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An ML prediction model 
based on clinical parameters 
and automated CT scan features 
for COVID‑19 patients
Abhishar Sinha1, Swati Purohit Joshi2, Purnendu Sekhar Das3, Soumya Jana4* & 
Rahuldeb Sarkar5,6*

Outcome prediction for individual patient groups is of paramount importance in terms of selection of 
appropriate therapeutic options, risk communication to patients and families, and allocating resource 
through optimum triage. This has become even more necessary in the context of the current COVID‑
19 pandemic. Widening the spectrum of predictor variables by including radiological parameters 
alongside the usually utilized demographic, clinical and biochemical ones can facilitate building a 
comprehensive prediction model. Automation has the potential to build such models with applications 
to time‑critical environments so that a clinician will be able to utilize the model outcomes in real‑
time decision making at bedside. We show that amalgamation of computed tomogram (CT) data 
with clinical parameters (CP) in generating a Machine Learning model from 302 COVID‑19 patients 
presenting to an acute care hospital in India could prognosticate the need for invasive mechanical 
ventilation. Models developed from CP alone, CP and radiologist derived CT severity score and CP with 
automated lesion‑to‑lung ratio had AUC of 0.87 (95% CI 0.85–0.88), 0.89 (95% CI 0.87–0.91), and 0.91 
(95% CI 0.89–0.93), respectively. We show that an operating point on the ROC can be chosen to aid 
clinicians in risk characterization according to the resource availability and ethical considerations. This 
approach can be deployed in more general settings, with appropriate calibrations, to predict outcomes 
of severe COVID‑19 patients effectively.

The COVID-19 pandemic, caused by the coronavirus Sars-Cov-2, has been ravaging countries around the world 
since early 2020 in waves dominated by different variants. As recently as on 26th of November 2021, another 
newly declared variant of concern (VOC) called  Omicron1 has caused significant alarm across the globe with 
multiple significant mutations, reminding us that the pandemic and its associated concerns are far from over. 
Around the peaks of each wave, healthcare systems were stretched, as large number of people simultaneously 
required urgent medical attention in the form hospitalization, and some of them required admission to the inten-
sive care units for mechanical ventilation, which is extremely scarce  resource2,3. In this backdrop, prioritization 
and triaging became a key area for discussion in order to ensure that the care is directed to patients who require 
it most and benefit the most from it. Multiple ethical guidelines have been published based on clinical param-
eters, including guidance for optimizing allocation of mechanical ventilators, even in developed  economies4,5. 
However, in a high volume patient admission scenario, risk stratification for clinically meaningful outcomes of 
admission to hospital, intensive care units and/or mechanical ventilation may be challenging and potentially 
suboptimal, when the model is based on clinical parameters alone, as it misses out on vital data derived from 
radiological examination.

There have been several attempts at using technology in the current pandemic to aid patient care or public 
health response. Some of these efforts included a convolutional neural network based solution for the diagnosis 
of COVID19 using chest X-ray  images6,7, forecasting the number of COVID-19 cases in a  country8, and federated 
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learning based solution for COVID-19 response plan management at the city  level9. Machine learning models 
have also been used in the development of prognostic models to risk-stratify patients mainly based on clinical 
 parameters10,11. CT imaging, which can provide us with detailed involvement of lung tissue and the contiguous 
structures in the disease process with reasonable detail, can be added to the clinical parameter based models to 
make the prognostication more comprehensive. It may be noted that severity of lung infection has already been 
measured using the CT severity score based on chest CT scans; however, this requires manual assessment by 
 radiologists12. This is vulnerable to intra- and inter-observer  variability13,14, especially at a time of high volume 
reporting. Let us take the example of a 35 year old patient with viral pneumonia during the time of pandemic. 
He has been unwell for a week before presenting to hospital with increasing cough and breathlessness. He is 
found to be mildly hypoxemic. A chest imaging and blood work up is done and he is given low-flow oxygen. He 
is admitted to an area in hospital that has been created in preparation for managing increased surge of similar 
cases. This surge area does not look after respiratory cases in usual times, with low nurse-to-patient ratio and 
is expected only to look after patients with low grade illness and low probability of deterioration. The triaging 
for this scenario is based primarily on clinical parameters and excludes radiological features. Is the decision to 
admit this patient in this area appropriate? To aid in deciding this, previously stated prognostic models using 
only clinical parameters can be used. Models with broader scope, amalgamating clinical parameters and radio-
logical features, has been  reported15. However, the radiological quantification of disease was done manually in 
that model, which can be labor intensive and subject to the variabilities mentioned above. Additionally, in low 
and middle income countries (LMIC) such as India, qualified radiologists are scarce relative to the population. 
For example, India has a meagre 0.9 physicians per 1000  population16, of whom only a small proportion are 
radiologists, making consistently high quality assessment of radiological images a challenge. In such situations, 
an automated method to quantify the inflammation in the lungs can be useful in reducing the workload on the 
radiologists with potentially improved consistency in reporting.

We hypothesize that first, algorithmic scoring of CT scans could be almost as effective as manually generated 
CT severity scores in delineating pulmonary disease activity, and second, this can in turn contribute towards a 
prognostication model in conjunction with clinical parameters. Therefore, demographic and clinical data such as 
age and sex, blood-based biomarkers such as C reactive protein (CRP) and D dimer, and pre-existing conditions 
such as diabetes and hypertension, which have all been shown to prognosticate COVID-19, can be combined with 
an algorithmically generated lung inflammation index, in order to make a clinically robust prognostic model in 
predicting clinically meaningful outcomes, of which we considered the need for invasive mechanical ventilation 
as the outcome of our choice in view of it’s importance for the severely affected patients in the background of 
resource scarcity. An important point to consider would be the need for re-calibration of the model in different 
scenarios in order to avoid bias that may arise from differences in patient demographics and unique healthcare 
delivery in each setting. Currently, there is a lack of model development in LMICs, an issue which the current 
study can potentially address.

We propose a clinicoradiological model in the current study, developed on patients in a university hospital 
in western India, which has the potential to contribute towards a comprehensive triage system for optimum 
healthcare resource utilization at a time of high demand. The proposed model is developed based on automated 
detection and quantification of the most salient lung abnormalities along with clinical parameters, and does not 
take up radiologist time. Our approach aligns with the basic principle of predictive model development that 
inclusion of diverse relevant features makes an algorithm stronger and that models should be developed specific 
to different geographical regions in order to serve patients from each region  better17. In the second section, the 
materials and methods have been explained in more detail; in the third section, the results have been presented; 
and in the fourth section, the features, benefits and limitations of the study are discussed. Finally, we highlight 
the most important aspect and outcome of the study in “Conclusion” section.

Methods
The study was approved by the Institute Review Board of Mahatma Gandhi Medical College and Hospital 
(MGMCH), Jaipur, India (Contact Institutional Ethics Committee MGMCH, mgumst.ethics.committee@gmail.
com). The informed consent was waived due to the retrospective observational characteristic of the study by the 
Review Board. All methods were performed in accordance with the relevant guidelines and regulations of the 
Review Board of MGMCH.

We developed an automated system to predict if a patient with COVID-19 is going to need mechanical ven-
tilation, combining data from chest CT scan and clinical parameters. We algorithmically computed Automated 
Lesion Lung Ratio (ALLR) from the CT scan of each subject, and trained an ML prediction model using clinical 
features and ALLR. We also trained two other models using only clinical features and clinical features along with 
CT severity score, to compare the performance with the fully automated system, and verify that we are not losing 
accuracy while reducing the involvement of radiologists. A flow diagram to show the method is shown in Fig. 1.

Here, to compute ALLR, we needed to segment the lungs and their inflamed regions. For such segmentation 
tasks, we needed to train two different ML models based on separate annotated datasets.

Dataset description. To train the segmentation models, we relied on publicly available datasets. For the 
lung segmentation task, we made use of a  subset18 of the COVID-19 CT Lung and Infection Segmentation 
 Dataset19. This dataset, henceforth called dataset-1, has 2581 axial slices of CT scans from 10 subjects, each con-
sisting of non-contrast CT scans with a slice thickness of 1–1.2 mm and slice distance of 1–1.2 mm, as well as the 
corresponding lung masks. For the inflammation segmentation task, we used the dataset (henceforth referred 
as dataset-2) from COVID-19 Lung CT Lesion Segmentation  Challenge20–22, consisting of 13,705 axial slices of 
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chest CT scans from 199 patients taken at slice thickness 5 mm and slice distance 5 mm, and the corresponding 
inflammation masks. The data preparation details are given in Supplementary section  1.

Further, clinical and radiological data of COVID-19 patients were collected at MGMCH between October to 
December 2020 for the purpose of developing and validating the prognosis model. The data included anonymized 
CT scans as well as clinical, demographic, biochemical, and radiological parameters of 302 COVID-19 patients. 
Volumetric thin section CT scans were obtained with slices of 0.625 mm each with high spatial frequency. The 
clinical parameters in the dataset and other details are furnished in Table 1. This dataset also had missing values, 
these were replenished via data imputation. Specifically, the missing day of presentation was imputed with the 

Figure 1.  Flowchart. Top panel shows the flow chart of the project. This shows the experiment of training 3 
models on different feature sets. Model-CP was trained only on clinical parameters. Model-CTSS was trained 
on clinical features appended with CT severity score. Model-ALLR was trained on clinical features appended 
with ALLR. The bottom panel is the expanded view of lung and inflammation segmentation. The lungs mask are 
produced by a segmentation model from CT scan. This mask is used to get the region of interest (ROI). The ROI 
is given as input to another segmentation model that produces the inflammation masks.

Table 1.  Summary of parameters in the MGMCH dataset and the number of records that have the parameter 
recorded. Each summary data is presented as either a percentage or a median value (interquartile range). 
aNumber of days passed from the symptom onset.

Parameter Number of records with parameter value included Summary

Age (in years) 302 59 (40-79)

Sex 302 75.16% male

Day of presentationa 264 4 (3.75-5)

CT severity score 302 15 (10-20)

CRP (mg/L) 202 34.9 (13.77-78.5)

D Dimer (ng/mL) 191 278 (221.5-483)

Ferritin ( µg/L) 159 343 (155.75-713.95)

Prevalence

Diabetes 300 19.53%

Obesity 300 16.22%

Hypertension 300 30.13%

Need for oxygen 302 39.74%

ICU admission 302 21.52%

Need for ventilation 302 11.59% required

Death 302 5.96% mortality
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median value. Missing values for the rest of the features were imputed using the nearest neighbors method with 
the assumption that similar known parameters indicate similarity in unknown parameters as  well23.

Model development. We developed ML models to tackle two major tasks, namely, (1) lung and inflamma-
tion segmentation in CT images, and (2) multiparameter prediction of the outcome.

CT image segmentation. In CT images, we first delineated the lungs, and subsequently marked the inflamed 
regions within the lungs. For each subtask, we make use of a suitable deep network.

Lung segmentation. For lung segmentation, we used Bi-directional Conv-LSTM U-Net with Densely Con-
nected Convolutions (BCDU-Net), which had reported high performance in an analogous task in a lung cancer 
 study24. Inspired by that work, we adopted a complementary approach, where, instead of a mask for the lungs, 
one uses that for the chest region excluding lungs. Further, we made certain improvements in the preprocessing 
step for generating such masks, by identifying areas for improvements by manual assessment. Specifically, tra-
chea had wrongly been segmented as part of the lung. To prevent this without compromising the segmentation 
accuracy, we performed a convex hull operation that caused the trachea to now be correctly identified. Training 
and test subsets were generated by randomly splitting dataset-1 (10 CT scans) in a 4:1 ratio. We made use of the 
intersection over union (IoU) loss criterion (i.e., 1-IoU), and the Adam optimizer with an initial learning rate 
of 10−4 . The model was trained for 100 epochs. In view of the small size of the dataset, image augmentation was 
used while training as an aid to the generalizability of the model. Data augmentation details are presented in 
Supplementary section  2.1.

To improve the quality of lung masks generated by model, the following post processing steps were included 
in the lung segmentation algorithm. Morphological opening operation with a disk of size 3 pixels as structuring 
element was used to disconnect trachea from lung, and then connected components were labeled in the mask 
and the components with size less than a third of total volume were removed, so that only the lungs were present 
in the mask. We identified another qualitative issue with the model’s prediction, which was not evident from the 
dice score. The boundaries of the lungs were jagged because of misclassifications, in some cases where there was 
a thickening of the pleura or presence of peripheral ground glass. Morphological geodesic active  contour25,26 
was used to smooth the boundaries. The mask was given as an initial level set to the algorithm to minimize the 
internal energy function, which smoothens the boundaries of mask. The multipliers for balloon/pressure force 
and the internal energy terms were 1. The number of iterations was set to 10.

Lung inflammation segmentation. For lung inflammation segmentation, we employed UNet++, which extends 
UNet by introducing a denser network of skip connections with convolution blocks bridging the semantic gap 
between the encoder and decoder feature  maps27, and whose performance we compared with that of BCDU-Net. 
Training and test subsets were created by splitting dataset-2 in the ratio of 4:1. Noting that the gray-scale values 
vary widely within the manually annotated lesions (lighter shade indicating higher severity, while low-severity 
areas being close to uninfected tissues in shade), we sought to focus on subregions with severe infections in order 
to facilitate its automated distinction from healthy lung tissues. For this purpose, we initialized with the contour 
of original annotations, and shrank those by the morphological geodesic active contour method to high-severity 
subregions. The multipliers for the internal energy and pressure terms were 0 and − 1.25, respectively. The num-
ber of iterations were set to 50.

We trained the inflammation segmentation model using such subregions as reference. As earlier, we mini-
mized IoU loss using Adam optimizer with an initial learning rate of 10−4 . The model was trained for 30 epochs, 
with data augmentation. The developed model was used to segment inflamed regions in each 2D axial slice of a 
CT scan. The data augmentation details are given in Supplementary section 2.2.

Performance index. We measured the segmentation fidelity in terms of Dice coefficient (DC) between the 
estimated and the reference regions, defined as twice the area of the intersection of the said regions divided by 
the sum of the areas of those regions. Stacking the aforementioned axial slices, we obtained the CT volume, in 
which the segmented lungs assembled into the lung volume, and the inflamed subregions into the lesion volume. 
The ALLR was subsequently computed as the volumetric ratio of lesion to lung. To each MGMCH data record, 
we appended the ALLR for subsequent analysis.

Outcome prediction. While admitting each COVID-19 patient, the hospital records the demographic, the bio-
chemical as well as the radiological parameters based on the chest CT scan (if performed) along with pre-
existing conditions. In this study, we used the patient records to develop an ML model to predict the need for 
mechanical ventilation (MV), an acutely scarce resource, based on the MGMCH dataset. Prediction of such need 
is a clinically meaningful and significant outcome, which may guide efficient triaging (e.g., patients in need of 
MV should be admitted to a hospital in a unit where they can be monitored effectively).

ML model. Predicting the need for MV was posed as a classification task, and we assessed the efficacy of com-
peting ML models for this task. Specifically, we compared the performance of random  forest28 and  XGBoost29 
(extreme gradient boost), two well-known ensemble models, usually superior to single models in terms of gen-
eralizability and  robustness30,31. The random forest, a bagging type of ensemble, consists of multiple independ-
ent decision trees, each of which is trained using a random subset of features and a random subset of samples 
drawn with replacement, and hence enjoys reduced variance of the ensemble, avoiding overfitting. In contrast, 
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XGBoost makes use of a type of gradient boosting, where multiple decision tree models are trained in succes-
sion, each tending to improve performance. As a result, the ensemble, a weighted combination of component 
models, enjoys both reduced bias and reduced variance. We tuned the hyperparameters via grid search in case 
of both random forest and XGBoost.

In order to test if algorithmically generated ALLRs are as effective as the manually generated CT severity 
scores in predicting the need for ventilation, we performed the following experiment. We established as a baseline 
the performance of a reference ML model (via suitable training) based only on clinical parameters. Subsequently, 
two additional models were developed, where clinical parameters were appended with the CT severity score in 
case of one, and the ALLR in case of the other. Performance of those two models were compared under various 
criteria with the performance of the reference model as a baseline. Here, we considered two versions of each of 
the models, one based on random forest and the other based on XGBoost. For all models the categorical features 
were encoded using label encoding and the numeric features were treated as continuous variables.

In case of each model, we performed Monte-Carlo cross  validation32.The dataset was randomly split into 
training and test subsets in a 4:1 ratio in a stratified manner. The model was trained on the former subset, and 
the outcome was predicted for each case in the unseen test subset. In particular, the probability of the outcome 
was recorded for each test case, which led to a binary decision based on a suitable threshold. To report various 
statistics involving test performance, this above process was repeated for 50 independently generated training-test 
partitions. Specifically, the model with the median performance may be taken as a representative.

Performance indices. The receiver operating characteristic (ROC) curve is plotted by calculating true positive 
rate (TPR) and false positive rate (FPR) for various threshold points of the probability generated by a model. 
ROC curve is convex by definition, so we took the convex hull of the curve, where the operating points between 
the optimal points are obtained by time sharing. We also calculate the area under the curve (AUC) to compare 
different models. It is a more useful performance metric than accuracy in cases of class imbalance, which is 
present in the MGMCH dataset.

Further, we computed the confusion matrix to compare different models. A confusion matrix includes TPR, 
FPR, true negative rate (TNR) and false negative rate (FNR) which are calculated after thresholding. Generally, 
the threshold probability is selected to maximize the accuracy. In different settings, TPR and TNR may not 
always have equal importance but accuracy weighs them equally. Hence, we also calculate confusion matrices 
using multiple thresholds selected by minimizing a weighted loss FPR + α FNR for different values of α We also 
visualize the different operating points on the ROC curve.

Facilitation of human decision making: In the above, the probability threshold τ may need to be adjusted to 
reflect the availability of various resources. However, the probability value predicted by the model may not easily 
be interpretable by clinicians. As a solution, we suggest a piecewise linear mapping from the machine-generated 
probability to an interpretable one as follows. Probabilities between 0 and τ were linearly transformed to prob-
abilities 0–0.5, and probabilities from τ to 1.0 were mapped to probabilities 0.5–1.

Implementation notes. Computer coding was carried out in Python programming language version 3.833, 
and compute-resources from Google  Colab34 were used. Deep learning models were implemented using Tensor-
Flow  v235 library. OpenCV  v436 and scikit-image v0.1737 were used for image processing. We used random forest 
model from the scikit-learn v0.2438 library.

Results
The demographic, physiological and outcome on mechanical ventilation data are presented in Table 1.

The lung segmentation had a Dice coefficient of 96% on the test set. Inflammation segmentation had a dice 
coefficient of 58% on the test set using BCDU-Net while UNet++ improved the Dice coefficient to 60%. Even 
though the Dice coefficient for inflammation segmentation is less compared to lung segmentation, in view of 
this being a somewhat subjective problem we proceeded to check if ALLR work as well as CT severity score.

The mean and standard deviation of AUCs calculated on the validation sets for the 50 iterations are given in 
Table 2. The random forest models exhibited higher mean AUCs than XGBoost models. The mean AUC for the 
random forest model with clinical features and ALLR was 0.91 which is greater than that of the random forest 
model using only clinical features. All the random forest models had a low standard deviation of 0.06 for AUC 
which indicated that the results are consistent. The radiological features were ranked as the most important 
feature for both models using ALLR and CT severity score as shown in Fig. 2. The mean ROC curve for the 3 

Table 2.  Validation AUCs for 50 iterations for the three models. Model-CP model with clinical parameters as 
input, Model-CTSS model with clinical parameters and CT severity score as input, Model-ALLR model with 
clinical parameters and ALLR as input.

Random forest XGBoost

Mean (std) 95% CI Mean (std) 95% CI

Model-CP 0.87 (0.06) 0.85–0.88 0.84 (0.09) 0.81–0.87

Model-CTSS 0.89 (0.06) 0.87–0.91 0.88 (0.07) 0.86–0.90

Model-ALLR 0.91 (0.06) 0.89–0.93 0.89 (0.07) 0.87–0.91
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classification tasks using random forest models is given in Fig. 3. It shows different operating points correspond-
ing to minimizing different loss functions. The models including radiological features had higher TPR than the 
model using only clinical features at every operating point.

The mean and standard deviation of the confusion matrices for the three classification models using random 
forest models are given in Table 3. The first column shows the loss function that is minimized. Increasing the 
weight of false negative rate in the loss function, increased the true positive rate (TPR) however it reduced the 
true negative rate (TNR). For every loss function, the model that used ALLR had better TPR and TNR.

In Supplementary section 4, we provide examples of two patients (one not requiring MV, and the other requir-
ing MV) from the MGMCH dataset demonstrating how the model can be used to forecast outcome.

Discussion
In this clinico-radiological prediction model for COVID-19 patients from LMIC setting, we showed that synthe-
sis of clinical data with automated CT scan derived lung involvement data (ALLR) performed marginally better 
in predicting the need for ventilation than similar scores derived from clinical data and traditional CT severity 
score generated by a radiologist. Importantly, the model output had a low false negative rate, which is important 
in the context of triage, as a patient with high likelihood of clinical decline should not be triaged as low risk. 
Therefore, even without a radiologist input, the CT scan could be utilised meaningfully towards model develop-
ment. This could help in reducing the load on radiologists in generating time-critical reports that incorporate 
detailed inflammation severity.

Figure 2.  Relative feature importance. Panel (A) shows mean feature importance of the model having CT 
severity score and clinical parameters as the input. Panel (B) shows mean feature importance of the model 
having ALLR and clinical parameters as the input. The error bars show the standard deviations.

Figure 3.  Mean ROC curve. The figure shows the ROC curves obtained by taking the mean of validation ROC 
curves over 50 iterations for predicting need for ventilation for the three models. The blue markers on the curves 
show the operating points where the mentioned cost function is minimized.
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The image analysis involves the segmentation of lungs and subsequently diseased areas within the lung tissue. 
The technique used is robust because they were validated on unseen data, and they were manually examined 
and the essential postprocessing steps were added to the pipeline in order to make them more accurate. The 
automated calculation of ALLR from the segmented volumes is a precise method of quantification of abnormality 
than the CT severity score, independent of observer based variability.

There are multiple features that make this model unique. First, this is the first time that automated CT scan 
derived data have been amalgamated with clinical features. Second, this takes the clinical and laboratory values 
on the day of the CT scan and therefore the model represents the clinical picture of the patient on the day of 
imaging. Third, the outcome of need-for-ventilation is clinically significant, both in terms of clinical outcome 
and also resource allocation in a healthcare system. Fourth, the underlying segmentation tools were trained 
using labeled publicly available data from a different setting external to India and the subsequent development 
of models utilized data from Indian patients. Therefore, the approach and the results are potentially generaliz-
able, at least in other LMIC settings. Fifth, the inclusion of the day-from-symptom-onset potentially adds valu-
able information about the natural history of the disease (for example, the CT findings on day 7 has a different 
meaning than the same CT finding on day 21 from pathological and natural-history-of-disease point of view). 
This is not included in other current clinical models. Finally, the outcome classification results using the ALLR 
improve slightly over that using the CT severity score. This indicates that the use of the ALLR in place of the CT 
severity score does not result in any loss in performance. We investigated the possible relationship between the 
ALLR and the CT severity score. Under linear fit, the correlation coefficient between those was 0.70. A quadratic 
model provided an improved fit (with root mean squared error reducing to 0.118 from 0.131), and is shown in 
Supplementary Figure S1. For the 35 year old low-risk patient discussed in the introduction section, our model 
will take into account the CT and clinical features to be able to predict whether this patient has indeed less 
probability of deteriorating later and if this surge area with less resource is going to be suitable for him. On the 
contrary, a patient with higher chance of deterioration, as predicted on the basis of the above features without 
any additional time from a radiologist, should be appropriately admitted to areas geared up to treat such patients. 
Once developed, the model can be calibrated to meet the requirements for future patients with different waves 
of the pandemic, a different infection or a different disease pathophysiology.

There are several limitations of the study. First, important physiological parameters on respiratory rate and 
SpO2 on air at the time of presentation were not collected due to the retrospective nature of study. This should 
be added in the subsequent iterations to make the prediction more robust and most likely will make the model 
significantly better. Second, data collected from single centre might create bias in the results that may arise from 
local clinician practice of selection of patients for mechanical ventilation. Third, The dataset was developed during 
the first wave of COVID-19 in India. The changing nature and virulence of the virus may alter the performance 
of the model and recalibration may be required in successive waves. Fourth, the patients were not on therapy 
at the time of acquisition of the CT scan. Therefore, it is not clear whether the model can be applied to patients 
already admitted to the hospital and who have been given proven therapy (e.g. systemic corticosteroid or IL-6 
inhibitors). Fifth, it should be noted that specific lung pathology cannot be differentiated through this method 
and therefore a radiologist should still view the images from the standpoint of traditional reporting. Finally, 
there is a need for a strategy to be devised for scans done in the HRCT format, in order to extrapolate the model 
developed on volume CT scans into high-resolution scans which are done with fewer sections. Furthermore, 
there is no detail demographic distribution data regarding the publicly held datasets used in training segmenta-
tion models and that could introduce bias, although the effect from demographic and age related variation of 
lung anatomy in the context of measuring inflammatory burden from COVID-19 is likely to be insignificant.

All these aspects, when taken together, can potentially lead to a robust and standardizable mathematical 
model to predict individual patient level outcomes in order to achieve efficient triaging in hospitals and critical 
care units. It is important to acknowledge here that as in other prediction models, different iterations will be 

Table 3.  Confusion matrices of predicting need for ventilation for validation sets of 50 iterations. The values 
outside the parenthesis show the number of records and the values in parenthesis are the normalized values. 
The confusion matrices were calculated using thresholds that minimize the cost function mentioned in the first 
column.

 Model-CP  Model-CTSS  Model-ALLR

Pred -ve Pred +ve std Pred -ve Pred +ve std Pred -ve Pred +ve std

FPR + 0.5*FNR

Actual -ve
47.66 
(0.882)

6.34 (0.118) 3.94 (0.07)
47.34 
(0.877)

6.66 (0.123) 4.60 (0.08)
47.74 
(0.884)

6.26 (0.116) 3.54 (0.06)

Actual +ve 1.94 (0.28) 5.06 (0.72) 1.40 (0.2) 1.68 (0.24) 5.32 (0.76) 1.08 (0.15) 1.44 (0.21) 5.56 (0.79) 1.15 (0.16)

FPR + FNR

Actual -ve 43.34 (0.80) 10.66 (0.20) 5.35 (0.1) 42.9 (0.79) 11.1 (0.21) 5.76 (0.1) 44.16 (0.82) 9.84 (0.18) 5.05 (0.09)

Actual +ve 1.18 (0.17) 5.82 (0.83) 1.07 (0.15) 0.9 (0.13) 6.1 (0.87) 0.96 (0.14) 0.74 (0.11) 6.26 (0.89) 0.87 (0.12)

FPR + 2*FNR

Actual -ve 35.66 (0.66) 18.34 (0.34) 12.87 (0.2) 38.94 (0.72) 15.06 (0.28) 6.52 (0.12) 39.36 (0.73) 14.64 (0.27) 8.81 (0.16)

Actual +ve 0.56 (0.08) 6.44 (0.92) 0.64 (0.09) 0.5 (0.07) 6.5 (0.93) 0.70 (0.1) 0.3 (0.04) 6.7 (0.96) 0.54 (0.07)
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needed in different settings and timings of the pandemic to make this approach useful in future. Future prospec-
tive studies with expanded data from multiple centers can improve the generalizability of model output, at the 
same time making it more robust.

Conclusions
In conclusion, a clinicoradiological model, developed by amalgamation of radiological and clinical parameters, 
produced in line with the current study design, can predict important clinical outcome of need for invasive 
mechanical ventilation efficiently and safely. Every setting or region can use this technique to predict the outcome 
of severe COVID-19 patients effectively.

Data availability
The data collected for this study are available from the corresponding authors upon reasonable request.

Code availability
The code related to this study are available from the corresponding authors upon reasonable request.
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