers. The entries for

G6 for replicate R2 and R3 and even the entry for G5 for

replicate R2 show a larger absolute value of the majority

of the row effects in Table 2. From Table 2, it is also not

very clear whether group G4 is similar to groups G1, G2,

G3 or groups G5, G6, whereas after the transformation in

Table 1 the original groupings G1, G2, G3 (no reporter

plasmid) versus of G4, G5, G6 (with increasing amount of

reporter plasmid) can be easily identified based on the row

effects.

We finally consider two larger contingency tables with

14 rows and 97 columns that are far too large to be

included in this paper. The tables consist of a data set

displaying the metabolic profile of a bacterial strain after

isolation from different tissues of a mouse. The columns

reflect the various substrates whereas the rows consist of

repetitions for the isolates from tumor and spleen tissue.

The aim of the analysis is to identify those substrates that

can be utilized by active enzymes and to find differences

in the metabolic profile after growth in different organs.

The corresponding IQRoQ plots are shown in Figures 5

and 6. The IQRoQ plots indicate that we choose a value of

around λ = 0.5, although the IQRoQ plots do not agree

on exactly the same value.

The non-additivemodel
In the previous setting, we have looked at the median

polish results for the transformed data. Sometimes, trans-

formations of the attributesmight not be desired, since the

transformed attribute might not be interpretable for the

domain expert anymore. Therefore, we introduce trans-

formations that can be reversed leading to median polish

on the original attributes based on non-additive models.

Figure 5 IQRoQ plot for the row (left) and column effects (right) for a larger contingency table for spleen.
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Figure 6 IQRoQ plot for the row (left) and column effects (right) for a larger contingency table for tumour.

In order to motivate and explain this idea, we take a closer

look at the power transformation with λ = 0, i.e. we when

choose the logarithm for the power transformation. We

then obtain the following model.

ln(xij) = g + ri + cj + εij. (1)

Transforming back to the original data yields the model

xij = eg · eri · ecj · eεij .

So it is in principle a multiplicative model (instead of an

additive model as in standard median polish) as follows:

xij = g̃ · r̃i · c̃j · ε̃ij

where g̃ = eg , r̃i = eri , c̃j = ecj , ε̃ij = eεij . The part of

the model which is not so nice is that the residuals also

enter the equation by multiplication. Normally, residuals

are always additive, no matter what the underlying model

for the approximation of the data is.

Towards overcoming this drawback, we propose the fol-

lowing approach. We apply the median polish algorithm

to the log-transformed data in order to compute g (or g̃),

ri (or r̃i) and cj (or c̃j). The residuals are then defined at the

very end as

εij := xij − g̃ · r̃i · c̃j. (2)

Let us now rewrite Eq. (1) in the following form:

ln(xij) = ln(g̃) + ln(r̃i) + ln(c̃j) + ln(ε̃ij).

Assuming that the residuals are small, we have

ln(xij) ≈ ln(g̃) + ln(r̃i) + ln(c̃j).

Transforming this back to the original data, we obtain

xij ≈ exp
(

ln(g̃) + ln(r̃i) + ln(c̃j)
)

.

A natural question that arises now is the following: What

happens with other power transformations, i.e., for λ > 0?

In principle the same, as we obtain

xij ≈ t−1
λ (tλ(g̃) + tλ(r̃i) + tλ(c̃j)). (3)
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Figure 7 IQRoQ plots for the column and row effects of the artificial data with Modified Schweizer-Sklar generator. (a) Artificial Data,

e = 5, L = 110, IQRoQ Column Plot. (b) Artificial data, e = 5, L = 110, IQRoQ Row Plot.
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Table 4 Infant mortality vs educational qualification of the

parents in deaths per 1000 live births in the years

1964–1966 (Source: U.S. Dept. of Health, Education

andWelfare)

≤ 8 9–11 12 13–15 ≥ 16

North-West 25.3 25.3 18.2 18.3 16.3

North-Central 32.1 29.0 18.8 24.3 19.0

South 38.8 31.0 19.3 15.7 16.8

West 25.4 21.1 20.3 24.0 17.5

Let us denote by ⊕λ the corresponding, possibly associa-

tive, operator obtained as follows:

x ⊕λ y = t−1
λ (tλ(x) + tλ(y)) . (4)

Now, we can interpret Eq. (3) as

xij ≈ g ⊕λ r̃i ⊕λ c̃j (5)

Thus the problem of determining a suitable transforma-

tion of the data before applying the median polish algo-

rithm essentialy boils down to finding that operator ⊕λ

which minimises the residuals in (2), viz.,

εij = xij − g ⊕λ r̃i ⊕λ c̃j.

Transformations and additive generators of fuzzy
logic connectives
It is very interesting to note the similarity between the

operator ⊕λ and t-norms / t-conorms [13], operators for

modelling the AND, respectively the OR operator in fuzzy

logic.

On the one hand, the above family of power transfor-

mations closely resembles the Schweizer-Sklar family of

additive generatorsa of t-norms. In fact, the power trans-

formations are nothing but the negative of the additive

generator of the Schweizer-Sklar t-norms. Note that addi-

tive generators of t-norms are non-increasing, and in the

case of continuous t-norms they are strictly decreasing,

which explains the need for a negative sign to make the

function decreasing.

On the other hand, given continuous and strict additive

generators, one constructs t-norms / t-conorms precisely

by using Eq. (4). However, it should be emphasised that

additive generators of t-norms or t-conorms cannot be

directly used here. The additive generator of a t-norm

is non-increasing while one requires a transformation to

maintain the monotonicity in the arguments. In the case

of the additive generator of a t-conorm, though mono-

tonicity can be ensured, their domain is restricted to

just [ 0, 1]. This can be partially overcome by normal-

ising the data to fall in this range. However, this type

of normalisation may not be reasonable always. Further,

the median polish algorithm applied to the transformed

data do not always remain positive and hence deter-

mining the inverse with the original generator is not

possible.

The above discussion leads us to consider a suitable

modification of the additive generators of t-norms /

t-conorms that can accommodate a far larger range

of values both in their domain and co-domain. Rep-

resentable uninorms are another class of fuzzy logic

connectives that are obtained by the additive genera-

tors of both a t-norm and a t-conorm. In this work,

we construct newer transformations by suitably modi-

fying the underlying generators of these representable

uninorms [13].

Modified additive generators of uninorms : an example

Let us assume that the data x are coming from the

interval (−M,M). Consider the following modified gen-

erator of the uninorm obtained from the additive

generators of the Schweizer-Sklar family of t-norms

and t-conorms.
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Figure 8 IQRoQ plots for the column and row effects of the Infant Mortality data. (a) e = 2,M = 40, IQRoQ Column Plot. (b) e = 2,M = 40,

IQRoQ Row Plot.
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Table 5 Median polish on the hλ- transformed infant mortality data with λ= −0.5

Overall: 0.2919985

≤ 8 9–11 12 13–15 ≥ 16 RE

NW 0.00025312 0.0027983 -0.00025004 -0.010879 0.0000000 -0.010113225

NC -0.00025312 -0.0027983 -0.01200293 0.010879 0.0078014 0.006694490

S 0.01098492 0.0091121 0.00025004 -0.044525 -0.0035433 -0.001558958

W -0.01102793 -0.0305895 0.00456985 0.014641 0.0000000 0.001558958

CE 0.0318984143 0.0293532152 -0.0112376220 0.0002531186 -0.0294192135

Let e ∈ (−M,M) be any arbitrary value. Then the fol-

lowing is a valid transformation with hλ :[−M,M]→
[

(−M)λ−eλ

λ
, 1

λ

]

, for all λ �= 0.

hλ(x) =

⎧

⎪

⎨

⎪

⎩

xλ−eλ

λ
, x ∈[−M, e]

1−
(

M−x
M−e

)λ

λ
, x ∈[ e,M]

;

(hλ)
−1 (x) =

⎧

⎨

⎩

(xλ + eλ)
1
λ , x ≤ 0

M − (M − e) [(1 − xλ)]
1
λ , x ≥ 0

.

Note that hλ is monotonic for all λ �= 0 and increases

with decreasing λ.

That thismodified generator is a reasonable transforma-

tion can be seen by applying it to the random data set that

was already used to generate the IQRoQ plots in Figure 1.

From the IQRoQ plots for this data given in Figure 7,

it can be seen that the global maxima occur at λ = 1.

So the IQRoQ plots propose to apply the above transfor-

mation with λ = 1 which is a linear transformation of

the data.

A novel way of finding a suitable transformation

In this section we present the algorithm to find a suitable

transformation of the given data such that the MP algo-

rithm performs well to elucidate the underlying structures

in the data. We only consider a one parameter family of

operators with the parameter denoted by λ.

The proposed algorithm is as follows. Let ⊕λ denote

the one parameter family of operators whose domain and

range allow it to be operated on the data given in the

contingency table. Then for each λ the following steps

are performed:

x

20

25

30

35

y

20

25

30

35

z

15

20

25

30

Figure 9 The operator for the non-additive median polish model for the Infant Mortality data.
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Figure 10 IQRoQ plots for the column and row effects of the Spleen data. (a) e = 10,M = 20000, IQRoQ Column Plot. (b) e = 10,M = 20000,

IQRoQ Row Plot.

1. Apply the transformation ⊕λ to the contingency

table.

2. Apply median polish to the transformed data to find

the overall, row and column effects, viz., g̃, r̃i, c̃j for

each i, j.

3. Find the residuals εij = xij − g ⊕λ r̃i ⊕λ c̃j for each i, j.

4. Determine the IQRoQ values of the above residuals.

Finally, we plot λ versus the above IQRoQ values to get

the IQRoQ plots for the column and row effects.

Clearly, the operator corresponding to the λ at which the

above IQRoQ plots peak is a plausible transformation for

the given contingency table.

Some illustrative examples

As an example with real world data, let us consider the

data given in the contingency Table 4. Applying the above

algorithm with the transformation hλ we obtain the fol-

lowing IQRoQ plots as detailed above. The corresponding

IQRoQ plots are shown in Figures 8(a) and (b). The

Table 6 Median polish for the data in Table 7

Overall: 3.625

C1 C2 C3 C4 C5 C6 C7 Row effect

P1 absent 33.000 5.000 −1.500 −0.125 −2.625 3.625 −5.625 13.125

P2 absent 40.500 1.500 0.000 33.375 −0.125 −7.875 −6.125 20.625

P3 absent 22.750 1.750 −13.750 44.625 0.125 −9.625 −8.875 29.375

P4 absent 36.500 −6.500 0.000 45.375 −6.125 5.125 −7.125 22.625

P5 absent 17.000 0.000 −10.500 5.875 0.375 −3.375 −1.625 13.125

P6 absent 0.000 0.000 0.5000 −0.125 0.375 −0.375 −2.625 7.125

P7 absent 8.750 −5.250 0.250 10.625 −7.875 −1.625 0.125 7.375

P8 absent −2.750 −3.750 −2.250 0.125 0.625 −0.125 0.625 1.875

P1 present 0.500 0.500 0.000 −3.625 −0.125 0.125 −0.125 −3.375

P2 present −2.500 1.500 0.000 3.375 −1.125 3.125 −0.125 −2.375

P3 present 0.000 0.000 1.500 −2.125 −0.625 0.625 3.375 −2.875

P4 present −1.750 −0.750 −1.250 1.125 1.625 −0.125 2.625 −2.125

P5 present 0.000 0.000 −0.500 −1.125 1.375 2.625 0.375 −2.875

P6 present −0.500 0.500 0.000 −2.625 −0.125 1.125 3.875 −3.375

P7 present 0.000 −1.000 −1.500 −3.125 0.375 3.625 1.375 −1.875

P8 present −1.000 0.000 2.500 −3.125 0.375 −0.375 0.375 −2.875

Column effect 1.250 −0.750 −0.250 3.375 −0.125 0.625 −0.125
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Table 7 Coronary disease data from [14]

Cholesterol level

Heart disease Pressure C1 C2 C3 C4 C5 C6 C7

Absent P1 51 21 15 20 14 21 11

Absent P2 66 25 24 61 24 17 18

Absent P3 57 34 19 81 33 24 24

Absent P4 64 19 26 75 20 32 19

Absent P5 35 16 6 26 17 14 15

Absent P6 12 10 11 14 11 11 8

Absent P7 21 5 11 25 3 10 11

Absent P8 4 1 3 9 6 6 6

Present P1 2 0 0 0 0 1 0

Present P2 0 2 1 8 0 5 1

Present P3 2 0 2 2 0 2 4

Present P4 1 0 0 6 3 2 4

Present P5 2 0 0 3 2 4 1

Present P6 1 0 0 1 0 2 4

Present P7 3 0 0 2 2 6 3

Present P8 1 0 3 1 1 1 1

IQRoQ plots suggest a value of around λ = −0.5. The

‘median polished’ contingency table for λ = −0.5 is given

in Table 5.

We can also visualise the non-linear aggregation oper-

ator ⊕λ (here: λ = −0.5) that is used for the non-

additive median polish model. The non-linearity is clearly

illustrated in Figure 9 which suggests that strong row and

column effects seem to even amplify each other.

We also apply the non-additive median polish model to

the data set that was already used for Figure 5. The cor-

responding IQRoQ plots are shown in Figures 10(a) and

(b). The IQRoQ plots indicate that we choose a value of

around λ = 0.4.

An example based on clinical data

We consider a data set from [14] containing a sample of

male residents of Framingham in Massachusetts shown in

Table 6. The age of the persons ranges between 40 and

59 year. Several attributes were taken into accout, among

them blood pressure and cholesterol level. The persons

were classified whether they developed a coronary heart

disease within a period of six years. The blood pressure

Figure 11 IQRoQ plot for the row (left) and column effects (right) for the data in Table 7.
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Table 8 Median polish for the data in Table 7 after power transformation with λ= 0.4

Overall: 1.756

C1 C2 C3 C4 C5 C6 C7 Row effect

P1 absent 3.756 1.130 0.000 −0.520 −0.243 0.301 −0.849 3.423

P2 absent 3.570 0.244 0.000 2.578 −0.050 −1.844 −0.967 4.904

P3 absent 1.731 0.320 −1.859 3.034 0.050 −1.815 −1.111 5.990

P4 absent 3.125 −0.956 0.000 3.401 −0.943 0.052 −1.082 5.187

P5 absent 1.829 0.021 −2.400 0.108 0.050 −1.188 −0.291 3.689

P6 absent 0.000 0.459 0.589 −0.170 0.539 −0.139 −0.170 2.010

P7 absent 1.094 −1.485 0.050 1.107 −2.402 −0.910 0.025 2.549

P8 absent −0.818 −1.368 −0.415 0.121 0.627 −0.052 0.652 0.612

P1 present 0.570 0.101 0.000 −1.390 −0.050 0.070 −0.025 −1.656

P2 present −1.608 0.682 0.000 1.331 −0.849 1.092 −0.025 −0.857

P3 present 0.000 −0.470 0.809 −0.581 −0.620 0.080 1.664 −1.085

P4 present −0.713 −0.602 −0.703 0.851 1.100 −0.052 1.531 −0.953

P5 present 0.000 −0.470 −0.570 −0.108 0.759 0.960 0.203 −1.085

P6 present −0.010 0.101 0.000 −0.592 −0.050 0.651 2.234 −1.656

P7 present 0.000 −0.943 −1.044 −1.054 0.286 1.172 0.784 −0.612

P8 present −0.132 −0.021 1.731 −0.714 0.627 −0.052 0.652 −1.534

Column effect 0.709 −0.201 −0.100 1.291 −0.050 0.629 −0.075

was divided into eight levels, P1 referring to the lowest

level (< 117), P2 to a blood pressure between 117 and

126 etc. and P8 corresponding to blood pressures above

186. Similar to the blood pressure, the cholesterol level

was divided into seven groups (C1: < 200, C2: 200–209,

C3: 210–219, C4: 220–244, C5: 245–259, C6: 260–284,

C7: > 284).

As one would expect from such a study, the number

of observed cases with coronary disease within this six

year period is relatively small compared to number of
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Figure 12 Heatmap visualisation of the data from Table 7 (left) and the data after transformation (right).
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persons not being classified as having a coronary dis-

ease. This makes it quite difficult to see what would

be expected, namely that a high level of cholesterol

and high blood pressure increase the risk of coronary

disease.

Table 7 shows the result of applying median polish with-

out any transformation to Table 6. This table contains

large residuals, the largest absolute residual of 45.375 at

(P4 absent,C3) exceeds by far the row and column effects.

The absolute values of the residuals also exhibit a large

variation. The relative variance of the absolute residuals

is 18.192. The principal expected effects can be guessed

from the median polish result, but could be doubted due

to the large residuals compared to the row and column

effects. It is obvious to expect a positive row effect for the

first eight rows, i.e. for the persons who did not show any

signs of heart disease, simply because this group of per-

sons forms the large majority in the table. We would also

expect that this positive effect is smaller for larger lev-

els of the blood pressure. This can be observed, but these

effects do not look significant compared to the large resid-

uals. The column effects, i.e. the cholesterol levels, seem

to have a small influence. None of the column effects is

larger than the mean (4.504) of the absolute residuals, all

column effects are even smaller than the median (1.438)

of the absolute residuals.

Since we have zero values in the table, we cannot

apply the logarithmic power transformation to the data.

In order to avoid this problem, we apply Laplace cor-

rection, i.e. we add a positive constant, say 1, to all

entries in the table. The IQRoQ plots for the Laplace

corrected data set, shown in Figure 11, indicate that a

value for λ around 0.4 yields the most suitable power

transformation.

Table 8 shows the result of median polish applied to

the transformed data. The residuals are now smaller com-

pared to the row and column effects. The largest absolute

residual is 3.756 at (P1 absent,C1). Even this largest resid-

ual is smaller than three of the row effects which can then

be considered significant. Also the relative variance of the

absolute values of the residuals is much smaller now. It is

only 0.897. Now there is also one column effect which is

larger than the mean (0.787) of the absolute residuals and

two column effects are larger than the median (0.611) of

the absolute residuals.

It is also interesting to take a look at the transformed

data set that was found based on the IQRoQ plots.

Figure 12 visualises the original (left) and the transformed

(right) contingency table. Both table show a tendency of

higher values in the upper half (persons with absent heart

disease). But the difference between the upper and the

lower half is much clearer for the the transformed con-

tingency table than for the original one. This means that

even without applying median polish, it might be useful

to look at the transformed contingency table generated by

the transformation derived from the IQRoQ plots.

Conclusions
We have proposed two methods to improve the results of

median. Either we apply a suitable power transformation

to the data before applying median polish. Based on the

IQRoQ plots, the most suitable power transformation can

be chosen. Or, as an alternative, one can apply reversible

transformations based on additive generators, leading

to non-additive median polish. Again, the most suit-

able reversible transformation is chosen based on IQRoQ

plots. The joint non-linear connection of column and row

effects can be visualsied by a function in two variables

in order to better understand the nature of the interac-

tion of column and row effects. The example on heart

disease has demonstrated that it can be useful to apply

a transformation derived from IQRoQ plots, even if it is

not necessarily intended to use median polish afterwards.

The transformed contingency table might already exhibit

a clearer structure than the original table.

Ethical approval
All data sets referred to in this manuscript have been pub-

lished before and were in compliance with the Helsinki

Declaration. No specific or additional experiments were

carried out for this manuscript.

Software
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Endnote
aAn additive generator of a function f (x, y) in two real

variables is a function h in one real variable such that

f (x, y) = h−1(h(x) + h(y)) holds.
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